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A B S T R A C T

This paper aims to study an extended 4 × 4 AKNS eigenvalue problem and construct its affiliated integrable
hierarchies of bi-Hamiltonian models over the real field. The Lax pair framework serves as the fundamental
tool, ensuring integrability through bi-Hamiltonian structures with hereditary recursion operators. We compute
illustrative examples of lower-order equations to demonstrate the affiliated integrable hierarchies.
1. Introduction

Within soliton theory, the concept of Lax pairs [1] stands as a
cornerstone, pivotal in unraveling the intricacies of integrable models.
At its essence, a Lax pair entails framing a linear eigenvalue dilemma
linked to a specific nonlinear partial differential equation. Through
adept construction of such pairs, we unfurl a cohesive ensemble of
model equations endowed with extraordinary integrable characteris-
tics. These equations unveil soliton solutions, rendering them receptive
to analytical methodologies and affording profound glimpses into their
dynamic behavior [2,3].

In the realm of constructing integrable models using Lax pairs, the
process typically initiates by defining a suitable spectral matrix (𝑢, 𝜆),
contingent upon a column potential vector 𝑢 and a spectral parameter
denoted by 𝜆. At the heart of this methodology lies the creation of
a pair of eigenvalue problems, termed the Lax pair, intricately linked
through a compatibility condition. This condition serves to ensure that
the nonlinear equations affiliated with the Lax pair are integrable. The
Lax pair comprises two differential equations:

𝜙𝑥 = (𝑢, 𝜆)𝜙, 𝜙1 = (𝑢, 𝜆)𝜙, (1)

where 𝜙 represents the eigenfunction and (𝑢, 𝜆) represents the tem-
poral spectral matrix. The zero curvature condition, or compatibility
condition, is articulated as:

𝑡 −𝑥 + [ ,] = 0, (2)

∗ Correspondence to: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.
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where [ ,] denotes the commutator of  and , ensuring the coherent
evolution of the eigenfunction 𝜙 across both spatial and temporal
dimensions, thereby establishing the integrability of the system.

To exemplify, let us delve into the AKNS (Ablowitz–Kaup–Newell–
Segur) system, renowned for its capacity to engender integrable equa-
tions. Within this framework, the definitions of  and  are elucidated
as follows:

(𝑢, 𝜆) =
[

−𝜆 𝑝
𝑞 𝜆

]

, (𝑢, 𝜆) =
[

−𝐴 𝐵
𝐶 𝐴

]

, (3)

where 𝑝 and 𝑞 represent components of the potential vector 𝑢, while
𝐴, 𝐵, and 𝐶 are functions contingent upon 𝑢 and 𝜆. The specific
expressions of 𝐴, 𝐵, and 𝐶 are contingent upon the particular integrable
model being scrutinized. The zero curvature condition (2) then engen-
ders a set of nonlinear partial differential equations for 𝑝 and 𝑞. For
instance, in the domain of the integrable nonlinear Schrödinger (NLS)
model, this condition yields:
{

𝑝𝑡 = −𝑝𝑥𝑥 + 2𝑝2𝑞,

𝑞𝑡 = 𝑞𝑥𝑥 − 2𝑝𝑞2,
(4)

under the choice of

𝐴 = 2𝜆2 − 𝑝𝑞, 𝐵 = 2𝜆𝑝 − 𝑝𝑥, 𝐶 = 2𝜆𝑞 + 𝑞𝑥, (5)

and in the domain of the integrable modified Kortweg–de Vries (mKdV)
model, the condition leads to:
{

𝑝𝑡 = 𝑝𝑥𝑥𝑥 − 6𝑝𝑞𝑝𝑥,
𝑞𝑡 = 𝑞𝑥𝑥𝑥 − 6𝑝𝑞𝑞𝑥,

(6)
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under the choice of
𝐴 = 4𝜆3 − 2𝑝𝑞𝜆 + 𝑝𝑥𝑞 − 𝑝𝑞𝑥, 𝐵 = 4𝜆2𝑝 − 2𝜆𝑝𝑥 + 𝑝𝑥𝑥 − 2𝑝2𝑞,

𝐶 = 4𝜆2𝑞 + 2𝜆𝑞𝑥 + 𝑞𝑥𝑥 − 2𝑝𝑞2.
(7)

Solving these equations reveals the integrable structure of the AKNS
eigenvalue system, characterized by soliton solutions, infinite symme-
tries, and conserved quantities.

By judiciously selecting  and , a plethora of integrable models
such as the Korteweg–de Vries (KdV) equation, the sine-Gordon equa-
tion, and others can be derived. These models exhibit extraordinary
integrable properties and are amenable to potent analytical techniques
like the inverse scattering transform.

Hamiltonian structures serve as foundational elements in the ex-
amination of integrable systems, furnishing a framework to probe the
Liouville integrability of resultant models. One approach to engen-
dering Hamiltonian structures involves the application of the classical
trace identity or the variational identity. Notably, the trace identity
emerges as a formidable tool in this domain.

The trace identity is articulated as (see [4,5] for details):

𝛿
𝛿𝑢 ∫ tr

(

𝑊 𝜕
𝜕𝜆

)

𝑑𝑥 = 𝜆−𝜅 𝜕
𝜕𝜆

𝜆𝜅 tr
(

𝑊 𝜕
𝜕𝑢

)

, (8)

here 𝛿
𝛿𝑢 signifies the variational derivative with respect to 𝑢, ‘‘tr’’

ymbolizes the trace of a matrix, and 𝜅 denotes a constant independent
f the spectral parameter 𝜆. In this context, 𝑊 satisfies the equation:

𝑥 = [ ,𝑊 ], (9)

here  represents the spectral matrix. The trace identity establishes a
onnection between the variational derivative of an integral involving
he spectral parameter 𝜆 and the trace of a matrix expression. This
inkage serves as a conduit between the eigenvalue problem and the
amiltonian structure of the system, facilitating deeper insights into

ts dynamics.
Indeed, the Lax pair formulation outlined previously facilitates the

eneration of copious Liouville integrable hierarchies of soliton Hamil-
onian models. This process harnesses the inherent loop algebras de-
ived from special linear algebras (see, e.g., [4–15]) and special orthog-
nal algebras (see, e.g., [16–18]). These hierarchies assume paramount
mportance in the realm of integrable models as they furnish a meticu-
ously organized framework for delving into the solutions and proper-
ies of zero curvature equations.

This paper endeavors to introduce a distinct 4 × 4 spectral ma-
rix and subsequently derive a Liouville integrable hierarchy of bi-
amiltonian equations with four dependent variables utilizing the Lax
air framework over the real field. The associated bi-Hamiltonian struc-
ures for this hierarchy of soliton equations are provided by employing
he trace identity. Concrete examples are elucidated, encompassing
our-component coupled integrable NLS and mKdV equations. Finally,
he paper concludes with a conclusive section, offering closing remarks
n the discussed findings.

. An eigenvalue problem and its affiliated soliton hierarchies

Motivated by recent research on four-component integrable models
hrough the Lax pair formulation (see, e.g., [19,20]), we propose a
atrix eigenvalue problem of the following form:

𝑥 = 𝜙 = (𝑢, 𝜆)𝜙,  =

⎡

⎢

⎢

⎢

⎢

⎣

𝛼1𝜆 𝑢1 𝜖𝛽1𝜆 𝜖𝑢3
𝑢2 𝛼2𝜆 𝜖𝑢4 𝜖𝛽2𝜆
𝛽1𝜆 𝑢3 𝛼1𝜆 𝑢1
𝑢4 𝛽2𝜆 𝑢2 𝛼2𝜆

⎤

⎥

⎥

⎥

⎥

⎦

, (10)

here 𝛼1, 𝛼2, 𝛽1, 𝛽2 and 𝜖 stand for arbitrary real constant parameters, 𝜆
s the spectral parameter again, and 𝑢 represents the dependent variable
omprising four components:

= 𝑢(𝑥, 𝑡) = (𝑢 , 𝑢 , 𝑢 , 𝑢 )𝑇 . (11)
1 2 3 4
⎩

2 
y setting the top-right 2 × 2 block to zero (i.e., choosing 𝜖 = 0) and
taking 𝛼1 = −𝛼2 = −1 and 𝛽1 = −𝛽2 = 1, this eigenvalue problem aligns
with non-perturbation type integrable couplings of the AKNS integrable
hierarchy [21]. To ensure the generation of an integrable hierarchy
via the Lax pair formation from this new spectral problem, we need
to enforce a necessary and sufficient condition:

𝛼2 − 𝜖𝛽2 ≠ 0, (12)

here 𝛼 and 𝛽 are given by

= 𝛼1 − 𝛼2, 𝛽 = 𝛽1 − 𝛽2. (13)

hen 𝛽1 = 𝛽2 = 0 and 𝑢3 = 𝑢4 = 0, the eigenvalue problem simplifies
o two identical copies of the standard AKNS eigenvalue problem [6],
hus providing a generalized version of the AKNS eigenvalue problem.

To present an affiliated Liouville integrable hierarchy with four de-
endent variables, we first solve the affiliated stationary zero curvature
q. (9) by seeking a Laurent series matrix solution:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑎 𝑏 𝜖𝑒 𝜖𝑓
𝑐 −𝑎 𝜖𝑔 −𝜖𝑒
𝑒 𝑓 𝑎 𝑏
𝑔 −𝑒 𝑐 −𝑎

⎤

⎥

⎥

⎥

⎥

⎦

=
∑

𝑛≥0
𝜆−𝑛𝑊 {𝑛}, (14)

here the basic objects are assumed to be expanded in Laurent series
f the spectral parameter 𝜆:

𝑎 =
∑

𝑛≥0 𝜆
−𝑛𝑎{𝑛}, 𝑏 =

∑

𝑛≥0 𝜆
−𝑛𝑏{𝑛}, 𝑐 =

∑

𝑛≥0 𝜆
−𝑛𝑐{𝑛},

𝑒 =
∑

𝑛≥0 𝜆
−𝑛𝑒{𝑛}, 𝑓 =

∑

𝑛≥0 𝜆
−𝑛𝑓 {𝑛}, 𝑔 =

∑

𝑛≥0 𝜆
−𝑛𝑔{𝑛}.

(15)

It is obvious that the corresponding affiliated stationary zero curvature
Eq. (9) engenders the following relations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑎𝑥 = 𝑢1𝑐 − 𝑢2𝑏 + 𝜖𝑢3𝑔 − 𝜖𝑢4𝑓,

𝑏𝑥 = 𝛼𝜆𝑏 + 𝜖𝛽𝜆𝑓 − 2𝑢1𝑎 − 2𝜖𝑢3𝑒,

𝑐𝑥 = −𝛼𝜆𝑐 − 𝜖𝛽𝜆𝑔 + 2𝑢2𝑎 + 2𝜖𝑢4𝑒,

𝑒𝑥 = 𝑢1𝑔 − 𝑢2𝑓 + 𝑢3𝑐 − 𝑢4𝑏,

𝑓𝑥 = 𝛽𝜆𝑏 + 𝛼𝜆𝑓 − 2𝑢1𝑒 − 2𝑢3𝑎,

𝑔𝑥 = −𝛽𝜆𝑐 − 𝛼𝜆𝑔 + 2𝑢2𝑒 + 2𝑢4𝑎.

(16)

This leads to

𝜆
[

𝛼 𝜖𝛽
𝛽 𝛼

] [

𝑏
𝑓

]

=
[

𝑏𝑥 + 2𝑢1𝑎 + 2𝜖𝑢3𝑒
𝑓𝑥 + 2𝑢1𝑒 + 2𝑢3𝑎

]

(17)

and

𝜆
[

𝛼 𝜖𝛽
𝛽 𝛼

] [

𝑐
𝑔

]

=
[

−𝑐𝑥 + 2𝑢2𝑎 + 2𝜖𝑢4𝑒
−𝑔𝑥 + 2𝑢2𝑒 + 2𝑢4𝑎

]

. (18)

Therefore, the condition (12) ensuring the invertibility of the coeffi-
cient matrix in the above two systems is necessary and sufficient to
guarantee that we can determine a Laurent series matrix solution 𝑊
recursively. In light of (17) and (18) and noting that
[

𝛼 𝜖𝛽
𝛽 𝛼

]−1

= 1
𝛼2 − 𝜖𝛽2

[

𝛼 −𝜖𝛽
−𝛽 𝛼

]

,

e observe that the system (16) yields the initial requirements:

{0} = 𝑐{0} = 𝑓 {0} = 𝑔{0} = 0, 𝑎{0}𝑥 = 𝑒{0}𝑥 = 0, (19)

nd the recursion relations for computing the Laurent series matrix
olution:

𝑏{𝑛+1} = 𝛼
𝛼2−𝜖𝛽2 (𝑏

{𝑛}
𝑥 + 2𝑢1𝑎{𝑛} + 2𝜖𝑢3𝑒{𝑛})

− 𝜖𝛽
𝛼2−𝜖𝛽2 (𝑓

{𝑛}
𝑥 + 2𝑢1𝑒{𝑛} + 2𝑢3𝑎{𝑛}),

𝑓 {𝑛+1} = − 𝛽
𝛼2−𝜖𝛽2 (𝑏

{𝑛}
𝑥 + 2𝑢1𝑎{𝑛} + 2𝜖𝑢3𝑒{𝑛})

+ 𝛼
2 2 (𝑓

{𝑛}
𝑥 + 2𝑢1𝑒{𝑛} + 2𝑢3𝑎{𝑛}),

(20)
𝛼 −𝜖𝛽
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⎪

⎨
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑐{𝑛+1} = 𝛼
𝛼2−𝜖𝛽2 (−𝑐

{𝑛}
𝑥 + 2𝑢2𝑎{𝑛} + 2𝜖𝑢4𝑒{𝑛})

− 𝜖𝛽
𝛼2−𝜖𝛽2 (−𝑔

{𝑛}
𝑥 + 2𝑢2𝑒{𝑛} + 2𝑢4𝑎{𝑛}),

𝑔{𝑛+1} = − 𝛽
𝛼2−𝜖𝛽2 (−𝑐

{𝑛}
𝑥 + 2𝑢2𝑎{𝑛} + 2𝜖𝑢4𝑒{𝑛})

+ 𝛼
𝛼2−𝜖𝛽2 (−𝑔

{𝑛}
𝑥 + 2𝑢2𝑒{𝑛} + 2𝑢4𝑎{𝑛}),

(21)

{

𝑎{𝑛+1}𝑥 = 𝑢1𝑐{𝑛+1} − 𝑢2𝑏{𝑛+1} + 𝜖𝑢3𝑔{𝑛+1} − 𝜖𝑢4𝑓 {𝑛+1},

𝑒{𝑛+1}𝑥 = 𝑢1𝑔{𝑛+1} − 𝑢2𝑓 {𝑛+1} + 𝑢3𝑐{𝑛+1} − 𝑢4𝑏{𝑛+1},
(22)

where 𝑛 ≥ 0. As normal, to determine a particular Laurent series matrix
solution 𝑊 , we proceed with the arbitrary constant initial data,

𝑎{0} = 1
2
𝛾, 𝑒{0} = 1

2
𝛿, (23)

and consider the case of zero constants of integration,

𝑎{𝑛}|𝑢=0 = 0, 𝑒{𝑛}|𝑢=0 = 0, 𝑛 ≥ 1. (24)

Using these initial data and integration conditions, one can derive all
sequences of {𝑎{𝑛}, 𝑏{𝑛}, 𝑐{𝑛}, 𝑒{𝑛}, 𝑓 {𝑛}, 𝑔{𝑛}} for 𝑛 ≥ 1. The first sequence
appears as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑏{1} = 1
𝛼2−𝜖𝛽2 [𝛼(𝛾𝑢1 + 𝜖𝛿𝑢3) − 𝜖𝛽(𝛿𝑢1 + 𝛾𝑢3)],

𝑓 {1} = 1
𝛼2−𝜖𝛽2 [𝛼(𝛿𝑢1 + 𝛾𝑢3) − 𝛽(𝛾𝑢1 + 𝜖𝛿𝑢3)],

𝑐{1} = 1
𝛼2−𝜖𝛽2 [𝛼(𝛾𝑢2 + 𝜖𝛿𝑢4) − 𝜖𝛽(𝛿𝑢2 + 𝛾𝑢4)],

𝑔{1} = 1
𝛼2−𝜖𝛽2 [𝛼(𝛿𝑢2 + 𝛾𝑢4) − 𝛽(𝛾𝑢2 + 𝜖𝛿𝑢4)],

𝑎{1} = 𝑒{1} = 0.

The second sequence is as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑏{2} = 1
(𝛼2−𝜖𝛽2)2 (𝑝2,1𝑢1,𝑥 + 𝜖𝑝2,2𝑢3,𝑥),

𝑓 {2} = 1
(𝛼2−𝜖𝛽2)2 (𝑝2,2𝑢1,𝑥 + 𝑝2,1𝑢3,𝑥),

𝑐{2} = 1
(𝛼2−𝜖𝛽2)2 (−𝑝2,1𝑢2,𝑥 − 𝜖𝑝2,2𝑢4,𝑥),

𝑔{2} = 1
(𝛼2−𝜖𝛽2)2 (−𝑝2,2𝑢2,𝑥 − 𝑝2,1𝑢4,𝑥),

𝑎{2} = − 1
(𝛼2−𝜖𝛽2)2 [(𝑝2,1𝑢2 + 𝜖𝑝2,2𝑢4)𝑢1 + 𝜖(𝑝2,2𝑢2 + 𝑝2,1𝑢4)𝑢3],

𝑒{2} = − 1
(𝛼2−𝜖𝛽2)2 [(𝑝2,2𝑢2 + 𝑝2,1𝑢4)𝑢1 + (𝑝2,1𝑢2 + 𝜖𝑝2,2𝑢4)𝑢3],

where 𝑝2,1 and 𝑝2,2 are two specific polynomials of second-order in
terms of 𝛼 and 𝛽:

𝑝2,1 = 𝛼2𝛾 − 2𝜖𝛼𝛽𝛿 + 𝜖𝛽2𝛾, 𝑝2,2 = 𝛼2𝛿 − 2𝛼𝛽𝛾 + 𝜖𝛽2𝛿. (25)

The third sequence appears as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑏{3} = 1
(𝛼2−𝜖𝛽2)3 [𝑝3,1𝑢1,𝑥𝑥 + 𝜖𝑝3,2𝑢3,𝑥𝑥 − 2(𝑝3,1𝑢2 + 𝑝3,2𝑢4)𝑢21

−4𝜖(𝑝3,2𝑢2 + 𝑝3,1𝑢4)𝑢1𝑢3 − 2𝜖(𝑝3,1𝑢2 + 𝜖𝑝3,2𝑢4)𝑢23],

𝑓 {3} = 1
(𝛼2−𝜖𝛽2)3 [𝑝3,2𝑢1,𝑥𝑥 + 𝑝3,1𝑢3,𝑥𝑥 − 2(𝑝3,2𝑢2 + 𝜖𝑝3,1𝑢4)𝑢21

−4(𝑝3,1𝑢2 + 𝜖𝑝3,2𝑢4)𝑢1𝑢3 − 2𝜖(𝑝3,2𝑢2 + 𝑝3,1𝑢4)𝑢23],

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐{3} = 1
(𝛼2−𝜖𝛽2)3 [𝑝3,1𝑢2,𝑥𝑥 + 𝜖𝑝3,2𝑢4,𝑥𝑥 − 2(𝑝3,1𝑢1 + 𝜖𝑝3,2𝑢3)𝑢22

−4𝜖(𝑝3,2𝑢1 + 𝑝3,1𝑢3)𝑢2𝑢4 − 2𝜖(𝑝3,1𝑢1 + 𝜖𝑝3,2𝑢3)𝑢24],

𝑔{3} = 1
(𝛼2−𝜖𝛽2)3 [𝑝3,2𝑢2,𝑥𝑥 + 𝑝3,1𝑢4,𝑥𝑥 − 2(𝑝3,2𝑢1 + 𝑝3,1𝑢3)𝑢22

−4(𝑝3,1𝑢1 + 𝜖𝑝3,2𝑢3)𝑢2𝑢4 − 2𝜖(𝑝3,2𝑢1 + 𝑝3,1𝑢3)𝑢24],

⎧

⎪

⎪

⎨

⎪

⎪

𝑎{3} = 1
(𝛼2−𝜖𝛽2)3 [(−𝑝3,1𝑢2 − 𝜖𝑝3,2𝑢4)𝑢1,𝑥 + (𝑝3,1𝑢1 + 𝜖𝑝3,2𝑢3)𝑢2,𝑥

−𝜖(𝑝3,2𝑢2 + 𝑝3,1𝑢4)𝑢3,𝑥 + 𝜖(𝑝3,2𝑢1 + 𝑝3,1𝑢3)𝑢4,𝑥],

𝑒{3} = 1
(𝛼2−𝜖𝛽2)3 [(−𝑝3,2𝑢2 − 𝑝3,1𝑢4)𝑢1,𝑥 + (𝑝3,2𝑢1 + 𝑝3,1𝑢3)𝑢2,𝑥
⎩ −(𝑝3,1𝑢2 + 𝜖𝑝3,2𝑢4)𝑢3,𝑥 + (𝑝3,1𝑢1 + 𝜖𝑝3,2𝑢3)𝑢4,𝑥],

3 
here 𝑝3,1 and 𝑝3,2 are two specific polynomials of third-order in terms
of 𝛼 and 𝛽:

𝑝3,1 = 𝛼3𝛾 −3𝜖𝛼2𝛽𝛿+3𝜖𝛼𝛽2𝛾 − 𝜖2𝛽3𝛿, 𝑝3,2 = 𝛼3𝛿−3𝛼2𝛽𝛾 +3𝜖𝛼𝛽2𝛿− 𝜖𝛽3𝛾.

(26)

he fourth sequence is as follows:

𝑏{4} = 1
(𝛼2−𝜖𝛽2)4 [𝑝4,1𝑢1,𝑥𝑥𝑥 + 𝑝4,2𝑢3,𝑥𝑥𝑥

−6(𝑝4,1𝑢1𝑢2 + 𝜖𝑝4,2𝑢1𝑢4 + 𝜖𝑝4,2𝑢2𝑢3 + 𝜖𝑝4,1𝑢3𝑢4)𝑢1,𝑥
−6𝜖(𝑝4,2𝑢1𝑢2 + 𝑝4,1𝑢1𝑢4 + 𝑝4,1𝑢2𝑢3 + 𝜖𝑝4,2𝑢3𝑢4)𝑢3,𝑥],

𝑓 {4} = 1
(𝛼2−𝜖𝛽2)4 [𝑝4,2𝑢1,𝑥𝑥𝑥 + 𝑝4,1𝑢3,𝑥𝑥𝑥

−6(𝑝4,2𝑢1𝑢2 + 𝑝4,1𝑢1𝑢4 + 𝑝4,1𝑢2𝑢3 + 𝜖𝑝4,2𝑢3𝑢4)𝑢1,𝑥
−6(𝑝4,1𝑢1𝑢2 + 𝜖𝑝4,2𝑢1𝑢4 + 𝜖𝑝4,2𝑢2𝑢3 + 𝜖𝑝4,1𝑢3𝑢4)𝑢3,𝑥],

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐{4} = 1
(𝛼2−𝜖𝛽2)4 [ − 𝑝4,1𝑢2,𝑥𝑥𝑥 − 𝜖𝑝4,2𝑢4,𝑥𝑥𝑥

+6(𝑝4,1𝑢1𝑢2 + 𝜖𝑝4,2𝑢1𝑢4 + 𝜖𝑝4,2𝑢2𝑢3 + 𝜖𝑝4,1𝑢3𝑢4)𝑢2,𝑥
+6𝜖(𝑝4,2𝑢1𝑢2 + 𝑝4,1𝑢1𝑢4 + 𝑝4,1𝑢2𝑢3 + 𝜖𝑝4,2𝑢3𝑢4)𝑢4,𝑥],

𝑔{4} = 1
(𝛼2−𝜖𝛽2)4 [ − 𝑝4,2𝑢2,𝑥𝑥𝑥 − 𝑝4,1𝑢4,𝑥𝑥𝑥

+6(𝑝4,2𝑢1𝑢2 + 𝑝4,1𝑢1𝑢4 + 𝑝4,1𝑢2𝑢3 + 𝜖𝑝4,2𝑢3𝑢4)𝑢2,𝑥
+6(𝑝4,1𝑢1𝑢2 + 𝜖𝑝4,2𝑢1𝑢4 + 𝜖𝑝4,2𝑢2𝑢3 + 𝜖𝑝4,1𝑢3𝑢4)𝑢4,𝑥],

𝑎{4} = 1
(𝛼2−𝜖𝛽2)4 [ − (𝑝4,1𝑢2 + 𝜖𝑝4,2𝑢4)𝑢1,𝑥𝑥 − (𝑝4,1𝑢1 + 𝜖𝑝4,2𝑢3)𝑢2,𝑥𝑥

−𝜖(𝑝4,2𝑢2 + 𝑝4,1𝑢4)𝑢3,𝑥𝑥 − 𝜖(𝑝4,2𝑢1 + 𝑝4,1𝑢3)𝑢4,𝑥𝑥
+𝑝4,1𝑢1,𝑥𝑢2,𝑥 + 𝜖𝑝4,2𝑢1,𝑥𝑢4,𝑥 + 𝜖𝑝4,2𝑢2,𝑥𝑢3,𝑥 + 𝜖𝑝4,1𝑢3,𝑥𝑢4,𝑥
+3(𝑝4,1𝑢22 + 2𝜖𝑝4,2𝑢2𝑢4 + 𝜖𝑝4,1𝑢24)𝑢

2
1

+6𝜖(𝑝4,2𝑢22 + 2𝑝4,1𝑢2𝑢4 + 𝜖𝑝4,2𝑢24)𝑢1𝑢3
−3𝜖(𝑝4,1𝑢22 − 2𝜖𝑝4,2𝑢2𝑢4 − 𝜖𝑝4,1𝑢24)𝑢

2
3],

𝑒{4} = 1
(𝛼2−𝜖𝛽2)4 [(−𝑝4,2𝑢2 − 𝑝4,1𝑢4)𝑢1,𝑥𝑥 − (𝑝4,2𝑢1 + 𝑝4,1𝑢3)𝑢2,𝑥𝑥

−(𝑝4,1𝑢2 + 𝜖𝑝4,2𝑢4)𝑢3,𝑥𝑥 − (𝑝4,1𝑢1 + 𝜖𝑝4,2𝑢3)𝑢4,𝑥𝑥
+𝑝4,2𝑢1,𝑥𝑢2,𝑥 + 𝑝4,1𝑢1,𝑥𝑢4,𝑥 + 𝑝4,1𝑢2,𝑥𝑢3,𝑥 + 𝜖𝑝4,2𝑢3,𝑥𝑢4,𝑥
+3(𝑝4,2𝑢22 + 2𝑝4,1𝑢2𝑢4 + 𝜖𝑝4,2𝑢24)𝑢

2
1

+6(𝑝4,1𝑢22 + 2𝜖𝑝4,2𝑢2𝑢4 + 𝜖𝑝4,1𝑢24)𝑢1𝑢3
+3𝜖(𝑝4,2𝑢22 + 2𝑝4,1𝑢2𝑢4 + 𝜖𝑝4,2𝑢24)𝑢

2
3],

where 𝑝4,1 and 𝑝4,2 are two specific polynomials of fourth-order in terms
of 𝛼 and 𝛽:
{

𝑝4,1 = 𝛼4𝛾 − 4𝜖𝛼3𝛽𝛿 + 6𝜖𝛼2𝛽2𝛾 − 4𝜖2𝛼𝛽3𝛿 + 𝜖2𝛽4𝛾,

𝑝4,2 = 𝛼4𝛿 − 4𝛼3𝛽𝛾 + 6𝜖𝛼2𝛽2𝛿 − 4𝜖𝛼𝛽3𝛾 + 𝜖2𝛽4𝛿.
(27)

Taking these computations into account, we can choose the zero
modification terms in the temporal spectral matrices, to propose

𝜙𝑡𝑚 = {𝑚}𝜙 = {𝑚}(𝑢, 𝜆)𝜙, {𝑚} = (𝜆𝑚𝑊 )+ =
𝑚
∑

𝑛=0
𝜆𝑛𝑊 {𝑚−𝑛}, 𝑚 ≥ 0,

(28)

which form the temporal matrix eigenvalue problems within the Lax
pair framework. The conditions that ensure the compatibility of two
kinds of matrix eigenvalue problems, i.e., the spatial and temporal
eigenvalue problems, in (10) and (28) are exactly the zero curvature
equations

𝑡𝑟 −{𝑚}
𝑥 + [ ,{𝑚}] = 0, 𝑚 ≥ 0. (29)

These equations engender a four-component integrable hierarchy:

𝑢𝑡𝑚 = {𝑚} = ({𝑚}
1 ,{𝑚}

2 ,{𝑚}
3 ,{𝑚}

4 )𝑇

= (𝛼𝑏[𝑚+1] + 𝜖𝛽𝑓 {𝑚+1},−𝛼𝑐[𝑚+1] − 𝜖𝛽𝑔{𝑚+1},

𝛽𝑏[𝑚+1] + 𝛼𝑓 {𝑚+1},−𝛽𝑐[𝑚+1] − 𝛼𝑔{𝑚+1})𝑇 , (30)
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or in a more concrete way,
{

𝑢1,𝑡𝑚 = 𝛼𝑏[𝑚+1] + 𝜖𝛽𝑓 {𝑚+1}, 𝑢2,𝑡𝑚 = −𝛼𝑐[𝑚+1] − 𝜖𝛽𝑔{𝑚+1},

𝑢3,𝑡𝑚 = 𝛽𝑏[𝑚+1] + 𝛼𝑓 {𝑚+1}, 𝑢4,𝑡𝑚 = −𝛽𝑐[𝑚+1] − 𝛼𝑔{𝑚+1},
(31)

where 𝑚 ≥ 0.

As particular examples, this soliton hierarchy includes abundant
coupled systems of integrable NLS equations and coupled systems of
integrable mKdV equations. Upon taking

𝜖 = −2, 𝛼 = 1, 𝛽 = 0, 𝛾 = 1, 𝛿 = 0, (32)

we immediately arrive at a coupled system of integrable NLS models:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1,𝑡2 = 𝑢1,𝑥𝑥 − 2𝑢21𝑢2 + 8𝑢1𝑢3𝑢4 + 4𝑢2𝑢23,

𝑢2,𝑡2 = −𝑢2,𝑥𝑥 + 2𝑢1𝑢22 − 4𝑢1𝑢24 − 8𝑢2𝑢3𝑢4,

𝑢3,𝑡2 = 𝑢3,𝑥𝑥 − 2𝑢21𝑢4 − 4𝑢1𝑢2𝑢3 + 4𝑢23𝑢4,

𝑢4,𝑡2 = −𝑢4,𝑥𝑥 + 4𝑢1𝑢2𝑢4 + 2𝑢22𝑢3 − 4𝑢3𝑢24,

(33)

and a coupled system of integrable mKdV models:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1,𝑡3 = 𝑢1,𝑥𝑥𝑥 − 6(𝑢1𝑢2 − 2𝑢3𝑢4)𝑢1,𝑥 + 12(𝑢1𝑢4 + 𝑢2𝑢3)𝑢3,𝑥,

𝑢2,𝑡3 = 𝑢2,𝑥𝑥𝑥 − 6(𝑢1𝑢2 − 2𝑢3𝑢4)𝑢2,𝑥 + 12(𝑢1𝑢4 + 𝑢2𝑢3)𝑢4,𝑥,

𝑢3,𝑡3 = 𝑢3,𝑥𝑥𝑥 − 6(𝑢1𝑢4 + 𝑢2𝑢3)𝑢1,𝑥 − 6(𝑢1𝑢2 − 2𝑢3𝑢4)𝑢3,𝑥,

𝑢4,𝑡3 = 𝑢4,𝑥𝑥𝑥 − 6(𝑢1𝑢4 + 𝑢2𝑢3)𝑢2,𝑥 − 6(𝑢1𝑢2 − 2𝑢3𝑢4)𝑢4,𝑥.

(34)

Upon taking

𝜖 = −3, 𝛼 = 1, 𝛽 = 0, 𝛾 = 1, 𝛿 = 1, (35)

we immediately arrive at a coupled system of combined integrable NLS
models:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢1,𝑡2 = 𝑢1,𝑥𝑥 − 3𝑢3,𝑥𝑥 − 2(𝑢2 − 3𝑢4)𝑢21 + 12(𝑢2 + 𝑢4)𝑢1𝑢3 + 6(𝑢2 − 3𝑢4)𝑢23,

𝑢2,𝑡2 = −𝑢2,𝑥𝑥 + 3𝑢4,𝑥𝑥 + 2(𝑢1 − 3𝑢3)𝑢22 − 12(𝑢1 + 𝑢3)𝑢2𝑢4 − 6(𝑢1 − 3𝑢3)𝑢24,

𝑢3,𝑡2 = 𝑢1,𝑥𝑥 + 𝑢3,𝑥𝑥 − 2(𝑢2 + 𝑢4)𝑢21 − 4(𝑢2 − 3𝑢4)𝑢1𝑢3 + 6(𝑢2 + 𝑢4)𝑢23,

𝑢4,𝑡2 = −𝑢2,𝑥𝑥 − 𝑢4,𝑥𝑥 + 2(𝑢1 + 𝑢3)𝑢22 + 4(𝑢1 − 3𝑢3)𝑢2𝑢4 − 6(𝑢1 + 𝑢3)𝑢24,

(36)

and a coupled system of combined integrable mKdV models:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢1,𝑡3 = 𝑢1,𝑥𝑥𝑥 − 3𝑢3,𝑥𝑥𝑥 − 6[𝑢1(𝑢2 − 3𝑢4) − 3𝑢3(𝑢2 + 𝑢4)]𝑢1,𝑥
+6[𝑢1(𝑢2 + 𝑢4) + 𝑢3(𝑢2 − 𝑢4)]𝑢3,𝑥,

𝑢2,𝑡3 = 𝑢2,𝑥𝑥𝑥 − 3𝑢4,𝑥𝑥𝑥 − 6[𝑢1(𝑢2 − 3𝑢4) − 3𝑢3(𝑢2 + 𝑢4)]𝑢2,𝑥
+18[𝑢1(𝑢2 + 𝑢4) + 𝑢3(𝑢2 − 3𝑢4)]𝑢4,𝑥,

𝑢3,𝑡3 = 𝑢1,𝑥𝑥𝑥 + 𝑢3,𝑥𝑥𝑥 − 6[𝑢1(𝑢2 + 𝑢4) + 𝑢3(𝑢2 − 3𝑢4)]𝑢1,𝑥
−6[𝑢1(𝑢2 − 3𝑢4) − 3𝑢3(𝑢2 + 𝑢4)]𝑢3,𝑥,

𝑢4,𝑡3 = 𝑢2,𝑥𝑥𝑥 + 𝑢4,𝑥𝑥𝑥 − 6[𝑢1(𝑢2 + 𝑢4) + 𝑢3(𝑢2 − 3𝑢4)]𝑢2,𝑥
−6[𝑢1(𝑢2 − 3𝑢4) − 3𝑢3(𝑢2 + 𝑢4)]𝑢4,𝑥.

(37)

These four specific systems provide representative coupled systems of
integrable models, which broaden the family of coupled integrable NLS
equations and mKdV equations (see, e,g., [22–25]).

3. Recursion operator

A recursion operator being hereditary for the soliton hierarchy (31)
can be computed from the recursion relation {𝑚+1} = 𝛷{𝑚} [26].
Direct computation allows us to obtain this recursion operator 𝛷 =
(𝛷 ) .
𝑗𝑘 4×4

4 
Utilizing the recursion relations in (20), (21) and (22), we can
conduct the following computation:

{𝑚+1}
1 = 𝛼𝑏{𝑚+2} + 𝜖𝛽𝑓 {𝑚+2} = 1

𝛼2−𝜖𝛽2 [𝛼{𝑚}
1,𝑥 − 𝜖𝛽{𝑚}

3,𝑥

−2𝜖(𝛽𝑢1 − 𝛼𝑢3)(𝛽𝑎{𝑚+1} + 𝛼𝑒{𝑚+1})

+ 2(𝛼𝑢1 − 𝜖𝛽𝑢3)(𝜖𝛽𝑒{𝑚+1} + 𝛼𝑎{𝑚+1})],

{𝑚+1}
2 = −𝛼𝑐{𝑚+2} − 𝜖𝛽𝑔{𝑚+2} = 1

𝛼2−𝜖𝛽2 [ − 𝛼{𝑚}
2,𝑥 + 𝜖𝛽{𝑚}

4,𝑥

+2𝜖(𝛽𝑢2 − 𝛼𝑢4)(𝛽𝑎{𝑚+1} + 𝛼𝑒{𝑚+1})

− 2(𝛼𝑢2 − 𝜖𝛽𝑢4)(𝜖𝛽𝑒{𝑚+1} + 𝛼𝑎{𝑚+1})],

{𝑚+1}
3 = 𝛽𝑏{𝑚+2} + 𝛼𝑓 {𝑚+2} = 1

𝛼2−𝜖𝛽2 [ − 𝛽{𝑚}
1,𝑥 + 𝛼{𝑚}

3,𝑥

+2(𝛼𝑢1 − 𝜖𝛽𝑢3)(𝛽𝑎{𝑚+1} + 𝛼𝑒{𝑚+1})

− 2(𝛽𝑢1 − 𝛼𝑢3)(𝜖𝛽𝑒{𝑚+1} + 𝛼𝑎{𝑚+1})],

{𝑚+1}
4 = −𝛽𝑐{𝑚+2} − 𝛼𝑔{𝑚+2} = 1

𝛼2−𝜖𝛽2 [𝛽{𝑚}
2,𝑥 − 𝛼{𝑚}

4,𝑥

−2(𝛼𝑢2 − 𝜖𝛽𝑢4)(𝛽𝑎{𝑚+1} + 𝛼𝑒{𝑚+1})

+ 2(𝛽𝑢2 − 𝛼𝑢4)(𝜖𝛽𝑒{𝑚+1} + 𝛼𝑎{𝑚+1})].

n the other hand, we can perform the computation

𝛽𝑎{𝑚+1} + 𝛼𝑒{𝑚+1} = −𝜕−1(𝑢1
{𝑚}
4 + 𝑢2

{𝑚}
3 + 𝑢3

{𝑚}
2 + 𝑢4

{𝑚}
1 ),

𝜖𝛽𝑒{𝑚+1} + 𝛼𝑎{𝑚+1} = −𝜕−1(𝑢1
{𝑚}
2 + 𝑢2

{𝑚}
1 + 𝜖𝑢3

{𝑚}
4 + 𝜖𝑢4

{𝑚}
3 ).

It then follows that the recursion operator appears as

𝛷 = 1
𝛼2 − 𝜖𝛽2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

𝛼 0 −𝜖𝛽 0
0 −𝛼 0 𝜖𝛽
−𝛽 0 𝛼 0
0 𝛽 0 −𝛼

⎤

⎥

⎥

⎥

⎥

⎦

𝜕

+ 2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜖(𝛽𝑢1 − 𝛼𝑢3)

−𝜖(𝛽𝑢2 − 𝛼𝑢4)

−(𝛼𝑢1 − 𝜖𝛽𝑢3)

𝛼𝑢2 − 𝜖𝛽𝑢4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕−1𝑢4
𝜕−1𝑢3
𝜕−1𝑢2
𝜕−1𝑢1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑇

+2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−(𝛼𝑢1 − 𝜖𝛽𝑢3)

𝛼𝑢2 − 𝜖𝛽𝑢4
𝛽𝑢1 − 𝛼𝑢3

−(𝛽𝑢2 − 𝛼𝑢4)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕−1𝑢2
𝜕−1𝑢1
𝜖𝜕−1𝑢4
𝜖𝜕−1𝑢3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑇
⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (38)

In this expression for the recursion operator, the second and third terms
are two matrix products.

This hereditary recursion operator involves five constant parame-
ters, exhibiting the diversity of the recursion structure in the integrable
hierarchy. Despite the nonlocality of the recursion operator, the locality
of the isospectral (𝜆𝑡𝑚 = 0) flows is maintained. This implies that
each flow in the hierarchy preserves the integrable structure, ensuring
that the derived soliton equations remain solvable by inverse scattering
techniques and other methods applicable to local equations.

4. Bi-Hamiltonian structures

In order to equip Hamiltonian structures with the soliton hierarchy
(31), one can apply the classical trace identity (8) to the spatial matrix
eigenvalue problem (10). Let us consider 𝜖 ≠ 0 below. The case of 𝜖 = 0
needs an application of the variational identity (see [21]).

Taking advantage of the solution 𝑊 defined by (14) and applying
the trace identity to the current spatial matrix eigenvalue problem (10),
we can explicitly derive the Hamiltonian densities and the associated
flows and then integrate the Hamiltonian structures into the resulting
hierarchy of soliton equations. Specifically, we have

tr
(

𝑊 𝜕 )

= 2𝛼𝑎 + 2𝜖𝛽𝑒, tr
(

𝑊 𝜕 )

= (2𝑐, 2𝑏, 2𝜖𝑔, 2𝜖𝑓 )𝑇 , (39)

𝜕𝜆 𝜕𝑢



W.-X. Ma

w

p
b

m

[

w

[

V

D

t
t

D

A

T
N

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 188 (2024) 115580 
and consequently, the indicated trace identity leads to

𝛿
𝛿𝑢 ∫ 𝜆−(𝑛+1)(𝛼𝑎{𝑛+1} + 𝜖𝛽𝑒{𝑛+1}) 𝑑𝑥

= 𝜆−𝜅 𝜕
𝜕𝜆

𝜆𝜅−𝑛(𝑐{𝑛}, 𝑏{𝑛}, 𝜖𝑔{𝑛}, 𝜖𝑓 {𝑛})𝑇 , 𝑛 ≥ 0. (40)

A verification with 𝑛 = 2 shows 𝜅 = 0, and as a consequence, one
obtains
𝛿
𝛿𝑢

{𝑛} = (𝑐{𝑛+1}, 𝑏{𝑛+1}, 𝜖𝑔{𝑛+1}, 𝜖𝑓 {𝑛+1})𝑇 , 𝑛 ≥ 0, (41)

where the indicated Hamiltonian quantities appear as:

{𝑛} = −∫
𝛼𝑎{𝑛+2} + 𝜖𝛽𝑒{𝑛+2}

𝑛 + 1
𝑑𝑥, 𝑛 ≥ 0. (42)

This allows us to furnish the Hamiltonian structures for the soliton
hierarchy (31):

𝑢𝑡𝑚 = {𝑚} = 𝐽1
𝛿{𝑚}

𝛿𝑢
, 𝐽1 =

⎡

⎢

⎢

⎢

⎢

⎣

0𝛼 0 𝛽
−𝛼 0 −𝛽 0
0 𝛽 0 𝛼

𝜖
−𝛽 0 − 𝛼

𝜖 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝑚 ≥ 0, (43)

here 𝐽1 is, obviously, Hamiltonian, and the Hamiltonian quantities
{𝑚} are directly provided by (42). We point out that an important

roperty exhibited by the Hamiltonian structures is an interrelation
etween conserved quantities and symmetries of the same model.

The standard soliton theory tells that those vector fields {𝑛} com-
ute:

[{𝑛1},{𝑛2}]] = {𝑛1}′(𝑢)[{𝑛2}] − {𝑛2}′(𝑢)[{𝑛1}] = 0, 𝑛1, 𝑛2 ≥ 0, (44)

hich can bee seen from a Lax algebra of operators:

[{𝑛1},{𝑛2}]] = {𝑛1}′(𝑢)[{𝑛2}] −{𝑛2}′(𝑢)[{𝑛1}]

+ [{𝑛1}, 𝑉 {𝑛2}] = 0, 𝑛1, 𝑛2 ≥ 0. (45)

One can also verify this property directly by examining the relation
between the isospectral (𝜆𝑡𝑚 = 0) zero curvature equations (see [27]
for details).

Further, with some detailed analysis, we can see that 𝐽1 and 𝐽2 =
𝛷𝐽1 form a Hamiltonian pair. Thus, the soliton hierarchy (31) possesses
the following bi-Hamiltonian structures [28]:

𝑢𝑡𝑚 = {𝑚} = 𝐽1
𝛿{𝑚}

𝛿𝑢
= 𝐽2

𝛿{𝑚−1}

𝛿𝑢
, 𝑚 ≥ 1. (46)

It follows that under the resulting two Poisson brackets, the associated
Hamiltonian functionals commute:

{{𝑛1},{𝑛2}}𝐽𝑖 = 0, 𝑛1, 𝑛2 ≥ 0, 𝑖 = 1, 2, (47)

where

{ ,}𝐽𝑖 = ∫
( 𝛿
𝛿𝑢

)𝑇 𝐽𝑖
𝛿
𝛿𝑢

𝑑𝑥, 𝑖 = 1, 2. (48)

The above two equalities, (44) and (47), imply that all derived
isospectral flows have infinitely many conserved quantities and sym-
metries inherent to the integrable system. Moreover, by virtue of the
recursion and bi-Hamiltonian structures, the resulting conserved quan-
tities and symmetries can be effectively computed to explore Liouville
integrability. This property is essential for building practical applica-
tions and conducting analysis of these integrable models. It guarantees
that exact solutions can reveal important physical behavior and can be
precisely explored in mathematical ways.

To summarize, the soliton hierarchy (31) possesses specific bi-
Hamiltonian structures, exhibiting Liouville integrability, Every model
has two infinite sequences of symmetries {{𝑛}}∞𝑛=0 and conserved
quantities {{𝑛}}∞𝑛=0, and all in the same sequence commute with each
other. The concrete examples, presented in (33) and (34), yield unique
nonlinear coupled Liouville integrable models with bi-Hamiltonian
structures, enhancing and refining the existing studies in the literature
(see, e.g., [19,20,29]).
 a

5 
5. Concluding remarks

This paper has explored a special 4th-order matrix eigenvalue prob-
lem and constructed its affiliated integrable Hamiltonian hierarchies
involving five free parameters through the Lax pair formulation over
the real field. The analysis we have conducted is helpful in generating
integrable models with bi-Hamiltonian structures and understanding
the underlying dynamics of these systems. The use of Laurent series ma-
trix solutions to solve the affiliated stationary zero curvature equation
is crucial, as it allows us to explore the integrability properties of the
presented models. Utilizing the classical trace identity to the specific
matrix isospectral problem elucidates the bi-Hamiltonian structures
inherent in these systems. Several illustrative examples of lower orders
exhibit the characteristics of the presented integrable models.

Further investigation is warranted to explore the soliton configura-
tions for the obtained integrable models using effective and efficient
methods in the field of integrable models. These methods include
the Riemann–Hilbert technique [30], the Zakharov–Shabat dressing
method [31], the determinant approach [32], the Darboux transforma-
tion [33–35] and the deep neural networks [36]. Alternative significant
solutions, such as kink, anti-kink, breather, complexiton, lump, and
rogue wave solutions, including various interaction solutions (see, e.g.,
[37–44]), can be derived from solitons under specific wave number
reductions. Performing nonlocal group reductions on matrix eigenvalue
problems can also result in reduced nonlocal integrable models (see,
e.g., [45]). Nonlocality exposes a variety of unique phenomena and
solutions (see, e.g., [46,47]).

Clearly, incorporating additional dependent variables into the spa-
tial eigenvalue matrix can lead to larger integrable models [48–51].
Such generalizations can result in systems with richer dynamics and
more complex interactions between the variables, including focusing,
defocusing, and mixed-type interactions [52–55]. However, as more
dependent variables are introduced, the resulting equations become
increasingly complex. This increased complexity can make the analysis
and understanding of the system more challenging, especially in the
real field. Investigating larger integrable models will provide a more
profound understanding of the core principles underlying nonlinear dy-
namics and the integrable nature of nonlinear models in mathematical
physics.
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