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1. Introduction

There are quite a few powerful analytical methods to construct
exact solutions to nonlinear integrable equations in soliton theory
[1-3]. Particularly, the Darboux transformation (DT) is an efficient
approach to soliton solutions [4,5]. A kind of matrix spectral prob-
lems plays an essential role in producing DTs (see, e.g., [6]), which
has a close connection with Riemann-Hilbert problems and the in-
verse scattering transform in soltion theory [1-3]. A binary DT is
generated from a pair of matrix spectral problems being equivalent
to a given equation, called a Lax pair, and another pair of adjoint
matrix spectral problems being equivalent to the given equation as
well, called an adjoint Lax pair. We would like to construct a bi-
nary DT for a class of general matrix mKdV equations and their
reduced integrable counterparts.

Let x and t be two independent variables, and u = u(x, t), a de-
pendent variable or a vector of dependent variables. Assume that
a Lax pair of spatial and temporal matrix spectral problems:

—ipy =U¢p =U(u, A)¢p, —ip =V =V(u, )¢, (1.1)
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where i stands for the unit imaginary number, A is a spectral pa-
rameter and ¢ is a column eigenfunction, generates an integrable
equation, through their compatibility condition, i.e., the zero cur-
vature equation

U — Vi +i[U,V] = 0, (1.2)

where [-, -] denotes the matrix commutator. Associated with such
integrable equations, there are nice algebraic structures behind
their Lax pairs [7]. On the other hand, the adjoint matrix spectral
problems of (1.1) are defined as follows:

iy = oU = pU(u, 1), i = PV = dV (u, 1). (1.3)
Their compatibility condition presents the same zero curvature
equation, and thus, it doesn’t generate any new equations. For ma-
trix spectral problems, we can often make appropriate reductions
to obtain reduced integrable equations from the corresponding re-
duced zero curvature equations (see, e.g., [8]).

A binary DT of an integrable equation is given by

=T p=T WM$. ¢ =¢T =T 1), u' = f(u), (14)
where (T+)~! = T~, provided that ¢/ and ¢’ satisfy the new ma-
trix spectral problems:

—ig, =U'¢’, —igy =V'¢/, (1.5)
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and the new adjoint matrix spectral problems:

iy =PV ig) =PV, (16)
where the new spectral matrices are given by
U=UW,2)=Uf),r), V=V, 1) =V(fw),r). (17)

The above condition for producing a binary DT is to just require
that the Darboux matrices T+ and T~ satisfy

U =—iT/T~ +TTUT", V' = —iT T~ +T*VT". (1.8)

It is clear that either (1.5) or (1.6) ensures that the new spec-
tral matrices, U’ and V’, generate the same zero curvature
Eq. (1.2) with u replaced with v/, and so v’ gives us a new solu-
tion to the corresponding integrable equation. There exist various
examples of binary DTs for scalar or coupled integrable equations
(see, e.g., [4,9-12]), but very few examples for matrix integrable
equations in the relevant literature (see, e.g., [13,14]).

In this paper, we would like to construct a binary DT for gen-
eral matrix mKdV equations and reduced integrable counterparts,
based on a Lax pair of arbitrary-order matrix spectral problems.
An N-fold Darboux characteristics will be exhibited for the result-
ing binary DT in the standard case where eigenvalues are differ-
ent from adjoint eigenvalues. Upon taking the zero seed solution,
the resulting binary DT produces soliton solutions for the matrix
mKdV equations and their reduced integrable counterparts. A few
concluding remarks will be given in the last section.

2. Matrix mKdV equations
2.1. General equations
Let m,n > 0 be two arbitrarily given integers, and by I, we de-

note the identity matrix of size s (s € N). We consider a Lax pair of
matrix spectral problems:

—igx=U¢p =U(p.q: M@, —ipy =V =V (p.q;: )9, (21)
where the two matrices of dependent variables are given by
P=(PjDmxn: 4= (qij)nxm (2.2)
and the pair of spectral matrices, by
U=AA+P, V=A3Q+Q. (2.3)
The involved square matrices, A, 2, P and Q, are defined by
A = diag(ailm, a2ln), Q2 = diag(Bilm, aln), (24)
0 p
P=P(u) = , (2.5)
qg O
Q=Qu, ) = gxzp— %um‘n(zﬂ +iRy)
= tp R+ Pt 2P)
_By2|0 p|_B,| paip
o |q 0| o27|-igx —qp
i(pgx — Pxq)  Pxx+2pqp
_:33|: x x . xx ’ (2.6)
*" L G +2q9pq  1(qpx — GxP)

where a1, @, and B, B, are two pairs of different constants, o =
o — oy, B=pP1— By and Iy p = diag(lm, —I).

With one non-zero pair (pj, q;;) (1 < j.! <n), the spatial spec-
tral problem in (2.1) reduces to the standard AKNS spectral prob-
lem [15]. Because of the existence of a multiple eigenvalue of A,
the spatial matrix spectral problem in (2.1) with matrix potentials,
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p and q, is degenerate. However, this will not affect our analysis
seriously.

The compatibility condition of the matrix spectral problems in
(2.1) yields the following matrix mKdV equations:

B

Pr = ——5 (Pxxx + 3pgPpx + 3pxqp),
o
5 (2.7)
dt=-23 (Gxxx +39xPq + 3qpqx)-
When m =1 and n =1, we can obtain
P11t = P + 6P11411 P1ixs Gite = Qe +6P1quiqu . (2.8)

When m =1 and n = 2, we can have

{pll,t = Puaxx +3(P11q11 + P12921) Pux + 3 (P11.xqn + P12.xq21) P1i»
i =91 xx +3(Pnqu + P12921) 9 x + 3(P1qux + P12921.0) 11 -

(2.9)
where 1 <[ <2. When m =2 and n =2, we can get
2 2
Pite = Pjiao +3 Y PirGrsPsix +3 Y PirxlrsPst-
r;s=1 r,s=1
(2.10)

2 2
Qijt = Qijox +3 Z QirxPrsqsj + 3 Z Qir PrsGs;jx»

r,s=1 r,s=1

where 1 < j, 1 <2.

2.2. Reduced counterparts

Let us now make integrable reductions (see also [8] for the
basic idea). We take two constant invertible Hermitian matrices
¥4, ¥y and introduce a particular reduction for the spectral ma-
trix U:

UT(x,t, A%) = (U(x.t,A*))| = CUx, t, )CT,

2 0

o % (2.11)

T .
whereC=|: j| =% j=12
Henceforth,  denotes the Hermitian transpose and =, the complex
conjugate. This reduction exactly requires

Pt(x,t) = CP(x,t)C. (2.12)

The reduction in (2.12) engenders the reduction for the potential
matrices:

qx.t) =21 p (x. 1) Ty, (2.13)

Such a reduction guarantees that
ViGe A =CV(x, £, A)CY, QF(x, £, A%) =CQ(x,t, A)CT, (2.14)

where V and Q are determined by (2.3), (2.4) and (2.6).

We can then directly see that the reduction (2.12) (or (2.13))
agrees with the zero curvature equation of the reduced spatial and
temporal matrix spectral problems of (2.1). Thus, under the reduc-
tion (2.12), the matrix mKdV Eq. (2.7) becomes the following re-
duced matrix mKdV equations:

- _ﬁ -1t —1 4t
Pr = =5 (P +3P%; p'E1px + 3p<Z; P Z1p)., (2.15)
where p = (pj))mxn, and X, X, are two arbitrary invertible Her-
mitian matrices of sizes m and n, respectively.

When n=1, taking o =-f=1and &; =1, = 1, we get
the two scalar mKdV equations:
Pite = P + 60 [P *prig. 0 =£1. (2.16)
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When m =1 and n =2, we can have a new system of integrable
two-component mKdV equations:

P1it = P + (C1 |pul® + C2|P12|2)P11,x
+ (c1P1Pyy + CaP12.xP12%) P
P12t = P12xxx + (C1 Ipul® +c2lpr |2)P12,x
+ (C1P11_x19’{1 + C2P124xP§2)P12,
where c¢; and ¢, are arbitrary nonzero real constants. One system
of such mixed type mKdV equations has been solved by the in-

verse scattering transform [16]. When m = 2 and n = 2, we can get
a more general system of mKdV equations

(2.17)

2 2
Djit = Pjixxx + Z Crdspjrp;rpsl,x + Z Crdspjr,xpﬁrpsz, (2.18)

r,s=1 r,s=1

where 1 < j,I <2, and ¢;,dj, 1< j <2, are arbitrary nonzero real
constants.

3. Binary Darboux transformation
3.1. New type of Darboux matrices

Let us now formulate Darboux matrices in a general case,
where eigenvalues could be equal to adjoint eigenvalues.

Let N > 1 be another arbitrarily given integer. We take two sets
of eigenfunctions and adjoint eigenfunctions:

=i =U(D, ¢ AV, =iV =V (P, @ AV, 1<k<N, (3.1)
and
i = DU D G M), ke =V (D, @ M), 1<k <N, (3.2)

where A, and 5\,(, 1 <k <N, are arbitrary eigenvalues and adjoint
eigenvalues, respectively, but some eigenvalues can be equal to
some adjoint eigenvalues.

To make compact expressions, we define

DT

We can then state the equations for the eigenfunctions as follows:

v= (v, vN), D= (@, (33)

—ivy = AVA+ Py,
{iﬁx — ADA + 9P, (34)
and
—ive = QUA’ + QA1) - . Q(AN)VN). (3.5)
“))[:A3179+(171Q()\’1)’ ’i)NQ()\'N))s ’

where the four matrices AA,Q,P and Q are defined by (2.4),
(2.5) and (2.6), and A and A, by

{A =diag(Aq, -, AN),

A = diag(ﬁq, ceey, 3\,1\]) (36)

We consider the general situation, where eigenvalues could equal
adjoint eigenvalues. To the end, we introduce a square M-matrix:

f)kv, . B
—, lf )\.[ 75 )\k’
A=Ay

0, if A = Ay,

M = (My)nxn, My =

(3.7)

This M-matrix involves zero entries, when A; = 3\,{ for a pair 1 <
k,1 < N. Therefore, it generalizes the traditional case without zero
entries (see, e.g., [3,17]) and can also yield soliton solutions to non-
local integrable equations (see, e.g., [18]).

where 1 <k, <N.
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When M is invertible, we can formulate two Darboux matrices
of new type:

N 1 ~

T+ = T+()\') — In+1 _ Z vk(M A)klvl
k,I=1 A= )‘1

N T

T"=T A) =l + ) 5
k=1 k

5

(3.8)

The two Darboux matrices can be expresssed in a compact form of
partial fractional decomposition:

N M3
vy
Y A
= A=A (3.9
N Ukﬁy .
T~ =l + Z o
k=1 k
where we define
M, M) = (v, uMT, (3.10)
(@7 DT =M@ )"

Further, we can more compactly rewrite the Darboux matrices as
follows:

T+ =11 — VM 'RD,

T~ =1Iy1 + VRM~19, (3.11)
upon introducing
1 1
R:diag( e, >,
A—M A —AN (312)
A . 1 1
R = diag — e, — .
A=A A—AN
Let us also define
T = Alim [AMT=(A) = Tnsa)]. (313)
It is clear that
T = —vM~'D, T =vM~ ', (3.14)

which also implies that

T = -Ty.

Furthermore, it is direct to prove the following basic properties for
the two Darboux matrices T+ and T~.

Theorem 3.1. (i) A spectral property holds:

N
(H(A - RoT*) (Mve=0,1=k=N,

=1

ak<]ﬂ[(,\—x,)r-)(xk) =0,1<k<N. (3.15)
1=1

(ii) If an orthogonal condition holds:

v, = 0 when A; = A, (3.16)
where 1 <k,l <N, then we have

RiwR = MR — RM, (3.17)
which implies that TT and T~ are inverse to each other:
T*)T~(A) = Ly, (3.18)
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3.2. Binary DT for the general equations
In order to present a binary DT, we need to compute the deriva-

tives of the M-matrix with respect to the independent variables x
and t. A direct computation shows that

. Av; = 0 when A; = Ay, (3.19)
where 1 < k,[ < N, guarantees that

My = iDAv; (3.20)
and

DSy = 0 when Ay = A, (3.21)

where 1 <k,l <N, and

ki = <X§ + s+ )‘IZ>Q + P G+ AP — %Im.n(lﬂ +iPy),

o

1<k, I<N, (3.22)
guarantees that
M; = i[ﬁAZ Qu + VAQAY + QA + g(mpu + DPAV)
fﬁle (P? +iP, )u] (3.23)
az m,n X . .

Based on those two properties, a general binary DT can be pre-
sented as follows.

Theorem 3.2. Let 2 ;| be defined by (3.22). If the conditions hold:

i)]ﬂ)[ = 17kAU1 = ﬁkg[k,l]vl =0 when A= 5\,(, (3.24)
where 1 < k,l < N, then we have a binary DT:
¢ =T ¢, ¢’ =¢T~, P'=P+[T}", A]. (325)

for the matrix mKdV Eq. (2.7).

Moreover, if {A,]1 <k <N}n{k1<k<N}=¢, which is the
standard case, we can decompose the above general binary DT into
an N-fold binary DT.

To this end, let us define two new sets of single binary Darboux
matrices TT[[k]] and T—[[k], 1 <k < N, recursively as follows:

Ky /N
K] = TR GY) = foy — =200 g o,
h i O,
) (3.26)
_ o . A — Ak v;jz;{
TR = TIKIO) =y + PR 2k

with new pairs of eigenfunctions and adjoint eigenfunctions:
v, =THk =1}V, ¥, =0T {k—1}(A), 1<k<N, (3.27)

where

T+{O} = T_{O} = In+1,
THk} =TH[k]--- TT[2]T*[1], 1 <k <N,
T-{k} =T-[1IT-[2]]---T~[k], 1 <k<N.

(3.28)

Now we can have the following N-fold decompositions for the two
Darboux matrices T+ and T~.

Theorem 3.3. Let {A;|1 <k <N}n {5\k| 1 <k < N} = ¢. Assume that
the two Darboux matrices T+ and T~ are defined by (3.8). Then we
have the N-fold decomposition:

T =TH[NIT[N - 1]---T*[[1],
T™=T7[1]---T"[[N-1[T"[INI.
where TH[[k]] and T—[[k]], 1 <k < N, are determined by (3.26).

(3.29)
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3.3. Binary DT for the reduced equations

Let us check how to satisfy the reduction property (2.11) for the
new spectral matrix U’ defined by (1.8) with (3.8). First, the crucial
step is to take the adjoint eigenvalues:
sz)f‘ 1<k<N.

k>

(3.30)

Then, we can find that it will be sufficient for T;" to satisfy an in-
volution property:

(T (x, ) = —CTF (x, )C ", (331)

where C is defined as in (2.11). To satisfy this condition, we only
need to take the adjoint eigenfunctions:

De(x, b, ) =T (X, 6, 0)C 1<k <N, (3.32)
under which the three conditions in (3.24) become
vin, = ULCAUI = U};CQ[]{J]U[ =0 when )\.[ = 3\’(, (333)

where 1 <k,I <N.

Now, the general binary DT (3.25) presents a binary DT for the
reduced matrix mKdV Eq. (2.15). We summarize such a binary DT
for the reduced case as follows.

Theorem 3.4. Let the adjoint eigenvalues {Xkll <k < N} be taken
as in (3.30) and the associated adjoint eigenfunctions {D| 1 < k < N}
be determined by (3.32). Then if the three orthogonal properties for
{ve] 1 <k <N} in (3.33) hold, the binary Darboux transformation
(3.25) is then reduced to a binary Darboux transformation for the re-
duced matrix mKdV Eq. (2.15).

4. Applications to soliton solutions
4.1. Soliton solutions to the general equations

Let us first consider the general case. We take two arbitrary sets
of eigenvalues and adjoint eigenvalues:

{Ae€C|1<k<N}, {A,eC|1<k<N)}.
Beginning with the zero seed solution P =0, we can obtain the
corresponding eigenfunctions and adjoint eigenfunctions

Up(x, t) = e Ay, ] < <N, (4.1)

De(x,t) = We AR 1 <k <N, (4.2)

where wy, and W, 1 <k <N, are arbitrary constant column and
row vectors, respectively, but need to satisfy the following three
orthogonal conditions:

Wle = WkAWl = (5\,% + 5\'I<)\'I + )\,IZ)WkQWl =0 when A, = 5\,](,
(4.3)
where 1 <k,I <N, and A and 2 are given by (2.4).

Now following the binary DT (3.25), a new potential matrix can
be computed by

N
P =[T AL T = —vM "0 == )" v (M )iy (4.4)
k=1

Consequently, this yields a kind of soliton solutions to the matrix
mKdV equations (2.7):

N N
1 -1 52 2 -1 Pl
p:azvk(M DaVr, q:—azvk(M )klvl’
ki=1 k=1

(4.5)

where we split v = ((v)T, @)1 and ¥ = (9}.92). of which v}
and vﬁ are m- and n-dimensional column vectors, respectively, and
17]1( and 17% are m- and n-dimensional row vectors, respectively.
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4.2. Soliton solutions to the reduced equations

Let us second consider the reduced case. The task is to sat-
isfy the involution condition (3.31) in order to construct soliton
solutions to the reduced matrix mKdV equations (2.15). Therefore,
what we need to check is whether the new potential matrix P’
generated via the binary DT satisfies the reduction property (2.12).
If this is true, the soliton solutions in (4.5) to the matrix mKdV
equations (2.7) are then reduced to the soliton solutions:

N
p=«o Z vy (M~ i, (4.6)

k.1=1

for the reduced matrix mKdV equations (2.15), where v, =
(wpT. @HHT and ¥y = (7). 72), 1 <k <N, as before.

To satisfy the involution property (3.31), let us take N eigenval-
ues A, € C, 1 <k<N, and define N adjoint eigenvalues {5\k|1 <
k < N} via (3.30). Then, taking the zero seed solution P =0, we
can obtain the corresponding eigenfunctions v, 1 <k <N:
Ve(X, £) = U (X, £, Ay) = edxHRgQty, — 1 <k <N, (4.7)
where wy, 1 <k <N, are arbitrary column vectors. Further, accord-
ing to our previous analysis on integrable reductions, the corre-
sponding adjoint eigenfunctions ¥, 1 < k < N, will be

DX, £) = D (6, M) = U (%, £, A )C = wlehedr—ikisc,

1<k<N. (4.8)
The three orthogonal properties in (3.33) become the following
three new conditions:

wiCw, = wiCAw, = (Xﬁ + Ak + )»lz)w;iCQw, =0

when A; = Ay, (4.9)
where 1 <k,I <N, on the constant vectors {w;|1 <k <N}. We
point out that the situation of A, = A, occurs only when taking
Ak € R. Because of oy # ap and B # B2, we directly see that the
above three conditions exactly require that

(wh)' S =0, (w])'Zaw? =0, whenjy =% (410)

T
where 1 <k, I <N, and we split w, = ((w}()T (wﬁ)T) as we did

for v, before.

Finally, the formula (4.6), together with (3.7), (4.7) and (4.8),
presents soliton solutions to the reduced matrix mKdV equations
(2.15).

5. Concluding remarks

The aim of the paper is to construct a binary Darboux trans-
formation (DT) for a class of matrix mKdV equations and their re-
duced matrix integrable counterparts, associated with matrix spec-
tral problems of arbitrary order. The crucial step is to apply two
pairs of eigenfunctions and adjoint eigenfunctions, corresponding
to two arbitrary sets of eigenvalues and adjoint eigenvalues. The
resulting binary DTs have been used to derive soliton solutions
to the matrix mKdV equations and their reduced integrable equa-
tions.

In our formulation of binary DTs, we introduce a generalized M-
matrix innovatively, where eigenvalues could be equal to adjoint
eigenvalues. The motivation for doing that is derived from recent
studies on Riemann-Hilbert problems for nonlocal integrable equa-
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tions (see, for example, [18]). The resulting general formulation of
binary DTs can be applied to both local and nonlocal integrable
equations (see, for example, [18-22] for nonlocal theories). Tak-
ing repeated eigenvalues or repeated adjoint eigenvalues engen-
ders Darboux matrices with higher-order poles, and taking deriva-
tives with respect to eigenvalues or adjoint eigenvalues leads to
generalized Darboux transformations.

There are many other interesting problems in the theory of DTs,
which include applications of DTs to other kinds of exact solu-
tions, particularly lump solutions; systematical theories of binary
DTs for integrable equations associated with non-semisimple Lie
algebras; and connections with N-soliton solutions by the Hirota
bilinear method and other approaches.
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