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. Introduction 

There are quite a few powerful analytical methods to construct 

xact solutions to nonlinear integrable equations in soliton theory 

1–3] . Particularly, the Darboux transformation (DT) is an efficient 

pproach to soliton solutions [4,5] . A kind of matrix spectral prob- 

ems plays an essential role in producing DTs (see, e.g., [6] ), which 

as a close connection with Riemann-Hilbert problems and the in- 

erse scattering transform in soltion theory [1–3] . A binary DT is 

enerated from a pair of matrix spectral problems being equivalent 

o a given equation, called a Lax pair, and another pair of adjoint 

atrix spectral problems being equivalent to the given equation as 

ell, called an adjoint Lax pair. We would like to construct a bi- 

ary DT for a class of general matrix mKdV equations and their 

educed integrable counterparts. 

Let x and t be two independent variables, and u = u (x, t) , a de-

endent variable or a vector of dependent variables. Assume that 

 Lax pair of spatial and temporal matrix spectral problems: 

iφx = Uφ = U(u, λ) φ, −iφt = V φ = V (u, λ) φ, (1.1) 
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w

t

−

ttps://doi.org/10.1016/j.chaos.2021.110824 

960-0779/© 2021 Elsevier Ltd. All rights reserved. 
here i stands for the unit imaginary number, λ is a spectral pa- 

ameter and φ is a column eigenfunction, generates an integrable 

quation, through their compatibility condition, i.e., the zero cur- 

ature equation 

 t − V x + i [ U, V ] = 0 , (1.2) 

here [ ·, ·] denotes the matrix commutator. Associated with such 

ntegrable equations, there are nice algebraic structures behind 

heir Lax pairs [7] . On the other hand, the adjoint matrix spectral 

roblems of (1.1) are defined as follows: 

 ̃

 φx = 

˜ φU = 

˜ φU(u, λ) , i ̃  φt = 

˜ φV = 

˜ φV (u, λ) . (1.3)

heir compatibility condition presents the same zero curvature 

quation, and thus, it doesn’t generate any new equations. For ma- 

rix spectral problems, we can often make appropriate reductions 

o obtain reduced integrable equations from the corresponding re- 

uced zero curvature equations (see, e.g., [8] ). 

A binary DT of an integrable equation is given by 

′ = T + φ = T + (u, λ) φ, ˜ φ′ = 

˜ φT − = 

˜ φT −(u, λ) , u 

′ = f (u ) , (1.4)

here (T + ) −1 = T −, provided that φ′ and 

˜ φ′ satisfy the new ma- 

rix spectral problems: 

iφ′ 
x = U 

′ φ′ , −iφ′ 
t = V 

′ φ′ , (1.5) 

https://doi.org/10.1016/j.chaos.2021.110824
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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nd the new adjoint matrix spectral problems: 

 ̃

 φ′ 
x = 

˜ φ′ U 

′ , i ̃  φ′ 
t = 

˜ φ′ V 

′ , (1.6) 

here the new spectral matrices are given by 

 

′ = U(u 

′ , λ) = U( f (u ) , λ) , V 

′ = V (u 

′ , λ) = V ( f (u ) , λ) . (1.7)

he above condition for producing a binary DT is to just require 

hat the Darboux matrices T + and T − satisfy 

 

′ = −iT + x T − + T + UT −, V 

′ = −iT + t T − + T + V T −. (1.8)

t is clear that either (1.5) or (1.6) ensures that the new spec- 

ral matrices, U 

′ and V ′ , generate the same zero curvature 

q. (1.2) with u replaced with u ′ , and so u ′ gives us a new solu-

ion to the corresponding integrable equation. There exist various 

xamples of binary DTs for scalar or coupled integrable equations 

see, e.g., [4,9–12] ), but very few examples for matrix integrable 

quations in the relevant literature (see, e.g., [13,14] ). 

In this paper, we would like to construct a binary DT for gen- 

ral matrix mKdV equations and reduced integrable counterparts, 

ased on a Lax pair of arbitrary-order matrix spectral problems. 

n N-fold Darboux characteristics will be exhibited for the result- 

ng binary DT in the standard case where eigenvalues are differ- 

nt from adjoint eigenvalues. Upon taking the zero seed solution, 

he resulting binary DT produces soliton solutions for the matrix 

KdV equations and their reduced integrable counterparts. A few 

oncluding remarks will be given in the last section. 

. Matrix mKdV equations 

.1. General equations 

Let m, n ≥ 0 be two arbitrarily given integers, and by I s , we de-

ote the identity matrix of size s ( s ∈ N ). We consider a Lax pair of

atrix spectral problems: 

iφx = Uφ = U(p, q ;λ) φ, −iφt = V φ = V (p, q ;λ) φ, (2.1)

here the two matrices of dependent variables are given by 

p = (p jl ) m ×n , q = (q l j ) n ×m 

, (2.2) 

nd the pair of spectral matrices, by 

 = λ� + P, V = λ3 � + Q . (2.3) 

he involved square matrices, �, �, P and Q, are defined by 

� = diag (α1 I m 

, α2 I n ) , � = diag (β1 I m 

, β2 I n ) , (2.4) 

P = P (u ) = 

[
0 p 

q 0 

]
, (2.5) 

 = Q(u, λ) = 

β

α
λ2 P − β

α2 
λI m,n (P 2 + iP x ) 

− β

α3 
(i [ P, P x ] + P xx + 2 P 3 ) 

= 

β

α
λ2 

[
0 p 
q 0 

]
− β

α2 
λ

[
pq ip x 

−iq x −qp 

]

− β

α3 

[
i (pq x − p x q ) p xx + 2 pqp 

q xx + 2 qpq i (qp x − q x p) 

]
, (2.6) 

here α1 , α2 and β1 , β2 are two pairs of different constants, α = 

1 − α2 , β = β1 − β2 and I m,n = diag (I m 

, −I n ) . 

With one non-zero pair (p jl , q l j ) ( 1 ≤ j, l ≤ n ) , the spatial spec-

ral problem in (2.1) reduces to the standard AKNS spectral prob- 

em [15] . Because of the existence of a multiple eigenvalue of �, 

he spatial matrix spectral problem in (2.1) with matrix potentials, 
2 
p and q, is degenerate. However, this will not affect our analysis 

eriously. 

The compatibility condition of the matrix spectral problems in 

2.1) yields the following matrix mKdV equations: 
 

 

 

 

 

p t = − β

α3 
(p xxx + 3 pqp x + 3 p x qp) , 

q t = − β

α3 
(q xxx + 3 q x pq + 3 qpq x ) . 

(2.7) 

hen m = 1 and n = 1 , we can obtain 

p 11 ,t = p 11 ,xxx + 6 p 11 q 11 p 11 ,x , q 11 ,t = q 11 ,xxx + 6 p 11 q 11 q 11 ,x . (2.8)

hen m = 1 and n = 2 , we can have 

p 1 l,t = p 1 l,xxx + 3(p 11 q 11 + p 12 q 21 ) p 1 l,x + 3(p 11 ,x q 11 + p 12 ,x q 21 ) p 1 l , 

q l1 ,t = q l1 ,xxx + 3(p 11 q 11 + p 12 q 21 ) q l1 ,x + 3(p 11 q 11 ,x + p 12 q 21 ,x ) q l1 , 

(2.9) 

here 1 ≤ l ≤ 2 . When m = 2 and n = 2 , we can get 
 

 

 

 

 

 

 

 

 

 

 

p jl,t = p jl,xxx + 3 

2 ∑ 

r,s =1 

p jr q rs p sl,x + 3 

2 ∑ 

r,s =1 

p jr,x q rs p sl , 

q l j,t = q l j,xxx + 3 

2 ∑ 

r,s =1 

q lr,x p rs q s j + 3 

2 ∑ 

r,s =1 

q lr p rs q s j,x , 

(2.10) 

here 1 ≤ j, l ≤ 2 . 

.2. Reduced counterparts 

Let us now make integrable reductions (see also [8] for the 

asic idea). We take two constant invertible Hermitian matrices 

1 , �2 and introduce a particular reduction for the spectral ma- 

rix U: 

 

† ( x, t, λ∗) = ( U ( x, t, λ∗) ) † = CU ( x, t, λ) C −1 , 

where C = 

[
�1 0 

0 �2 

]
, �† 

j 
= � j , j = 1 , 2 . (2.11) 

enceforth, † denotes the Hermitian transpose and ∗, the complex 

onjugate. This reduction exactly requires 

 

† (x, t) = C P (x, t) C −1 . (2.12) 

he reduction in (2.12) engenders the reduction for the potential 

atrices: 

 (x, t) = �−1 
2 p † (x, t)�1 . (2.13) 

uch a reduction guarantees that 

 

† (x, t, λ∗) = CV (x, t, λ) C −1 , Q 

† (x, t, λ∗) = CQ(x, t, λ) C −1 , (2.14)

here V and Q are determined by (2.3), (2.4) and (2.6) . 

We can then directly see that the reduction (2.12) (or (2.13) ) 

grees with the zero curvature equation of the reduced spatial and 

emporal matrix spectral problems of (2.1) . Thus, under the reduc- 

ion (2.12) , the matrix mKdV Eq. (2.7) becomes the following re- 

uced matrix mKdV equations: 

p t = − β

α3 
(p xxx + 3 p�−1 

2 p † �1 p x + 3 p x �
−1 
2 p † �1 p) , (2.15)

here p = (p jl ) m ×n , and �1 , �2 are two arbitrary invertible Her- 

itian matrices of sizes m and n, respectively. 

When n = 1 , taking α = −β = 1 and �1 = 1 , �2 = 

1 
σ , we get

he two scalar mKdV equations: 

p 11 ,t = p 11 ,xxx + 6 σ | p 11 | 2 p 11 ,x , σ = ±1 . (2.16)
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T (λ) T (λ) = I n +1 . (3.18) 
hen m = 1 and n = 2 , we can have a new system of integrable

wo-component mKdV equations: 
 

 

 

 

 

 

 

p 11 ,t = p 11 , xxx + 

(
c 1 | p 11 | 2 + c 2 | p 12 | 2 

)
p 11 ,x 

+ 

(
c 1 p 11 ,x p 

∗
11 + c 2 p 12 ,x p 12 ∗

)
p 11 , 

p 12 ,t = p 12 , xxx + 

(
c 1 | p 11 | 2 + c 2 | p 12 | 2 

)
p 12 ,x 

+ 

(
c 1 p 11 ,x p 

∗
11 + c 2 p 12 ,x p 

∗
12 

)
p 12 , 

(2.17) 

here c 1 and c 2 are arbitrary nonzero real constants. One system 

f such mixed type mKdV equations has been solved by the in- 

erse scattering transform [16] . When m = 2 and n = 2 , we can get

 more general system of mKdV equations 

p jl,t = p jl,xxx + 

2 ∑ 

r,s =1 

c r d s p jr p 
∗
sr p sl,x + 

2 ∑ 

r,s =1 

c r d s p jr,x p 
∗
sr p sl , (2.18)

here 1 ≤ j, l ≤ 2 , and c j , d j , 1 ≤ j ≤ 2 , are arbitrary nonzero real

onstants. 

. Binary Darboux transformation 

.1. New type of Darboux matrices 

Let us now formulate Darboux matrices in a general case, 

here eigenvalues could be equal to adjoint eigenvalues. 

Let N ≥ 1 be another arbitrarily given integer. We take two sets 

f eigenfunctions and adjoint eigenfunctions: 

i v k,x = U(p, q ;λk ) v k , −i v k,t = V (p, q ;λk ) v k , 1 ≤ k ≤ N, (3.1)

nd 

 ̂

 v k,x = 

ˆ v k U(p, q ; ˆ λk ) , i ̂ v k,t = 

ˆ v k V (p, q ; ˆ λk ) , 1 ≤ k ≤ N, (3.2)

here λk and 

ˆ λk , 1 ≤ k ≤ N, are arbitrary eigenvalues and adjoint 

igenvalues, respectively, but some eigenvalues can be equal to 

ome adjoint eigenvalues. 

To make compact expressions, we define 

 = (v 1 , · · · , v N ) , ˆ v = ( ̂ v T 1 , · · · , ̂  v T N ) 
T . (3.3)

e can then state the equations for the eigenfunctions as follows: 

−i v x = �v A + P v , 
i ̂ v x = 

ˆ A ̂

 v � + ̂

 v P, 
(3.4) 

nd 

−i v t = �v A 

3 + (Q(λ1 ) v 1 , · · · , Q(λN ) v N ) , 
i ̂ v t = 

ˆ A 

3 ˆ v � + ( ̂ v 1 Q ( ̂ λ1 ) , · · · , ̂  v N Q ( ̂ λN )) , 
(3.5) 

here the four matrices �, �, P and Q are defined by (2.4), 

2.5) and (2.6) , and A and 

ˆ A , by 

A = diag (λ1 , · · · , λN ) , 
ˆ A = diag ( ̂ λ1 , · · · , ̂  λN ) . 

(3.6) 

e consider the general situation, where eigenvalues could equal 

djoint eigenvalues. To the end, we introduce a square M-matrix: 

 = (m kl ) N×N , m kl = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ˆ v k v l 
λl − ˆ λk 

, if λl � = 

ˆ λk , 

0 , if λl = 

ˆ λk , 

where 1 ≤ k, l ≤ N

(3.7) 

his M-matrix involves zero entries, when λl = ̂

 λk for a pair 1 ≤
, l ≤ N. Therefore, it generalizes the traditional case without zero 

ntries (see, e.g., [3,17] ) and can also yield soliton solutions to non- 

ocal integrable equations (see, e.g., [18] ). 
3 
When M is invertible, we can formulate two Darboux matrices 

f new type: 
 

 

 

 

 

 

 

 

 

T + = T + (λ) = I n +1 −
N ∑ 

k,l=1 

v k (M 

−1 ) kl ̂  v l 
λ − ˆ λl 

, 

T − = T −(λ) = I n +1 + 

N ∑ 

k,l=1 

v k (M 

−1 ) kl ̂  v l 
λ − λk 

. 

(3.8) 

he two Darboux matrices can be expresssed in a compact form of 

artial fractional decomposition: 
 

 

 

 

 

 

 

 

 

T + = I n +1 −
N ∑ 

l=1 

v M 

l 
ˆ v l 

λ − ˆ λl 

, 

T − = I n +1 + 

N ∑ 

k =1 

v k ̂  v M 

k 

λ − λk 

, 

(3.9) 

here we define 

(v M 

1 , · · · , v M 

N ) = (v 1 , · · · , v N ) M 

−1 , 

(( ̂ v M 

1 ) 
T , · · · , ( ̂ v M 

N ) 
T ) T = M 

−1 ( ̂ v T 1 , · · · , ̂  v T N ) 
T . 

(3.10) 

urther, we can more compactly rewrite the Darboux matrices as 

ollows: 

T + = I n +1 − v M 

−1 ˆ R ̂

 v , 
T − = I n +1 + v RM 

−1 ˆ v , 
(3.11) 

pon introducing 
 

 

 

 

 

R = diag 

(
1 

λ − λ1 

, · · · , 
1 

λ − λN 

)
, 

ˆ R = diag 

(
1 

λ − ˆ λ1 

, · · · , 
1 

λ − ˆ λN 

)
. 

(3.12) 

et us also define 

 

±
1 = lim 

λ→∞ 

[ λ(T ±(λ) − I n +1 )] . (3.13) 

t is clear that 

 

+ 
1 = −v M 

−1 ˆ v , T −1 = v M 

−1 ˆ v , (3.14) 

hich also implies that 

 

+ 
1 = −T −1 . 

urthermore, it is direct to prove the following basic properties for 

he two Darboux matrices T + and T −. 

heorem 3.1. (i) A spectral property holds: 

 

N ∏ 

l=1 

(λ − ˆ λl ) T 
+ 

) 

(λk ) v k = 0 , 1 ≤ k ≤ N, 

ˆ v k 

( 

N ∏ 

l=1 

(λ − λl ) T 
−

) 

( ̂ λk ) = 0 , 1 ≤ k ≤ N. (3.15) 

ii) If an orthogonal condition holds: 

ˆ 
 k v l = 0 when λl = 

ˆ λk , (3.16) 

here 1 ≤ k, l ≤ N, then we have 

ˆ 
 ̂

 v v R = MR − ˆ R M, (3.17) 

hich implies that T + and T − are inverse to each other: 

+ −
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.2. Binary DT for the general equations 

In order to present a binary DT, we need to compute the deriva- 

ives of the M-matrix with respect to the independent variables x 

nd t . A direct computation shows that 

ˆ 
 k �v l = 0 when λl = 

ˆ λk , (3.19) 

here 1 ≤ k, l ≤ N, guarantees that 

 x = i ̂ v �v ; (3.20) 

nd 

ˆ 
 k �[ k,l] v l = 0 when λl = 

ˆ λk , (3.21) 

here 1 ≤ k, l ≤ N, and 

[ k,l] = 

(
ˆ λ2 

k + ̂

 λk λl + λ2 
l 

)
� + 

β

α
( ̂ λk + λl ) P −

β

α2 
I m,n (P 2 + iP x ) , 

1 ≤ k, l ≤ N, (3.22) 

uarantees that 

 t = i 

[
ˆ v ̂  A 

2 �v + ̂

 v ̂  A �A v + ̂

 v �A 

2 v + 

β

α
( ̂ v ̂  A P v + ̂

 v PA v ) 

− β

α2 ̂
 v I m,n (P 2 + iP x ) v 

]
. (3.23) 

ased on those two properties, a general binary DT can be pre- 

ented as follows. 

heorem 3.2. Let �[ k,l] be defined by (3.22) . If the conditions hold: 

ˆ 
 k v l = 

ˆ v k �v l = 

ˆ v k �[ k,l] v l = 0 when λl = 

ˆ λk , (3.24) 

here 1 ≤ k, l ≤ N, then we have a binary DT: 

′ = T + φ, ˜ φ′ = 

˜ φT −, P ′ = P + [ T + 1 , �] , (3.25)

or the matrix mKdV Eq. (2.7) . 

Moreover, if { λk | 1 ≤ k ≤ N} ∩ { ̂ λk | 1 ≤ k ≤ N} = ∅ , which is the

tandard case, we can decompose the above general binary DT into 

n N-fold binary DT. 

To this end, let us define two new sets of single binary Darboux 

atrices T + [[ k ]] and T −[[ k ]] , 1 ≤ k ≤ N, recursively as follows: 
 

 

 

 

 

 

 

 

 

T + [[ k ]] = T + [[ k ]](λ) = I n +1 − λk − ˆ λk 

λ − ˆ λk 

v ′ 
k ̂

 v ′ 
k 

ˆ v ′ 
k 
v ′ 

k 

, 1 ≤ k ≤ N, 

T −[[ k ]] = T −[[ k ]](λ) = I n +1 + 

λk − ˆ λk 

λ − λk 

v ′ 
k ̂

 v ′ 
k 

ˆ v ′ 
k 
v ′ 

k 

, 1 ≤ k ≤ N, 

(3.26) 

ith new pairs of eigenfunctions and adjoint eigenfunctions: 

 

′ 
k = T + { k − 1 } (λk ) v k , ˆ v ′ k = 

ˆ v k T −{ k − 1 } ( ̂ λk ) , 1 ≤ k ≤ N, (3.27)

here 
 

T + { 0 } = T −{ 0 } = I n +1 , 

T + { k } = T + [[ k ]] · · · T + [[2]] T + [[1]] , 1 ≤ k ≤ N, 

T −{ k } = T −[[1]] T −[[2]] · · · T −[[ k ]] , 1 ≤ k ≤ N. 

(3.28) 

ow we can have the following N-fold decompositions for the two 

arboux matrices T + and T −. 

heorem 3.3. Let { λk | 1 ≤ k ≤ N} ∩ { ̂ λk | 1 ≤ k ≤ N} = ∅ . Assume that

he two Darboux matrices T + and T − are defined by (3.8) . Then we

ave the N-fold decomposition: 

 

+ = T + [[ N]] T + [[ N − 1]] · · · T + [[1]] , 

 

− = T −[[1]] · · · T −[[ N − 1]] T −[[ N]] , (3.29) 

+ −
here T [[ k ]] and T [[ k ]] , 1 ≤ k ≤ N, are determined by (3.26) . v

4 
.3. Binary DT for the reduced equations 

Let us check how to satisfy the reduction property (2.11) for the 

ew spectral matrix U 

′ defined by (1.8) with (3.8) . First, the crucial 

tep is to take the adjoint eigenvalues: 

ˆ 
k = λ∗

k , 1 ≤ k ≤ N. (3.30) 

hen, we can find that it will be sufficient for T + 
1 

to satisfy an in-

olution property: 

T + 1 (x, t)) † = −CT + 1 (x, t) C −1 , (3.31) 

here C is defined as in (2.11) . To satisfy this condition, we only 

eed to take the adjoint eigenfunctions: 

ˆ 
 k (x, t, ̂  λk ) = v † 

k 
(x, t, λk ) C, 1 ≤ k ≤ N, (3.32) 

nder which the three conditions in (3.24) become 

 

† 

k 
Cv l = v † 

k 
C�v l = v † 

k 
C�[ k,l] v l = 0 when λl = 

ˆ λk , (3.33) 

here 1 ≤ k, l ≤ N. 

Now, the general binary DT (3.25) presents a binary DT for the 

educed matrix mKdV Eq. (2.15) . We summarize such a binary DT 

or the reduced case as follows. 

heorem 3.4. Let the adjoint eigenvalues { ̂ λk | 1 ≤ k ≤ N} be taken 

s in (3.30) and the associated adjoint eigenfunctions { ̂ v k | 1 ≤ k ≤ N} 
e determined by (3.32) . Then if the three orthogonal properties for 

 v k | 1 ≤ k ≤ N} in (3.33) hold, the binary Darboux transformation 

3.25) is then reduced to a binary Darboux transformation for the re- 

uced matrix mKdV Eq. (2.15) . 

. Applications to soliton solutions 

.1. Soliton solutions to the general equations 

Let us first consider the general case. We take two arbitrary sets 

f eigenvalues and adjoint eigenvalues: 

 λk ∈ C | 1 ≤ k ≤ N} , { ̂ λk ∈ C | 1 ≤ k ≤ N} . 
eginning with the zero seed solution P = 0 , we can obtain the 

orresponding eigenfunctions and adjoint eigenfunctions 

v k (x, t) = e iλk �x + iλ3 
k 
�t w k , 1 ≤ k ≤ N, (4.1) 

ˆ v k (x, t) = 

ˆ w k e 
−i ̂ λk �x −i ̂ λ3 

k 
�t , 1 ≤ k ≤ N, (4.2) 

here w k and ˆ w k , 1 ≤ k ≤ N, are arbitrary constant column and 

ow vectors, respectively, but need to satisfy the following three 

rthogonal conditions: 

ˆ 
 k w l = 

ˆ w k �w l = ( ̂ λ2 
k + ̂

 λk λl + λ2 
l ) ̂  w k �w l = 0 when λl = 

ˆ λk , 

(4.3) 

here 1 ≤ k, l ≤ N, and � and � are given by (2.4) . 

Now following the binary DT (3.25) , a new potential matrix can 

e computed by 

 

′ = [ T + 1 , �] , T + 1 = −v M 

−1 ˆ v = −
N ∑ 

k,l=1 

v k (M 

−1 ) kl ̂  v l . (4.4)

onsequently, this yields a kind of soliton solutions to the matrix 

KdV equations (2.7) : 

p = α
N ∑ 

k,l=1 

v 1 k (M 

−1 ) kl ̂  v 2 l , q = −α
N ∑ 

k,l=1 

v 2 k (M 

−1 ) kl ̂  v 1 l , (4.5) 

here we split v k = ((v 1 
k 
) T , (v 2 

k 
) T ) T and ˆ v k = ( ̂ v 1 

k 
, ̂  v 2 

k 
) , of which v 1 

k 

nd v 2 
k 

are m - and n -dimensional column vectors, respectively, and 

ˆ 
 

1 
k 

and 

ˆ v 2 
k 

are m - and n -dimensional row vectors, respectively. 
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[  
.2. Soliton solutions to the reduced equations 

Let us second consider the reduced case. The task is to sat- 

sfy the involution condition (3.31) in order to construct soliton 

olutions to the reduced matrix mKdV equations (2.15) . Therefore, 

hat we need to check is whether the new potential matrix P ′ 
enerated via the binary DT satisfies the reduction property (2.12) . 

f this is true, the soliton solutions in (4.5) to the matrix mKdV 

quations (2.7) are then reduced to the soliton solutions: 

p = α
N ∑ 

k,l=1 

v 1 k (M 

−1 ) kl ̂  v 2 l , (4.6) 

or the reduced matrix mKdV equations (2.15) , where v k = 

(v 1 
k 
) T , (v 2 

k 
) T ) T and ˆ v k = ( ̂ v 1 

k 
, ̂  v 2 

k 
) , 1 ≤ k ≤ N, as before. 

To satisfy the involution property (3.31) , let us take N eigenval- 

es λk ∈ C , 1 ≤ k ≤ N, and define N adjoint eigenvalues { ̂ λk | 1 ≤
 ≤ N} via (3.30) . Then, taking the zero seed solution P = 0 , we

an obtain the corresponding eigenfunctions v k , 1 ≤ k ≤ N: 

 k (x, t) = v k (x, t, λk ) = e iλk �x + iλ3 
k 
�t w k , 1 ≤ k ≤ N, (4.7)

here w k , 1 ≤ k ≤ N, are arbitrary column vectors. Further, accord- 

ng to our previous analysis on integrable reductions, the corre- 

ponding adjoint eigenfunctions ˆ v k , 1 ≤ k ≤ N, will be 

ˆ 
 k (x, t) = 

ˆ v k (x, t, ̂  λk ) = v † 
k 
(x, t, λk ) C = w 

† 

k 
e −i ̂ λk �x −i ̂ λ3 

k 
�t C, 

1 ≤ k ≤ N. (4.8) 

he three orthogonal properties in (3.33) become the following 

hree new conditions: 

 

† 

k 
Cw l = w 

† 

k 
C�w l = 

(
ˆ λ2 

k + ̂

 λk λl + λ2 
l 

)
w 

† 

k 
C�w l = 0 

when λl = 

ˆ λk , (4.9) 

here 1 ≤ k, l ≤ N, on the constant vectors { w k | 1 ≤ k ≤ N} . We

oint out that the situation of λk = ̂

 λk occurs only when taking 

k ∈ R . Because of α1 � = α2 and β1 � = β2 , we directly see that the

bove three conditions exactly require that 

w 

1 
k 

)† 
�1 w 

1 
l = 0 , 

(
w 

2 
k 

)† 
�2 w 

2 
l = 0 , when λl = 

ˆ λk , (4.10) 

here 1 ≤ k, l ≤ N, and we split w k = 

((
w 

1 
k 

)T 
, 
(
w 

2 
k 

)T 
)T 

as we did 

or v k before. 

Finally, the formula (4.6) , together with (3.7), (4.7) and (4.8) , 

resents soliton solutions to the reduced matrix mKdV equations 

2.15) . 

. Concluding remarks 

The aim of the paper is to construct a binary Darboux trans- 

ormation (DT) for a class of matrix mKdV equations and their re- 

uced matrix integrable counterparts, associated with matrix spec- 

ral problems of arbitrary order. The crucial step is to apply two 

airs of eigenfunctions and adjoint eigenfunctions, corresponding 

o two arbitrary sets of eigenvalues and adjoint eigenvalues. The 

esulting binary DTs have been used to derive soliton solutions 

o the matrix mKdV equations and their reduced integrable equa- 

ions. 

In our formulation of binary DTs, we introduce a generalized M- 

atrix innovatively, where eigenvalues could be equal to adjoint 

igenvalues. The motivation for doing that is derived from recent 

tudies on Riemann-Hilbert problems for nonlocal integrable equa- 
5 
ions (see, for example, [18] ). The resulting general formulation of 

inary DTs can be applied to both local and nonlocal integrable 

quations (see, for example, [18–22] for nonlocal theories). Tak- 

ng repeated eigenvalues or repeated adjoint eigenvalues engen- 

ers Darboux matrices with higher-order poles, and taking deriva- 

ives with respect to eigenvalues or adjoint eigenvalues leads to 

eneralized Darboux transformations. 

There are many other interesting problems in the theory of DTs, 

hich include applications of DTs to other kinds of exact solu- 

ions, particularly lump solutions; systematical theories of binary 

Ts for integrable equations associated with non-semisimple Lie 

lgebras; and connections with N-soliton solutions by the Hirota 

ilinear method and other approaches. 
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