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ARTICLE INFO ABSTRACT

Keywords: This paper is dedicated to the construction of integrable commuting flows starting from a fourth-order matrix
Integrable hierarchy spectral problem involving four fields, which is derived from a specialized matrix Lie algebra over the real
Matrix eigenvalue problem domain. This work includes the development of an explicit bi-Hamiltonian formulation and a hereditary
Lax pair

recursion structure, which confirms the hierarchy’s integrability in the Liouville sense. Furthermore, we

bi NL! 1. . . . . . .
Combined NLS models examine two second-order and third-order integrable models, along with their reduced, uncombined forms.

Combined mKdV models

1. Introduction

Integrable models comes in hierarchies that possess hereditary recursion operators [1,2] and are often derived from Lax pairs linked to matrix
eigenvalue problems [3]. These matrix eigenvalue problems facilitate the development of Hamiltonian formulations, connecting symmetries with
conservation laws. Integrable models find widespread applications across the domains of engineering, the natural sciences, and the physical sciences,
such as nonlinear optics, plasma physics, water waves, fluid dynamics, and quantum mechanics [4].

Some of the most prominent integrable models include the Ablowitz—Kaup-Newell-Segur (AKNS) fundamental ones [5], and its various
integrable couplings, based on matrix Lie algebras that are non-semisimple (see, e.g., [6]). Matrix Lie algebras serve as a robust framework
for constructing Liouville integrable systems and their corresponding Lax pairs, which are derived from matrix eigenvalue problems [7,8]. The
exploration of various types of Lax pairs capable of generating integrable models has been a longstanding area of study. In this paper, employing
the Lax pair (or zero curvature) formalism, we aim to introduce a new 4th-order eigenvalue problem and build a combined integrable hierarchy
related to the problem, derived from a particular matrix Lie algebra.

The zero curvature formulation offers an effective method for generating integrable models (see, for instance, [8,9] for more details). As normal,

a potential vector of dimension s is expressed as r = (r, ..., r,)" and the spectral variable by £. Beginning with a given loop matrix algebra g with
the loop variable ¢, we take s linearly independent matrices A, ..., A, to propose the following spatial spectral matrix:
M=M@EE =r A+ +rAld) + Ag(d), 1.1

where the following pseudo-regular property holds for the last matrix element A:
ImadA0 ® KeradA0 =g, [KeradAO,KeradAo] =0,

in which ad 4, 18 defined by ad 4, B = [A, B], where B is an arbitrary matrix. Then, within the foundational loop algebra g, we need to solve the
following matrix equation

Y, - [M,Y]=0, (1.2)

and specifically, we search for an infinite series solution of the Laurent form Y = Y, Yl

E-mail address: wma3@usf.edu.

https://doi.org/10.1016/j.chaos.2025.116309
Received 3 February 2025; Received in revised form 1 March 2025; Accepted 12 March 2025

Available online 23 March 2025
0960-0779/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://www.elsevier.com/locate/chaos
https://www.elsevier.com/locate/chaos
https://orcid.org/0000-0001-5309-1493
mailto:wma3@usf.edu
https://doi.org/10.1016/j.chaos.2025.116309
https://doi.org/10.1016/j.chaos.2025.116309

W.-X. Ma Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 195 (2025) 116309

The second step is that based on the constructed matrix Y, we identify an infinite set of Lax operators (or matrices)
N = N, gy = yOlgm 4 ylllgm=t oy vyl 4 7, 8), 1, €3, m>0, .3
so that the associated compatibility conditions:
M, =N+ [N M, m >0, (1.4)
generates an infinite sequence of commuting integrable models:
r, = X[”’](r, Fyyoon)y m20. (1.5)

The compatibility conditions in (1.4) essentially correspond to the solvability criteria of the Lax pairs:

{ @ = M@, o,
m>0. (1.6)
o, =N &),

The subsequent step is that we need to find a Magri’s geometric structure for the constructed hierarchy (1.5). This will be achieved by exploring
a recursion structure being hereditary and utilizing the trace identity:
- oM
— d = —&tr(Y — 1.7
2 [u(r it ax=e+ Seru(r i), a7)

where 2 = and 2 = denote the variational derivative and partial derivative with respect to the potential vector r, respectively, and the constant x
does not depend on the spectral variable &, which can be computed by

- —5% In |tr(Y2)]. (1.8)

In this way, we see that each model in the constructed sequence possesses a Magri’s geometric formulation, which ensures its Liouville integrability
(see, for instance, [8-10]).

There are various hierarchies of Liouville integrable Hamiltonian models, presented in the literature [5-20]. The two-component case is widely

studied, with several well-known examples, including the AKNS models [5], the Kaup-Newell models [21], the Heisenberg models [22], and the

Wadati-Konno-Ichikawa models [23]. These four soliton hierarchies are linked to the following matrix spectral matrices:

|t n - o ] 1.9

ML e } M= [ 2 (1.9
—&ry  &ry =& ér

- k M= , 1.10

M [ ey ey ] [érz : ] (10

where rjr, =1-— 3, respectively. These spectral matrices are rare and specific objects in soliton theory, and formulating such spectral matrices,
which can generate soliton hierarchies, presents a significant challenge in the field.

This paper proposes a specific 4th-order spectral matrix with four potentials, derived using the trial-and-error method combined with symbolic
computation, and grounded in a distinct matrix Lie algebra within the real domain. It then develops a commuting hierarchy of integrable models
in the Liouville sense, employing the Lax pair formulation. To demonstrate the Liouville integrability of the constructed models, we explore a
hereditary recursion structure and a Magri’s geometric structure, Two examples are provided, including generalized combined 2nd-order and 3th-
order integrable models, along with their special reductions. The main contribution is the formulation of a 4th-order spectral matrix possessing 4
potentials, which generates an integrable hierarchy. The concluding section provides a summary and additional remarks.

2. Combined commuting flows with four fields

Let ¢ be an arbitrary scalar, and © an invertible matrix of order s € N, such that its inverse is equal to itself. It is straightforward to observe
that a collection g of 2 x 2 block matrices

G:[ G | G ] , @2.1)
G3 G4 25X2s
where

Gy =0G,07", G; =¢0G,07!, (2.2)

forms a matrix Lie algebra under the matrix commutator [G, G’] = GG’ — G’G. In what follows, an example of the above matrix algebra with s =2

and
@:[_01 _Ol]or[(l) (1)] (2.3)
will be used to introduce a specific spectral matrix to create a related integrable sequence.
We denote the four-dimensional vector of dependent variables by
r=r(x,1) = (rl,rz,r3,r4)T, (2.4)
take two pairs of arbitrary constants, «,,a, and #,,7,, and assume that

a#0, (2.5)
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where « = a; —a,. Inspired by recent research works on matrix eigenvalue problems containing 4 fields, particularly, two examples of arbitrary-order
in [24,25] and two examples of fourth-order in [26,27], we aim to examine an eigenvalue problem defined by the following matrix form:

a ¢ nry ‘ T 0
r a 0 r
0r = Mg = M(r. &g, M= |03 08 3 2.6)
Mmhary 0 ®é  nuy
0 mmry | mry ¢

where ¢ continues to function as the eigenvalue coordinate. This spectral matrix M was formulated using a trial-and-error method combined with
symbolic computation in Maple. The key aspect to note is the existence of solutions to the stationary zero curvature equation. Obviously, the
spectral matrix M belongs to the matrix Lie algebra § mentioned previously. The eigenvalue problem cannot be any reduction of the matrix AKNS
eigenvalue problem (see, e.g., [28]). We aim to develop a corresponding commuting sequence of four-component Hamiltonian models with specific
combined structures. Interestingly, when #, = 0, it gives rise to non-perturbation type integrable couplings.

We now proceed with the construction of the integrable models associated the above spectral matrix described above. To begin, we solve the
corresponding stationary zero curvature Eq. (1.2) by starting with

ma mb ‘ e S
Y me cma | oS & | 3 ylle, 2.7)
Mmmg —mmf | —ma me 120
mmf nime mb  ma

where the undetermined coefficient matrices are assumed to be as follows:

nyal! b ‘ o fim
yll = el —nyal” —ft g™ n>0 (2.8)
- [\ _ f[n] —n. glnl [l |> 7 =" .
mme 1, ma me
mm S pynelt mb™ gy

The reason to take this form is that with M in (2.6), an arbitrary matrix in § will engender a commutator matrix of the above form. In this way,
we can find that the corresponding stationary zero curvature Eq. (1.2) gives

a, =mncry +n, gry — 0 bry —myery,
by = akb—2nary —2m, fry, (2.9
¢, = —aéc+2nary + 2, fry,

e, =afe—2nary — 20, fry,
8y = —aég +2nary +2n, fr3, (2.10)
fx =m(cry + gry — bry —er3).

These equations leads equivalently to the initial conditions:
al% =0, bl = 0 = 0 = gl0T =g, £10] =, (2.11)

and the recursion relations for determining the Laurent series solution:

1
plr+ll = ;(bi'o +2n,al"r ) + 20, 1), (2.12)
el = —i(c)@ =2 a™ry — 25, f1Mry),
1
elm*ll = ;(ef(n> + 20, Sy + 20,0 ry), (2.13)
) .
gl = =2 (" — 2, £y — 29y al"lry),
1
Al = g B o P = el g g glnH 214)
)[CrH-l] - ;,’l(c[r1+l]’.2 + g[nJrl]rl _ b["+1]r4 _ e[n+l]r3)’
where n > 0. To compute the solution concretely, we take the initial data,
01— Lg o _ 1
a’l'==p, = -y, 2.15
P I =g (2.15)
where the constants # and y are arbitrarily chosen, and we assume
arg =0, /"0 =0, n>1, (2.16)

which implies that the constants of integration are taken as zero. Under those conditions, one can work out that
1 1
bt = 2 Bry +mpyra), = S Brs +mpyry),
elll = %1(7"1 +pry), gl = %1(}”3 + pry),
dll =0, f=0;
1 1
bl = =By +myry ), 2 = =z (mBrsx +myryy)
el = %(Vrl.x +pray), e = —%(7"3,;( + Bray,

al?l = _Z_lz[(”llﬁrg, + 7727/"4)"1 + '12(7"'3 + ﬂr4)r2],
S = =L ny(yrs + Bry)ry + (ny rs + myyryr];
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1

bl = SUnBry s + 12vra e = 2m (1 Bry + nayra)(m 1y mory) = 4ty (yry + Bro)rirl,
i

= 11 Br3 + MY Py = 200 Bry + myyro) (s + mpry) = 4niny(yry + Bro)rsryl,

1

Bl = Sy + M Brose = 207(rry + Pra)(nyry +mpry) = 4mi(ny frs + nayradriral,
i

8P = Sy + mBrase =20 (rry + Pro)(myrs +myry) — 4ty Bry + nayro)raryl,

aB® = B [—(ny Bry + myyryry x — myrs + Pro)rg, + (mBry + myr)drs  + myr; + Prorayls
Bl = a—};[—'ll (yrs + Bry)rix — yBrs + myrydry + i (yry + Brodrs + (n Bri + mpyrodra s

QE«IQ

and

|
B = = (M1 Bry sexx + M2V P = O L1 Bry + myra)ry + my(yrs + Bra)rylry
=6yl (yrs + Brodry + (mBry + myyryrylr )

1
M = — = {11 Br3 ox + MV P = O L1 By + My ra)ry + my(yrs + Pradralrs

=6yl (yrs + Bro)ry + (mBry + myyryrylry )

1
M = Py s + By = OMT [ (rr3 + Bro)ry + ( Brs + myyry)ralr
=67 [(my Brs + mayra)ry + my(yrs + Pra)ralra ) s

|
8% = = {Mrr3xx + M Branx = TN (rrs + Bro)ry + (1 frs + myradrylrs
—On (11 Brs + mayra)ry +my(yrs + Prodralry s

M= %[—(ﬂlﬂ% +Myrdryxx — m(yrs + Bro)ry v — (M Bri + myrodrs c

=M (rry + Bro)ry s + MPBrix +myro I + m(rry x + BroJrax
+311f(711[3r§ + 2nyyryry + nzﬂri)r% + 61, nz(yrg +2fryry + nyri)rlrz
+3nlr]2(mﬁr§ +2mpyrar, + r]zﬁrﬁ)rg],

a

T8 = Zelom(rrs + Bra)ry e = (M Brs + myra)ry e = mry + Brrs o
=M PBri +myrdra e + m(rrsx + PraIrix + Brax +myyry Iy«
+371f(r/] yr% + 2ny fryry + nzyri)r% + 671%(;1] ﬂr% + 2,731y + nzﬂri)rl ry
+3n,1,(my yr% + 21 fryry + nzyri)r%].

Upon observing the above computations, we can take IT,, as zero for each positive integer m, and treat
0, = ./\f[mJ(p = N, o, m>0, (2.17)
where
NI = ylml pytm=lle 4o 4 yOlem m >0, (2.18)

as the time evolution parts of the Lax pairs within the Lax pair formulation. We examine the conditions for the solvability of (2.6) and (2.17).
Those equations generate an infinite sequence of combined nonlinear models with four fields:

ryo= XM = (x I X X T (2.19)
where
X{m] = a1, Xg"] = qel™t1], Xgm] = —qclmtl] X‘Em] =—ag"! m>o0. (2.20)

More concretely, we have

m+1] m+1]

r, = ab™t, ray, = ael

— —gcl
i s 3 ac

Tag, = —ag™ 1l m>o0. (2.21)

We can work out the first and second nonlinear models in the aforementioned hierarchy. The first example involves the combined 2nd-order
integrable equations:

1

ey, = 2 MBr 1 + Myro e = 2m(y fry + My ry)(mry +mor3) = 4nimy(yrs + Bro)rira ),
i

oty = = MY+ M Broee = 207(rrs + Pra)(myry + mor3) = ey (n frs + myyry)l,

1 2 2 (2.22)
T34, = —a—z[’hﬁ"},xx + My yxx — 20 (ny Bry + ’12}”'2)"3 —Adnim(yry + Prodraryl,
i
Fagy = == MY73x + M Braye = 207(rry + Bro)ngrs + mary) = 4 (ny Bry + mayrodrars),
and the second example consists of the combined 3rd-order integrable equations:
1
iy = 3 {mBr1xxx + MrTa e = 617 (01 Brs + mayra)ry + mrrs + Projrylry
—6n1m,[ny (yrs + Pry)ry + (ny frs + '727"4)"2]’2,x} )
1
P2y = 23 AN F 1P = 601 (yrs + Brodry + (m Bry + myyradrlr
—6’1]2[(7I1ﬂ"3 +myrary +m(yrs + ﬁ"4)"2]"2,x} s
(2.23)

1
P34, = =03 {11873 xxx = MV T4 px + 6’7%[('1117"3 + myryry +ny(yrs + Bryrylrs
+6m 1y [0, (yr3 + Bry)ry + (n, pry + '127"'4)"2]"4,)(} )

1
Fagy = =3 A=Y T3 0x = MBFa s + O M (rr3 + Prodry + (0 Brs + myry)rylrs
+67112[(’11ﬂ"3 +myrry +m(yrs + ﬂ"4)"2]r4,x} .
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The above systems give rise to two integrable models, each with four fields and they expand the family of coupled second-order and third-order
integrable models (see, for instance, [29,30]). A notable feature of these coupled models is that each includes two linear highest-order derivative
terms, which is why we designate these systems as combined models. Notably, most previously existing soliton hierarchies involve only a single
dispersive term.
Three special cases of 7, =0, # = 0 and y = 0 in the resulting hierarchy are interesting. The first case produces novel integrable couplings of
the AKNS hierarchy, which are not of perturbation type. The other two cases correspond to simplified hierarchies of decoupled integrable models.
A choice of a = p = -, =n, =1 and y = 0 reduces the model (2.22) to an uncombined 2nd-order integrable model:

Flo, T et 4r rory — 2r3(r% - r%) =0,
2 _ 2y
Pyt r2xx — 4riryry — 2/‘4(rl —ry)= 0, (2.24)
34, F 30 — 4ryryry +2r (r% - ri) =0,
T 4riryry + 2r2(r§ - ri) =0.
A choice of a =y = —n; =5, =1 and g = 0 reduces the model (2.22) to another uncombined 2nd-order integrable model:
Ty, =T2ax T 4riryry + 2r4(r% - r%) =0,
Paay F P F APy = 2r3(r] = 13) =0, (2.25)
P34y FTaxx — 4riryry — 2r2(r§ - ri) =0,
Tagy = T3xx — 4ryryry + 2rl(r§ - ri) =0.
The selection of « = p = —; =5, =1 and y = 0 in the model (2.23), leads to an uncombined 3rd-order integrable model:
Plas F e = 6(ryr3 — rorg)ry  +6(riry +ryr3)ry, =0,
20y F Fxx = O Py 4 19r3)ry o = 6(r 13 = rorg)ry =0, (2.26)
345 F 3 — 6(rr; — r2r4)r3yx +6(riry + r2r3)r4yx =0,
Faps F P xxx — 6(ryrg +ror3)rs — 6(rirs —rorgry, = 0.
The selection of « =y = —5; =0, =1 and f = 0 in the model (2.23) yields another uncombined 3rd-order integrable model:
Py = Foxxx 6(rrg +ror3)ry  +6(rirs —rorgry, =0,
Fagy F  x = 00r 73 = Farg)ry  +6(r ry +ror3)ry =0, (2.27)
345 = Faxux 6(ryry +ror3)rs . +6(riry —rorgry, =0,
Fapy 3000 — 6(rir3 — Forg)rsx + 6(ryry + For3)ryx = 0.

These models are different from the vector AKNS integrable models. The first class of integrable models contain the ones, presented earlier
in [26,27]. An intriguing phenomenon arises where, in each pair of models, the first and second components are swapped, as are the third and
fourth components, and additionally, one of the components undergoes a sign inversion in the right-hand side vector fields. Furthermore, all those
4 models remain mutually commutative, and thus, they exhibit mutual symmetries. Such diversity in the presented integrable models not only
showcases the deep algebraic and geometric structures of integrable models but also enhances their potential practical applications across a broad
range of scientific fields, including water waves, nonlinear optics, and plasma physics.

3. Bi-Hamiltonian formalism
Let us assume 7,7, # 0 now. We aim to investigate the complete integrability for the obtained hierarchy in the Liouville sense (2.21). To the

end, we establish a bi-Hamiltonian formalism [2,31] in the framework of the spatial problem (2.6). Observing that the Laurent series solution Y is
determined by (2.7), we can then easily compute

tr(Y%) =2n,aqa, tr(Yaa—'t/l) = (Zn%c,anr]z g, Zn%b, 2mme)’, 3.1)
and accordingly, the trace identity generates

a%(/ g+l dx) D = 5—1(;;éék—n(nlc[n]’nzg[n]’rllb[n]’r]ze[n])T’ n>0. (3.2)
This identity, when » is taken as two, yields x = 0, and consequently, we obtain

57;:"] = (g™ 11,11 B T s 53
where the Hamiltonian functionals are given by

2 = @ /a["+2] dx. n>0. (3.4)

n+1

These formulas provide the Hamiltonian functionals for the hierarchy (2.21), enabling us to furnish its Hamiltonian formulations:

r, = X" =, %ﬁm, m>0, (3.5

where the Hamiltonian operator J, is defined by

0 |J =0 - 0
Jl:[J21 (1)2:|1J12=|:r8 l:l,J21=|: (;“ _i:|’ (3.6)
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and the Hamiltonian quantities 7"l are stated in (3.4). From the Hamiltonian formulations, we can derive a symmetry J, %, which originates
from a conserved quantity H corresponding to each member of the integrable Hamiltonian sequence.
The characteristic commutative property for the constructed fields X!"! is given by

[x, x40 = XV x1e] - X1 ([ x P = 0, p.g 2 0. B7)
More fundamentally, there exists a Lax algebra, expressed as
IIN[pJ’N[qu] = N[pl/(r)[X[qJ] _ J\/'lql/(r)[X[pJ] _ [j\/'qu’j\/‘[pJ] =0, pg>0, (3.8)

which ensures the commutative property of the vector fields. This can directly be verified through an analysis of the algebraic structures underlying
the Lax pairs (see [32] for details). Furthermore, this commuting characteristic of vector fields is preserved under reciprocal transformations [33].

Additionally, the recursive structure of X!*!I = @ x1?! determines a hereditary recursion operator @ = (@;;)4y4 [31] for the hierarchy in Eq.
(2.21). It reads as follows:

1 - - 1 _ -
@y =~ (0 = 2071107 ry = 2mymyry07 " ry), @y = = (=20ymyr 07" 1y = 204131207 r3), 3.9)
D3 = i(—zﬂlzrla_lrl = 2m1yr207"ry), By = i(—z’h’?z"la_lrz = 21131207 " 1))
Dy = %(—anzrla’lm - 27[12r26’1r3), Dy = };(dx - 21112r10’1r3 — 217207 ), (3.10)
1 - - 1 - - .
Dy3 = ;(—Zrllzrld Uy — 2r,%r26 L), @y = ;(—Zrllzrld Uy = 200071y,
1 - - 1 - -
Dy = ;(271?@0 Vs + 21,0407 ry), @3y = ;(2n1n2r30 Uy + 20174071 r5), (3.11)
Dy3 = i(—()x + 2n12r30’1r1 + 2017407 ry), @ay = i(2n1n2r3()’1r2 + 21,7407 1))
1 - - 1 - _
Dy = ;(211%@0 7, +211%r40 1r), @y = —(2n12r30 s +2n 174071 ry), (3.12)
¢ _ _ _ _ .
D3 = ;(271?@0 U, + Zr]fr@ Ur), @y = S (=0, + 271%1'30 Ury + 201,407 ).
The concept of hereditariness [34] means that the operator @ satisfies the condition
Lox® =DLy®, (3.13)
where Ly, ® denotes the Lie derivative of @ along the direction of Y, given by
(Ly®)Z = @Y, Z] - [Y, 2], (3.14)

with Z being a vector field. For an evolution equation r, = X(r), an operator ¥ = ¥(x,t,r,r,,...) presents a recursion operator [35] if it satisfies
the condition

% LW =0 (3.15)

It is worth noting that @ is autonomous. A simple verification shows that the operator @ constructed above acts as a recursion operator for the
first model ry =X [9(r) in the hierarchy, as it satisfies L xi1@ = 0. In view of these two facts, we can compute that

Lyin®@ = Lyxip-11® = PLyip-1®@ =+ =P’ Lyj®@ =0, p>1. (3.16)

This implies that the operator @ functions as a universal recursion operator for the entire constructed hierarchy (2.21).
With further analysis, we can establish that any linear combination of the two operators J, and J, = @J, is also Hamiltonian, meaning that J;
and J, form a Hamiltonian pair. An operator J is considered Hamiltonian if it satisfies the condition

(ZMNT I ([T 2121, ZBYy + eycle(z!, z12, zBhy = o, (3.17)
where J’ denotes the Gateaux derivative and the inner product is given by

(ZM, 7021y /(Zm)rzm dx. (3.18)

with Z, Z12I and ZP being column vector fields. As a consequence, the hierarchy (2.21) possesses a bi-Hamiltonian formulation [2]:

[m] [m—1]
m g OHM oM
or or
It immediately follows that the corresponding Hamiltonian functionals are mutually compatible, under the following Poisson brackets [8]:

ro=X Cmzl (3.19)

SHIWP! SH4
(730l ) = (S 11 =) =0, p.q 20, (3.20)
and
SHW! SHI4
(0L D), = (Fo— =) =0, pg 20, (3.21)

associated with the two Hamiltonian operators J; and J,.

In conclusion, the models in the hierarchy (2.21) are Liouville integrable, possessing a continuous series of commuting symmetries { X" 1%
and an infinite sequence of commuting conserved functionals { H[”]};":O. Two particular illustrative models in the hierarchy are the systems in
(2.22) and (2.23), and they add further contributions to the established class of combined coupled integrable models with four fields, which are
encompassed by Magri’s geometric formalism.
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4. Concluding remarks

We derived a class of combined coupled bi-Hamiltonian models with four fields, being integrable in the Liouville sense, by beginning with
a specific 4th-order matrix eigenvalue problem and employing the Lax pair formulation. A key step in this derivation involved finding a series
solution of Laurent form to the corresponding stationary Lax equation within the Lax pair formalism. Our analysis shows that these integrable
models possess hereditary recursive structures which lead to bi-Hamiltonian geometric formulations, ensuring their Liouville integrability. These
results were obtained through the implementation of the trace variational identity associated with the matrix eigenvalue problem.

We note that when #, = 0, integrable couplings are obtained, and in this case, we need to utilize the variational identity in deriving
a Magri’s geometric formulation. A particularly interesting direction for future exploration is the algebraic and geometric structure of soliton
solutions of those novel combined integrable models. Several powerful methods can be employed for this purpose, including the Zakharov-Shabat
dressing technique [36], the Riemann-Hilbert problem approach [37], the Darboux transformation method [38-42], and the determinant-based
method [43,44]. In addition to soliton solutions, other types of solutions, such as lumps, kinks, breathers, and rogue waves — especially their
interaction solutions (see, for instance, [45-53]) — are likewise of considerable importance. These solutions are frequently obtained from specific
wave number reductions of general soliton solutions. Furthermore, similarity transformations of spectral matrices, which induce nonlocal group
reductions, can give rise to nonlocal integrable models. The solitons and their associated dynamics in these models are significant in both
mathematical theory and physical applications (see, for instance, [42]). It is worth noting that nonlocal models of differential equations display
notably varied solution patterns, as demonstrated in [54,55].

Integrable models hold great importance because of their significant ties to diverse areas of mathematics, including Hamiltonian dynamics,
algebraic geometry, the theory of Lie groups and algebras, and orthogonal polynomials. Studying these models shed light on the mechanisms driving
physical system dynamics and bridges the gap between theoretical concepts and experimental observations, thereby enhancing our understanding
of the fundamental principles that govern natural phenomena.
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