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 A B S T R A C T

This paper is dedicated to the construction of integrable commuting flows starting from a fourth-order matrix 
spectral problem involving four fields, which is derived from a specialized matrix Lie algebra over the real 
domain. This work includes the development of an explicit bi-Hamiltonian formulation and a hereditary 
recursion structure, which confirms the hierarchy’s integrability in the Liouville sense. Furthermore, we 
examine two second-order and third-order integrable models, along with their reduced, uncombined forms.

1. Introduction

Integrable models comes in hierarchies that possess hereditary recursion operators  [1,2] and are often derived from Lax pairs linked to matrix 
eigenvalue problems [3]. These matrix eigenvalue problems facilitate the development of Hamiltonian formulations, connecting symmetries with 
conservation laws. Integrable models find widespread applications across the domains of engineering, the natural sciences, and the physical sciences, 
such as nonlinear optics, plasma physics, water waves, fluid dynamics, and quantum mechanics [4].

Some of the most prominent integrable models include the Ablowitz–Kaup–Newell–Segur (AKNS) fundamental ones [5], and its various 
integrable couplings, based on matrix Lie algebras that are non-semisimple (see, e.g., [6]). Matrix Lie algebras serve as a robust framework 
for constructing Liouville integrable systems and their corresponding Lax pairs, which are derived from matrix eigenvalue problems [7,8]. The 
exploration of various types of Lax pairs capable of generating integrable models has been a longstanding area of study. In this paper, employing 
the Lax pair (or zero curvature) formalism, we aim to introduce a new 4th-order eigenvalue problem and build a combined integrable hierarchy 
related to the problem, derived from a particular matrix Lie algebra.

The zero curvature formulation offers an effective method for generating integrable models (see, for instance, [8,9] for more details). As normal, 
a potential vector of dimension 𝑠 is expressed as 𝑟 = (𝑟1,… , 𝑟𝑠)𝑇  and the spectral variable by 𝜉. Beginning with a given loop matrix algebra 𝑔̃ with 
the loop variable 𝜉, we take 𝑠 linearly independent matrices 𝐴1,… , 𝐴𝑠 to propose the following spatial spectral matrix: 

 = (𝑟, 𝜉) = 𝑟1𝐴1(𝜉) +⋯ + 𝑟𝑠𝐴𝑠(𝜉) + 𝐴0(𝜉), (1.1)

where the following pseudo-regular property holds for the last matrix element 𝐴0:

Im ad𝐴0
⊕ Ker ad𝐴0

= 𝑔̃, [Ker ad𝐴0
,Ker ad𝐴0

] = 0,

in which ad𝐴0
 is defined by ad𝐴0

𝐵 = [𝐴0, 𝐵], where 𝐵 is an arbitrary matrix. Then, within the foundational loop algebra 𝑔̃, we need to solve the 
following matrix equation 

𝑌𝑥 − [, 𝑌 ] = 0, (1.2)

and specifically, we search for an infinite series solution of the Laurent form 𝑌 =
∑

𝑛≥0 𝑌
[𝑛]𝜉−𝑛.
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The second step is that based on the constructed matrix 𝑌 , we identify an infinite set of Lax operators (or matrices) 
 [𝑚] =  [𝑚](𝑟, 𝜉) = 𝑌 [0]𝜉𝑚 + 𝑌 [1]𝜉𝑚−1 +⋯ + 𝑌 [𝑚] +𝛱𝑚(𝜉), 𝛱𝑚 ∈ 𝑔̃, 𝑚 ≥ 0, (1.3)

so that the associated compatibility conditions: 
𝑡𝑚 =  [𝑚]

𝑥 + [ [𝑚],], 𝑚 ≥ 0, (1.4)

generates an infinite sequence of commuting integrable models: 
𝑟𝑡𝑚 = 𝑋[𝑚](𝑟, 𝑟𝑥,…), 𝑚 ≥ 0. (1.5)

The compatibility conditions in (1.4) essentially correspond to the solvability criteria of the Lax pairs: 
{

𝜑𝑥 = (𝑟, 𝜉)𝜑,

𝜑𝑡𝑚 =  [𝑚](𝑟, 𝜉)𝜑,
𝑚 ≥ 0. (1.6)

The subsequent step is that we need to find a Magri’s geometric structure for the constructed hierarchy (1.5). This will be achieved by exploring 
a recursion structure being hereditary and utilizing the trace identity: 

𝛿
𝛿𝑟 ∫

tr
(

𝑌 𝜕
𝜕𝜉

)

𝑑𝑥 = 𝜉−𝜅 𝜕
𝜕𝜉

𝜉𝜅 tr
(

𝑌 𝜕
𝜕𝑟

)

, (1.7)

where 𝛿
𝛿𝑟  and 

𝜕
𝜕𝑟  denote the variational derivative and partial derivative with respect to the potential vector 𝑟, respectively, and the constant 𝜅

does not depend on the spectral variable 𝜉, which can be computed by 

𝜅 = −
𝜉
2

𝜕
𝜕𝜉

ln |tr(𝑌 2)|. (1.8)

In this way, we see that each model in the constructed sequence possesses a Magri’s geometric formulation, which ensures its Liouville integrability 
(see, for instance,  [8–10]).

There are various hierarchies of Liouville integrable Hamiltonian models, presented in the literature [5–20]. The two-component case is widely 
studied, with several well-known examples, including the AKNS models [5], the Kaup–Newell models [21], the Heisenberg models [22], and the 
Wadati–Konno–Ichikawa models [23]. These four soliton hierarchies are linked to the following matrix spectral matrices: 

 =
[

−𝜉 𝑟1
𝑟2 𝜉

]

,  =
[

−𝜉2 𝜉𝑟1
𝜉𝑟2 𝜉2

]

, (1.9)

 =
[

−𝜉𝑟3 𝜉𝑟1
𝜉𝑟2 𝜉𝑟3

]

,  =
[

−𝜉 𝜉𝑟1
𝜉𝑟2 𝜉

]

, (1.10)

where 𝑟1𝑟2 = 1 − 𝑟23, respectively. These spectral matrices are rare and specific objects in soliton theory, and formulating such spectral matrices, 
which can generate soliton hierarchies, presents a significant challenge in the field.

This paper proposes a specific 4th-order spectral matrix with four potentials, derived using the trial-and-error method combined with symbolic 
computation, and grounded in a distinct matrix Lie algebra within the real domain. It then develops a commuting hierarchy of integrable models 
in the Liouville sense, employing the Lax pair formulation. To demonstrate the Liouville integrability of the constructed models, we explore a 
hereditary recursion structure and a Magri’s geometric structure, Two examples are provided, including generalized combined 2nd-order and 3th-
order integrable models, along with their special reductions. The main contribution is the formulation of a 4th-order spectral matrix possessing 4 
potentials, which generates an integrable hierarchy. The concluding section provides a summary and additional remarks.

2. Combined commuting flows with four fields

Let 𝜁 be an arbitrary scalar, and 𝛩 an invertible matrix of order 𝑠 ∈ N, such that its inverse is equal to itself. It is straightforward to observe 
that a collection 𝑔̃ of 2 × 2 block matrices 

𝐺 =
[

𝐺1 𝐺2
𝐺3 𝐺4

]

2𝑠×2𝑠
, (2.1)

where 
𝐺4 = 𝛩𝐺1𝛩

−1, 𝐺3 = 𝜁𝛩𝐺2𝛩
−1, (2.2)

forms a matrix Lie algebra under the matrix commutator [𝐺,𝐺′] = 𝐺𝐺′ −𝐺′𝐺. In what follows, an example of the above matrix algebra with 𝑠 = 2
and 

𝛩 =
[

0 −1
−1 0

]

or
[

0 1
1 0

]

(2.3)

will be used to introduce a specific spectral matrix to create a related integrable sequence.
We denote the four-dimensional vector of dependent variables by 

𝑟 = 𝑟(𝑥, 𝑡) = (𝑟1, 𝑟2, 𝑟3, 𝑟4)𝑇 , (2.4)

take two pairs of arbitrary constants, 𝛼1, 𝛼2 and 𝜂1, 𝜂2, and assume that 

𝛼 ≠ 0, (2.5)
2 
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where 𝛼 = 𝛼1−𝛼2. Inspired by recent research works on matrix eigenvalue problems containing 4 fields, particularly, two examples of arbitrary-order 
in [24,25] and two examples of fourth-order in [26,27], we aim to examine an eigenvalue problem defined by the following matrix form: 

𝜑𝑥 = 𝜑 = (𝑟, 𝜉)𝜑,  =

⎡

⎢

⎢

⎢

⎢

⎣

𝛼1𝜉 𝜂1𝑟1 𝑟2 0
𝜂1𝑟3 𝛼2𝜉 0 𝑟4
𝜂1𝜂2𝑟4 0 𝛼2𝜉 𝜂1𝑢3

0 𝜂1𝜂2𝑟2 𝜂1𝑟1 𝛼1𝜉

⎤

⎥

⎥

⎥

⎥

⎦

(2.6)

where 𝜉 continues to function as the eigenvalue coordinate. This spectral matrix  was formulated using a trial-and-error method combined with 
symbolic computation in Maple. The key aspect to note is the existence of solutions to the stationary zero curvature equation. Obviously, the 
spectral matrix  belongs to the matrix Lie algebra 𝑔̃ mentioned previously. The eigenvalue problem cannot be any reduction of the matrix AKNS 
eigenvalue problem (see, e.g., [28]). We aim to develop a corresponding commuting sequence of four-component Hamiltonian models with specific 
combined structures. Interestingly, when 𝜂2 = 0, it gives rise to non-perturbation type integrable couplings.

We now proceed with the construction of the integrable models associated the above spectral matrix described above. To begin, we solve the 
corresponding stationary zero curvature Eq. (1.2) by starting with 

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜂1𝑎 𝜂1𝑏 𝑒 𝑓
𝜂1𝑐 −𝜂1𝑎 −𝑓 𝑔
𝜂1𝜂2𝑔 −𝜂1𝜂2𝑓 −𝜂1𝑎 𝜂1𝑐
𝜂1𝜂2𝑓 𝜂1𝜂2𝑒 𝜂1𝑏 𝜂1𝑎

⎤

⎥

⎥

⎥

⎥

⎦

=
∑

𝑛≥0
𝑌 [𝑛]𝜉−𝑛, (2.7)

where the undetermined coefficient matrices are assumed to be as follows: 

𝑌 [𝑛] =

⎡

⎢

⎢

⎢

⎢

⎣

𝜂1𝑎[𝑛] 𝜂1𝑏[𝑛] 𝑒[𝑛] 𝑓 [𝑛]

𝜂1𝑐[𝑛] −𝜂1𝑎[𝑛] −𝑓 [𝑛] 𝑔[𝑛]

𝜂1𝜂2𝑔[𝑛] −𝜂1𝜂2𝑓 [𝑛] −𝜂1𝑎[𝑛] 𝜂1𝑐[𝑛]

𝜂1𝜂2𝑓 [𝑛] 𝜂1𝜂2𝑒[𝑛] 𝜂1𝑏[𝑛] 𝜂1𝑎[𝑛]

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑛 ≥ 0. (2.8)

The reason to take this form is that with  in (2.6), an arbitrary matrix in 𝑔̃ will engender a commutator matrix of the above form. In this way, 
we can find that the corresponding stationary zero curvature Eq. (1.2) gives 

⎧

⎪

⎨

⎪

⎩

𝑎𝑥 = 𝜂1𝑐𝑟1 + 𝜂2 𝑔𝑟2 − 𝜂1𝑏𝑟3 − 𝜂2𝑒𝑟4,
𝑏𝑥 = 𝛼𝜉𝑏 − 2𝜂1𝑎𝑟1 − 2𝜂2𝑓𝑟2,
𝑐𝑥 = −𝛼𝜉𝑐 + 2𝜂1𝑎𝑟3 + 2𝜂2𝑓𝑟4,

(2.9)

⎧

⎪

⎨

⎪

⎩

𝑒𝑥 = 𝛼𝜉𝑒 − 2𝜂1𝑎𝑟2 − 2𝜂1𝑓𝑟1,
𝑔𝑥 = −𝛼𝜉𝑔 + 2𝜂1𝑎𝑟4 + 2𝜂1𝑓𝑟3,
𝑓𝑥 = 𝜂1(𝑐𝑟2 + 𝑔𝑟1 − 𝑏𝑟4 − 𝑒𝑟3).

(2.10)

These equations leads equivalently to the initial conditions: 
𝑎[0]𝑥 = 0, 𝑏[0] = 𝑐[0] = 𝑒[0] = 𝑔[0] = 0, 𝑓 [0]

𝑥 = 0, (2.11)

and the recursion relations for determining the Laurent series solution: 
{

𝑏[𝑛+1] = 1
𝛼 (𝑏

⟨𝑛⟩
𝑥 + 2𝜂1𝑎[𝑛]𝑟1 + 2𝜂2𝑓 [𝑛]𝑟2),

𝑐[𝑛+1] = − 1
𝛼 (𝑐

⟨𝑛⟩
𝑥 − 2𝜂1𝑎[𝑛]𝑟3 − 2𝜂2𝑓 [𝑛]𝑟4),

(2.12)
{

𝑒[𝑛+1] = 1
𝛼 (𝑒

⟨𝑛⟩
𝑥 + 2𝜂1𝑓 [𝑛]𝑟1 + 2𝜂1𝑎[𝑛]𝑟2),

𝑔[𝑛+1] = − 1
𝛼 (𝑔

[𝑛]
𝑥 − 2𝜂1𝑓 [𝑛]𝑟3 − 2𝜂1𝑎[𝑛]𝑟4),

(2.13)
{

𝑎[𝑛+1]𝑥 = −𝜂1𝑏[𝑛+1]𝑟3 + 𝜂1𝑐[𝑛+1]𝑟1 − 𝜂2𝑒[𝑛+1]𝑟4 + 𝜂2𝑔[𝑛+1]𝑟2,
𝑓 [𝑛+1]
𝑥 = 𝜂1(𝑐[𝑛+1]𝑟2 + 𝑔[𝑛+1]𝑟1 − 𝑏[𝑛+1]𝑟4 − 𝑒[𝑛+1]𝑟3),

(2.14)

where 𝑛 ≥ 0. To compute the solution concretely, we take the initial data, 

𝑎[0] = 1
2
𝛽, 𝑓 [0] = 1

2
𝛾, (2.15)

where the constants 𝛽 and 𝛾 are arbitrarily chosen, and we assume 
𝑎[𝑛]|𝑢=0 = 0, 𝑓 [𝑛]

|𝑢=0 = 0, 𝑛 ≥ 1, (2.16)

which implies that the constants of integration are taken as zero. Under those conditions, one can work out that
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏[1] = 1
𝛼 (𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2), 𝑐[1] = 1

𝛼 (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4),

𝑒[1] = 𝜂1
𝛼 (𝛾𝑟1 + 𝛽𝑟2), 𝑔[1] = 𝜂1

𝛼 (𝛾𝑟3 + 𝛽𝑟4),

𝑎[1] = 0, 𝑓 [1] = 0;

{

𝑏[2] = 1
𝛼2
(𝜂1𝛽𝑟1,𝑥 + 𝜂2𝛾𝑟2,𝑥), 𝑐[2] = − 1

𝛼2
(𝜂1𝛽𝑟3,𝑥 + 𝜂2𝛾𝑟4,𝑥),

𝑒[2] = 𝜂1
𝛼2
(𝛾𝑟1,𝑥 + 𝛽𝑟2,𝑥), 𝑔[2] = − 𝜂1

𝛼2
(𝛾𝑟3,𝑥 + 𝛽𝑟4,𝑥),

{

𝑎[2] = − 𝜂1
𝛼2
[(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2],

[2] 𝜂1
𝑓 = −
𝛼2
[𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2];

3 
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{

𝑏[3] = 1
𝛼3
[𝜂1𝛽𝑟1,𝑥𝑥 + 𝜂2𝛾𝑟2,𝑥𝑥 − 2𝜂1(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)(𝜂1𝑟21 + 𝜂2𝑟22) − 4𝜂21𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟1𝑟2],

𝑐[3] = 1
𝛼3
[𝜂1𝛽𝑟3,𝑥𝑥 + 𝜂2𝛾𝑟4,𝑥𝑥 − 2𝜂1(𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)(𝜂1𝑟23 + 𝜂2𝑟24) − 4𝜂21𝜂2(𝛾𝑟1 + 𝛽𝑟2)𝑟3𝑟4],

{

𝑒[3] = 1
𝛼3
[𝜂1𝛾𝑟1,𝑥𝑥 + 𝜂1𝛽𝑟2,𝑥𝑥 − 2𝜂21 (𝛾𝑟3 + 𝛽𝑟4)(𝜂1𝑟21 + 𝜂2𝑟22) − 4𝜂21 (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1𝑟2],

𝑔[3] = 1
𝛼3
[𝜂1𝛾𝑟3,𝑥𝑥 + 𝜂1𝛽𝑟4,𝑥𝑥 − 2𝜂21 (𝛾𝑟1 + 𝛽𝑟2)(𝜂1𝑟23 + 𝜂2𝑟24) − 4𝜂21 (𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟3𝑟4],

{

𝑎[3] = 𝜂1
𝛼3
[−(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1,𝑥 − 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2,𝑥 + (𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟3,𝑥 + 𝜂2(𝛾𝑟1 + 𝛽𝑟2)𝑟4,𝑥],

𝑓 [3] = 𝜂1
𝛼3
[−𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1,𝑥 − (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2,𝑥 + 𝜂1(𝛾𝑟1 + 𝛽𝑟2)𝑟3,𝑥 + (𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟4,𝑥];

and
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏[4] = 1
𝛼4

{

𝜂1𝛽𝑟1,𝑥𝑥𝑥 + 𝜂2𝛾𝑟2,𝑥𝑥𝑥 − 6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟1,𝑥
−6𝜂1𝜂2[𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟2,𝑥

}

,

𝑐[4] = − 1
𝛼4

{

𝜂1𝛽𝑟3,𝑥𝑥𝑥 + 𝜂2𝛾𝑟4,𝑥𝑥𝑥 − 6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟3,𝑥
−6𝜂1𝜂2[𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟4,𝑥

}

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒[4] = 1
𝛼4

{

𝜂1𝛾𝑟1,𝑥𝑥𝑥 + 𝜂1𝛽𝑟2,𝑥𝑥𝑥 − 6𝜂21 [𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟1,𝑥
−6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟2,𝑥

}

,

𝑔[4] = − 1
𝛼4

{

𝜂1𝛾𝑟3,𝑥𝑥𝑥 + 𝜂1𝛽𝑟4,𝑥𝑥𝑥 − 6𝜂21 [𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟3,𝑥
−6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟4,𝑥

}

,

𝑎[4] = 𝜂1
𝛼4
[−(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1,𝑥𝑥 − 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2,𝑥𝑥 − (𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟3,𝑥𝑥

−𝜂2(𝛾𝑟1 + 𝛽𝑟2)𝑟4,𝑥𝑥 + (𝜂1𝛽𝑟1,𝑥 + 𝜂2𝛾𝑟2,𝑥)𝑟3,𝑥 + 𝜂2(𝛾𝑟1,𝑥 + 𝛽𝑟2,𝑥)𝑟4,𝑥
+3𝜂21 (𝜂1𝛽𝑟

2
3 + 2𝜂2𝛾𝑟3𝑟4 + 𝜂2𝛽𝑟24)𝑟

2
1 + 6𝜂1𝜂2(𝛾𝑟23 + 2𝛽𝑟3𝑟4 + 𝜂𝛾𝑟24)𝑟1𝑟2

+3𝜂1𝜂2(𝜂1𝛽𝑟23 + 2𝜂2𝛾𝑟3𝑟4 + 𝜂2𝛽𝑟24)𝑟
2
2],

𝑓 [4] = 𝜂1
𝛼4
[−𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1,𝑥𝑥 − (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2,𝑥𝑥 − 𝜂1(𝛾𝑟1 + 𝛽𝑟2)𝑟3,𝑥𝑥

−(𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟4,𝑥𝑥 + 𝜂1(𝛾𝑟3,𝑥 + 𝛽𝑟4,𝑥)𝑟1,𝑥 + (𝜂1𝛽𝑟3,𝑥 + 𝜂2𝛾𝑟4,𝑥)𝑟2,𝑥
+3𝜂21 (𝜂1𝛾𝑟

2
3 + 2𝜂1𝛽𝑟3𝑟4 + 𝜂2𝛾𝑟24)𝑟

2
1 + 6𝜂21 (𝜂1𝛽𝑟

2
3 + 2𝜂2𝛾𝑟3𝑟4 + 𝜂2𝛽𝑟24)𝑟1𝑟2

+3𝜂1𝜂2(𝜂1𝛾𝑟23 + 2𝜂1𝛽𝑟3𝑟4 + 𝜂2𝛾𝑟24)𝑟
2
2].

Upon observing the above computations, we can take 𝛱𝑚 as zero for each positive integer 𝑚, and treat 
𝜑𝑡𝑚 =  [𝑚]𝜑 =  [𝑚](𝑟, 𝜉)𝜑, 𝑚 ≥ 0, (2.17)

where 
 [𝑚] = 𝑌 [𝑚] + 𝑌 [𝑚−1]𝜉 +⋯ + 𝑌 [0]𝜉𝑚, 𝑚 ≥ 0, (2.18)

as the time evolution parts of the Lax pairs within the Lax pair formulation. We examine the conditions for the solvability of (2.6) and (2.17). 
Those equations generate an infinite sequence of combined nonlinear models with four fields: 

𝑟𝑡𝑚 = 𝑋[𝑚](𝑟, 𝑟𝑥,…) = (𝑋[𝑚]
1 , 𝑋[𝑚]

2 , 𝑋[𝑚]
3 , 𝑋[𝑚]

4 )𝑇 , (2.19)

where 
𝑋[𝑚]

1 = 𝛼𝑏[𝑚+1], 𝑋[𝑚]
2 = 𝛼𝑒[𝑚+1], 𝑋[𝑚]

3 = −𝛼𝑐[𝑚+1], 𝑋[𝑚]
4 = −𝛼𝑔[𝑚+1], 𝑚 ≥ 0. (2.20)

More concretely, we have 
𝑟1,𝑡𝑚 = 𝛼𝑏[𝑚+1], 𝑟2,𝑡𝑚 = 𝛼𝑒[𝑚+1], 𝑟3,𝑡𝑚 = −𝛼𝑐[𝑚+1], 𝑟4,𝑡𝑚 = −𝛼𝑔[𝑚+1], 𝑚 ≥ 0. (2.21)

We can work out the first and second nonlinear models in the aforementioned hierarchy. The first example involves the combined 2nd-order 
integrable equations: 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟1,𝑡2 = 1
𝛼2
[𝜂1𝛽𝑟1,𝑥𝑥 + 𝜂2𝛾𝑟2,𝑥𝑥 − 2𝜂1(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)(𝜂1𝑟21 + 𝜂2𝑟22) − 4𝜂21𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟1𝑟2],

𝑟2,𝑡2 = 1
𝛼2
[𝜂1𝛾𝑟1,𝑥𝑥 + 𝜂1𝛽𝑟2,𝑥𝑥 − 2𝜂21 (𝛾𝑟3 + 𝛽𝑟4)(𝜂1𝑟21 + 𝜂2𝑟22) − 4𝜂21𝑟1𝑟2(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)],

𝑟3,𝑡2 = − 1
𝛼2
[𝜂1𝛽𝑟3,𝑥𝑥 + 𝜂2𝛾𝑟4,𝑥𝑥 − 2𝜂1(𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟23 − 4𝜂21𝜂2(𝛾𝑟1 + 𝛽𝑟2)𝑟3𝑟4],

𝑟4,𝑡2 = − 1
𝛼2
[𝜂1𝛾𝑟3,𝑥𝑥 + 𝜂1𝛽𝑟4,𝑥𝑥 − 2𝜂21 (𝛾𝑟1 + 𝛽𝑟2)(𝜂1𝑟23 + 𝜂2𝑟24) − 4𝜂21 (𝜂1𝛽𝑟1 + 𝜂2𝛾𝑟2)𝑟3𝑟4],

(2.22)

and the second example consists of the combined 3rd-order integrable equations: 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

𝑟1,𝑡3 = 1
𝛼3

{

𝜂1𝛽𝑟1,𝑥𝑥𝑥 + 𝜂2𝛾𝑟2,𝑥𝑥𝑥 − 6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟1,𝑥
−6𝜂1𝜂2[𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟2,𝑥

}

,

𝑟2,𝑡3 = 1
𝛼3

{

𝜂1𝛾𝑟1,𝑥𝑥𝑥 + 𝜂1𝛽𝑟2,𝑥𝑥𝑥 − 6𝜂21 [𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟1,𝑥
−6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟2,𝑥

}

,

𝑟3,𝑡3 = − 1
𝛼3

{

−𝜂1𝛽𝑟3,𝑥𝑥𝑥 − 𝜂2𝛾𝑟4,𝑥𝑥𝑥 + 6𝜂21 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟3,𝑥
+6𝜂1𝜂2[𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟4,𝑥

}

,

𝑟4,𝑡3 = − 1
𝛼3

{

−𝜂1𝛾𝑟3,𝑥𝑥𝑥 − 𝜂1𝛽𝑟4,𝑥𝑥𝑥 + 6𝜂21 [𝜂1(𝛾𝑟3 + 𝛽𝑟4)𝑟1 + (𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟2]𝑟3,𝑥
2 }

(2.23)
⎩

+6𝜂1 [(𝜂1𝛽𝑟3 + 𝜂2𝛾𝑟4)𝑟1 + 𝜂2(𝛾𝑟3 + 𝛽𝑟4)𝑟2]𝑟4,𝑥 .
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The above systems give rise to two integrable models, each with four fields and they expand the family of coupled second-order and third-order 
integrable models (see, for instance, [29,30]). A notable feature of these coupled models is that each includes two linear highest-order derivative 
terms, which is why we designate these systems as combined models. Notably, most previously existing soliton hierarchies involve only a single 
dispersive term.

Three special cases of 𝜂2 = 0, 𝛽 = 0 and 𝛾 = 0 in the resulting hierarchy are interesting. The first case produces novel integrable couplings of 
the AKNS hierarchy, which are not of perturbation type. The other two cases correspond to simplified hierarchies of decoupled integrable models.

A choice of 𝛼 = 𝛽 = −𝜂1 = 𝜂2 = 1 and 𝛾 = 0 reduces the model (2.22) to an uncombined 2nd-order integrable model: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟1,𝑡2 + 𝑟1,𝑥𝑥 + 4𝑟1𝑟2𝑟4 − 2𝑟3(𝑟21 − 𝑟22) = 0,
𝑟2,𝑡2 + 𝑟2,𝑥𝑥 − 4𝑟1𝑟2𝑟3 − 2𝑟4(𝑟21 − 𝑟22) = 0,
𝑟3,𝑡2 + 𝑟3,𝑥𝑥 − 4𝑟2𝑟3𝑟4 + 2𝑟1(𝑟23 − 𝑟24) = 0,
𝑟4,𝑡2 − 𝑟4,𝑥𝑥 + 4𝑟1𝑟3𝑟4 + 2𝑟2(𝑟23 − 𝑟24) = 0.

(2.24)

A choice of 𝛼 = 𝛾 = −𝜂1 = 𝜂2 = 1 and 𝛽 = 0 reduces the model (2.22) to another uncombined 2nd-order integrable model: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟1,𝑡2 − 𝑟2,𝑥𝑥 + 4𝑟1𝑟2𝑟3 + 2𝑟4(𝑟21 − 𝑟22) = 0,
𝑟2,𝑡2 + 𝑟1,𝑥𝑥 + 4𝑟1𝑟2𝑟4 − 2𝑟3(𝑟21 − 𝑟22) = 0,
𝑟3,𝑡2 + 𝑟4,𝑥𝑥 − 4𝑟1𝑟3𝑟4 − 2𝑟2(𝑟23 − 𝑟24) = 0,
𝑟4,𝑡2 − 𝑟3,𝑥𝑥 − 4𝑟2𝑟3𝑟4 + 2𝑟1(𝑟23 − 𝑟24) = 0.

(2.25)

The selection of 𝛼 = 𝛽 = −𝜂1 = 𝜂2 = 1 and 𝛾 = 0 in the model (2.23), leads to an uncombined 3rd-order integrable model: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟1,𝑡3 + 𝑟1,𝑥𝑥𝑥 − 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟1,𝑥 + 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟2,𝑥 = 0,
𝑟2,𝑡3 + 𝑟2,𝑥𝑥𝑥 − 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟1,𝑥 − 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟2,𝑥 = 0,
𝑟3,𝑡3 + 𝑟3,𝑥𝑥𝑥 − 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟3,𝑥 + 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟4,𝑥 = 0,
𝑟4,𝑡3 + 𝑟4,𝑥𝑥𝑥 − 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟3,𝑥 − 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟4,𝑥 = 0.

(2.26)

The selection of 𝛼 = 𝛾 = −𝜂1 = 𝜂2 = 1 and 𝛽 = 0 in the model (2.23) yields another uncombined 3rd-order integrable model: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟1,𝑡3 − 𝑟2,𝑥𝑥𝑥 + 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟1,𝑥 + 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟2,𝑥 = 0,
𝑟2,𝑡3 + 𝑟1,𝑥𝑥𝑥 − 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟1,𝑥 + 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟2,𝑥 = 0,
𝑟3,𝑡3 − 𝑟4,𝑥𝑥𝑥 + 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟3,𝑥 + 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟4,𝑥 = 0,
𝑟4,𝑡3 + 𝑟3,𝑥𝑥𝑥 − 6(𝑟1𝑟3 − 𝑟2𝑟4)𝑟3,𝑥 + 6(𝑟1𝑟4 + 𝑟2𝑟3)𝑟4,𝑥 = 0.

(2.27)

These models are different from the vector AKNS integrable models. The first class of integrable models contain the ones, presented earlier 
in [26,27]. An intriguing phenomenon arises where, in each pair of models, the first and second components are swapped, as are the third and 
fourth components, and additionally, one of the components undergoes a sign inversion in the right-hand side vector fields. Furthermore, all those 
4 models remain mutually commutative, and thus, they exhibit mutual symmetries. Such diversity in the presented integrable models not only 
showcases the deep algebraic and geometric structures of integrable models but also enhances their potential practical applications across a broad 
range of scientific fields, including water waves, nonlinear optics, and plasma physics.

3. Bi-Hamiltonian formalism

Let us assume 𝜂1𝜂2 ≠ 0 now. We aim to investigate the complete integrability for the obtained hierarchy in the Liouville sense (2.21). To the 
end, we establish a bi-Hamiltonian formalism [2,31] in the framework of the spatial problem (2.6). Observing that the Laurent series solution 𝑌  is 
determined by (2.7), we can then easily compute 

tr
(

𝑌 𝜕
𝜕𝜉

)

= 2𝜂1𝛼𝑎, tr
(

𝑌 𝜕
𝜕𝑟

)

= (2𝜂21𝑐, 2𝜂1𝜂2 𝑔, 2𝜂21𝑏, 2𝜂1𝜂2𝑒)
𝑇 , (3.1)

and accordingly, the trace identity generates 

𝛼 𝛿
𝛿𝑟

(

∫ 𝑎[𝑛+1] 𝑑𝑥
)

𝜉−(𝑛+1) = 𝜉−𝜅 𝜕
𝜕𝜉

𝜉𝜅−𝑛(𝜂1𝑐[𝑛], 𝜂2𝑔[𝑛], 𝜂1𝑏[𝑛], 𝜂2𝑒[𝑛])𝑇 , 𝑛 ≥ 0. (3.2)

This identity, when 𝑛 is taken as two, yields 𝜅 = 0, and consequently, we obtain 
𝛿[𝑛]

𝛿𝑟
= (𝜂1𝑐[𝑛+1], 𝜂2𝑔[𝑛+1], 𝜂1𝑏[𝑛+1], 𝜂2𝑒[𝑛+1])𝑇 , 𝑛 ≥ 0, (3.3)

where the Hamiltonian functionals are given by 

[𝑛] = − 𝛼
𝑛 + 1 ∫ 𝑎[𝑛+2] 𝑑𝑥, 𝑛 ≥ 0. (3.4)

These formulas provide the Hamiltonian functionals for the hierarchy (2.21), enabling us to furnish its Hamiltonian formulations: 

𝑟𝑡𝑚 = 𝑋[𝑚] = 𝐽1
𝛿[𝑚]

𝛿𝑟
, 𝑚 ≥ 0, (3.5)

where the Hamiltonian operator 𝐽1 is defined by 

𝐽1 =
[

0 𝐽12
𝐽 0

]

, 𝐽12 =

[ 𝛼
𝜂1

0
0 𝛼

]

, 𝐽21 =

[

− 𝛼
𝜂1

0
0 − 𝛼

]

, (3.6)

21 𝜂2 𝜂2
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and the Hamiltonian quantities [𝑚] are stated in (3.4). From the Hamiltonian formulations, we can derive a symmetry 𝐽1 𝛿
𝛿𝑟 , which originates 

from a conserved quantity  corresponding to each member of the integrable Hamiltonian sequence.
The characteristic commutative property for the constructed fields 𝑋[𝑛] is given by 

[[𝑋[𝑝], 𝑋[𝑞]]] ≡ 𝑋[𝑝]′(𝑟)[𝑋[𝑞]] −𝑋[𝑞]′(𝑟)[𝑋[𝑝]] = 0, 𝑝, 𝑞 ≥ 0. (3.7)

More fundamentally, there exists a Lax algebra, expressed as 

[[ [𝑝], [𝑞]]] ≡  [𝑝]′(𝑟)[𝑋[𝑞]] − [𝑞]′(𝑟)[𝑋[𝑝]] − [ [𝑞], [𝑝]] = 0, 𝑝, 𝑞 ≥ 0, (3.8)

which ensures the commutative property of the vector fields. This can directly be verified through an analysis of the algebraic structures underlying 
the Lax pairs (see [32] for details). Furthermore, this commuting characteristic of vector fields is preserved under reciprocal transformations [33].

Additionally, the recursive structure of 𝑋[𝑝+1] = 𝛷𝑋[𝑝] determines a hereditary recursion operator 𝛷 = (𝛷𝑗𝑘)4×4 [31] for the hierarchy in Eq. 
(2.21). It reads as follows:

{

𝛷11 =
1
𝛼 (𝜕𝑥 − 2𝜂21𝑟1𝜕

−1𝑟3 − 2𝜂1𝜂2𝑟2𝜕−1𝑟4), 𝛷12 =
1
𝛼 (−2𝜂1𝜂2𝑟1𝜕

−1𝑟4 − 2𝜂1𝜂2𝑟2𝜕−1𝑟3),
𝛷13 =

1
𝛼 (−2𝜂

2
1𝑟1𝜕

−1𝑟1 − 2𝜂1𝜂2𝑟2𝜕−1𝑟2), 𝛷14 =
1
𝛼 (−2𝜂1𝜂2𝑟1𝜕

−1𝑟2 − 2𝜂1𝜂2𝑟2𝜕−1𝑟1);
(3.9)

{

𝛷21 =
1
𝛼 (−2𝜂

2
1𝑟1𝜕

−1𝑟4 − 2𝜂21𝑟2𝜕
−1𝑟3), 𝛷22 =

1
𝛼 (𝜕𝑥 − 2𝜂21𝑟1𝜕

−1𝑟3 − 2𝜂1𝜂2𝑟2𝜕−1𝑟4),
𝛷23 =

1
𝛼 (−2𝜂

2
1𝑟1𝜕

−1𝑟2 − 2𝜂21𝑟2𝜕
−1𝑟1), 𝛷24 =

1
𝛼 (−2𝜂

2
1𝑟1𝜕

−1𝑟1 − 2𝜂1𝜂2𝑟2𝜕−1𝑟2);
(3.10)

{

𝛷31 =
1
𝛼 (2𝜂

2
1𝑟3𝜕

−1𝑟3 + 2𝜂1𝜂2𝑟4𝜕−1𝑟4), 𝛷32 =
1
𝛼 (2𝜂1𝜂2𝑟3𝜕

−1𝑟4 + 2𝜂1𝜂2𝑟4𝜕−1𝑟3),
𝛷33 =

1
𝛼 (−𝜕𝑥 + 2𝜂21𝑟3𝜕

−1𝑟1 + 2𝜂1𝜂2𝑟4𝜕−1𝑟2), 𝛷34 =
1
𝛼 (2𝜂1𝜂2𝑟3𝜕

−1𝑟2 + 2𝜂1𝜂2𝑟4𝜕−1𝑟1);
(3.11)

{

𝛷41 =
1
𝛼 (2𝜂

2
1𝑟3𝜕

−1𝑟4 + 2𝜂21𝑟4𝜕
−1𝑟3), 𝛷42 =

1
𝛼 (2𝜂

2
1𝑟3𝜕

−1𝑟3 + 2𝜂1𝜂2𝑟4𝜕−1𝑟4),
𝛷43 =

1
𝛼 (2𝜂

2
1𝑟3𝜕

−1𝑟2 + 2𝜂21𝑟4𝜕
−1𝑟1), 𝛷44 =

1
𝛼 (−𝜕𝑥 + 2𝜂21𝑟3𝜕

−1𝑟1 + 2𝜂1𝜂2𝑟4𝜕−1𝑟2).
(3.12)

The concept of hereditariness [34] means that the operator 𝛷 satisfies the condition 

𝐿𝛷𝑋𝛷 = 𝛷𝐿𝑋𝛷, (3.13)

where 𝐿𝑌𝛷 denotes the Lie derivative of 𝛷 along the direction of 𝑌 , given by 

(𝐿𝑌𝛷)𝑍 = 𝛷[[𝑌 ,𝑍]] − [[𝑌 ,𝛷𝑍]], (3.14)

with 𝑍 being a vector field. For an evolution equation 𝑟𝑡 = 𝑋(𝑟), an operator 𝛹 = 𝛹 (𝑥, 𝑡, 𝑟, 𝑟𝑥,…) presents a recursion operator [35] if it satisfies 
the condition 

𝜕𝛹
𝜕𝑡

+ 𝐿𝑋𝛹 = 0. (3.15)

It is worth noting that 𝛷 is autonomous. A simple verification shows that the operator 𝛷 constructed above acts as a recursion operator for the 
first model 𝑟𝑡0 = 𝑋[0](𝑟) in the hierarchy, as it satisfies 𝐿𝑋[0]𝛷 = 0. In view of these two facts, we can compute that 

𝐿𝑋[𝑝]𝛷 = 𝐿𝛷𝑋[𝑝−1]𝛷 = 𝛷𝐿𝑋[𝑝−1]𝛷 = ⋯ = 𝛷𝑝𝐿𝑋[0]𝛷 = 0, 𝑝 ≥ 1. (3.16)

This implies that the operator 𝛷 functions as a universal recursion operator for the entire constructed hierarchy (2.21).
With further analysis, we can establish that any linear combination of the two operators 𝐽1 and 𝐽2 = 𝛷𝐽1 is also Hamiltonian, meaning that 𝐽1

and 𝐽2 form a Hamiltonian pair. An operator 𝐽 is considered Hamiltonian if it satisfies the condition 

⟨(𝑍[1])𝑇 𝐽 ′(𝑟)[𝐽𝑍[2]], 𝑍[3]
⟩ + cycle(𝑍[1], 𝑍[2], 𝑍[3]) = 0, (3.17)

where 𝐽 ′ denotes the Gateaux derivative and the inner product is given by 

⟨𝑍[1], 𝑍[2]
⟩ = ∫ (𝑍[1])𝑇𝑍[2] 𝑑𝑥, (3.18)

with 𝑍[1], 𝑍[2] and 𝑍[3] being column vector fields. As a consequence, the hierarchy (2.21) possesses a bi-Hamiltonian formulation [2]: 

𝑟𝑡𝑚 = 𝑋[𝑚] = 𝐽1
𝛿[𝑚]

𝛿𝑟
= 𝐽2

𝛿[𝑚−1]

𝛿𝑟
, 𝑚 ≥ 1. (3.19)

It immediately follows that the corresponding Hamiltonian functionals are mutually compatible, under the following Poisson brackets [8]: 

{[𝑝],[𝑞]}𝐽1 = ⟨

𝛿[𝑝]

𝛿𝑟
, 𝐽1

𝛿[𝑞]

𝛿𝑟
⟩ = 0, 𝑝, 𝑞 ≥ 0, (3.20)

and 

{[𝑝],[𝑞]}𝐽2 = ⟨

𝛿[𝑝]

𝛿𝑟
, 𝐽2

𝛿[𝑞]

𝛿𝑟
⟩ = 0, 𝑝, 𝑞 ≥ 0, (3.21)

associated with the two Hamiltonian operators 𝐽1 and 𝐽2.
In conclusion, the models in the hierarchy (2.21) are Liouville integrable, possessing a continuous series of commuting symmetries {𝑋[𝑛]}∞𝑛=0

and an infinite sequence of commuting conserved functionals {[𝑛]}∞𝑛=0. Two particular illustrative models in the hierarchy are the systems in 
(2.22) and (2.23), and they add further contributions to the established class of combined coupled integrable models with four fields, which are 
encompassed by Magri’s geometric formalism.
6 



W.-X. Ma Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 195 (2025) 116309 
4. Concluding remarks

We derived a class of combined coupled bi-Hamiltonian models with four fields, being integrable in the Liouville sense, by beginning with 
a specific 4th-order matrix eigenvalue problem and employing the Lax pair formulation. A key step in this derivation involved finding a series 
solution of Laurent form to the corresponding stationary Lax equation within the Lax pair formalism. Our analysis shows that these integrable 
models possess hereditary recursive structures which lead to bi-Hamiltonian geometric formulations, ensuring their Liouville integrability. These 
results were obtained through the implementation of the trace variational identity associated with the matrix eigenvalue problem.

We note that when 𝜂2 = 0, integrable couplings are obtained, and in this case, we need to utilize the variational identity in deriving 
a Magri’s geometric formulation. A particularly interesting direction for future exploration is the algebraic and geometric structure of soliton 
solutions of those novel combined integrable models. Several powerful methods can be employed for this purpose, including the Zakharov–Shabat 
dressing technique [36], the Riemann–Hilbert problem approach [37], the Darboux transformation method [38–42], and the determinant-based 
method [43,44]. In addition to soliton solutions, other types of solutions, such as lumps, kinks, breathers, and rogue waves – especially their 
interaction solutions (see, for instance, [45–53]) – are likewise of considerable importance. These solutions are frequently obtained from specific 
wave number reductions of general soliton solutions. Furthermore, similarity transformations of spectral matrices, which induce nonlocal group 
reductions, can give rise to nonlocal integrable models. The solitons and their associated dynamics in these models are significant in both 
mathematical theory and physical applications (see, for instance, [42]). It is worth noting that nonlocal models of differential equations display 
notably varied solution patterns, as demonstrated in [54,55].

Integrable models hold great importance because of their significant ties to diverse areas of mathematics, including Hamiltonian dynamics, 
algebraic geometry, the theory of Lie groups and algebras, and orthogonal polynomials. Studying these models shed light on the mechanisms driving 
physical system dynamics and bridges the gap between theoretical concepts and experimental observations, thereby enhancing our understanding 
of the fundamental principles that govern natural phenomena.
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