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Abstract

A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg–de Vries (KdV)

equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea

is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general positons

and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are

explicitly presented as examples of Wronskian solutions.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The Korteweg–de Vries (KdV) equation is one of the most important models exhibiting the soliton phenomenon [1].

Its multi-soliton solutions [2] can be expressed by using a Wronskian determinant [3,4]. Matveev found that there also

exists another class of explicit solutions, called positons, to the KdV equation, which can be presented by a generalized

Wronskian determinant [5]; and afterwards, negatons were also constructed through taking advantage of the gener-

alized Wronskian determinant [6].

Solutions determined by the technique of Wronskian determinant and the technique of generalized Wronskian

determinant are called Wronskian solutions and generalized Wronskian solutions, respectively. Solitons are examples of

Wronskian solutions, and positons and negatons are examples of generalized Wronskian solutions. A natural question

to ask is whether there is any interrelation between Wronskian solutions and generalized Wronskian solutions. What

kind of relation one can have if it exists?

In this paper, we would like to build a bridge between Wronskian solutions and generalized Wronskian solutions.

This gives us a way to obtain generalized Wronskian solutions through Wronskian solutions to the KdV equation. The

basic idea is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general

positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV

equation are explicitly presented as examples of Wronskian solutions.
2. Bridge between Wronskians and generalized Wronskians

Let us specify the KdV equation as follows
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where (also in the rest of the paper) gy1 ���yi is the conventional notation denoting the ith order partial derivative

oig=oy1 � � � oyi. Hirota introduced the transformation [2]:
u ¼ �2o2x ln f ¼ � 2ðffxx � f 2x Þ
f 2

; ð2:2Þ
between the KdV equation (2.1) and the following bilinear equation
ðDxDt þ D4
xÞf � f ¼ fxtf � ftfx þ fxxxxf � 4fxxxfx þ 3f 2xx ¼ 0; ð2:3Þ
where Dx and Dt, called the Hirota operators, are defined by
f ðxþ k; t þ hÞgðx� k; t � hÞ ¼
X1
i;j¼0

1

i!j!
ðDi

xD
j
t f � gÞkihj: ð2:4Þ
Solutions to the above bilinear KdV equation (2.3) can be given by the Wronskian determinant [3,4]:
W ð/1;/2; . . . ;/N Þ ¼

�����������

/ð0Þ
1 /ð1Þ

1 � � � /ðN�1Þ
1

/ð0Þ
2 /ð1Þ

2 � � � /ðN�1Þ
2

..

. ..
. . .

. ..
.

/ð0Þ
N /ð1Þ

N � � � /ðN�1Þ
N

�����������
; N P 1; ð2:5Þ
where
/ð0Þ
i ¼ /i; /ðjÞ

i ¼ oj

oxj
/i; jP 1; 16 i6N : ð2:6Þ
Sirianunpiboon et al. [7] furnished the following conditions
�/i;xx ¼
Xi

j¼1
kij/j; /i;t ¼ �4/i;xxx; 16 i6N ; ð2:7Þ
where kij are arbitrary real constants, to make the Wronskian determinant a solution to the bilinear KdV equation (2.3),

and showed that rational function solutions and their interaction solutions with multi-soliton ones to the KdV equation

can be obtained this way.

Matveev found [5] that there exists so-called generalized Wronskian solutions to the bilinear KdV equation (2.3),

which read as
W ð/; ok/; . . . ; onk/Þ; oik ¼
oi

oki
; 16 i6 n; ð2:8Þ
where the function / satisfies
�/xx ¼ k2/; /t ¼ �4/xxx; k 2 R:
The resulting solutions to the KdV equation (2.1) are called positons, since the corresponding eigenfunctions are as-

sociated with positive eigenvalues of the Schr€oodinger spectral problem.
Generally, the generalized Wronskian determinant (2.8) gives rise to a solution to the bilinear KdV equation (2.3),

provided that the function / satisfies
�/xx ¼ aðkÞ/; /t ¼ �4/xxx; ð2:9Þ
with a being an arbitrary function of k 2 R. Observe that if we have (2.9), then the function / also satisfies
�ðomk /Þxx ¼
Xm
i¼0

m
i

� �
ðoikaÞðom�i

k /Þ; ðomk /Þt ¼ �4ðomk /Þxxx; mP 0: ð2:10Þ
Upon setting
wiþ1 ¼
1

i!
oi/
oki

; aiþ1 ¼
1

i!
oia
oki

; iP 0; ð2:11Þ
it follows that the functions wi, 16 i6 nþ 1, satisfy a lower triangular system of second-order differential equations:
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�w1;xx ¼ a1w1;
�w2;xx ¼ a2w1 þ a1w2;
� � �
�wnþ1;xx ¼ anþ1w1 þ anw2 þ � � � þ a1wnþ1:

8>><
>>: ð2:12Þ
This is to say,
�Wxx ¼ KW; K ¼

a1 0
a2 a1
..
. . .

. . .
.

anþ1 � � � a2 a1

2
6664

3
7775; W ¼

w1

w2

..

.

wnþ1

2
6664

3
7775; ð2:13Þ
which is a special case of the conditions (2.7). Obviously, under the transformation (2.11), the above system of dif-

ferential equations, together with
wi;t ¼ �4wi;xxx; 16 i6 nþ 1;
is equivalent to the conditions (2.9). Therefore, summing up, there exists a bridge going from the Wronskian to the

generalized Wronskian:
W ðw1;w2; . . . ;wnþ1Þ ¼
Yn
i¼1

1

i!

 !
W ð/; ok/; . . . ; onk/Þ: ð2:14Þ
The constant factor in (2.14) does not affect the final solution determined by (2.2), i.e., we have
u ¼ �2o2x lnW ðw1;w2; . . . ;wnþ1Þ ¼ �2o2x lnW ð/; ok/; . . . ; onk/Þ: ð2:15Þ
This implies that
u ¼ �2o2x lnW ð/; ok/; . . . ; onk/Þ ð2:16Þ
gives a solution to the KdV equation (2.1) if (2.9) holds, and that all such generalized Wronskian solutions to the KdV

equation can be obtained through the Wronskian formulation. However, (2.12) can have other solutions besides

ð/; ok/; . . . ; onk/Þ with / solving (2.9), and thus not all Wronskian solutions are of generalized Wronskian type.
3. Positons, negatons and their interaction solutions

Two particular classes of generalized Wronskian solutions to the KdV equation are positons and negatons. It is

known that positons of order n are represented by using the generalized Wronskian determinant [5]:
f ¼ W ð/; ok/; . . . ; onk/Þ; / ¼ cosðkxþ 4k3t þ cðkÞÞ; ð3:1Þ
or
f ¼ W ð/; ok/; . . . ; onk/Þ; / ¼ sinðkxþ 4k3t þ cðkÞÞ; ð3:2Þ
where c is an arbitrary function of k; and that negatons of order n, by using the generalized Wronskian determinant [6]:
f ¼ W ð/; ok/; . . . ; onk/Þ; / ¼ coshðkx� 4k3t þ cðkÞÞ; ð3:3Þ
or
f ¼ W ð/; ok/; . . . ; onk/Þ; / ¼ sinhðkx� 4k3t þ cðkÞÞ; ð3:4Þ
where c is an arbitrary function of k as well. Note that two kinds of positons are equivalent to each other, due to the
existence of an arbitrary function cðkÞ. But two kinds of negatons are functionally independent.

In the case of positons, we have
aðkÞ ¼ k2; k 2 R ð3:5Þ
in the conditions (2.9), which implies that the Schr€oodinger operator �o2=ox2 þ u with zero potential has a positive
eigenvalue. Further, we have
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a1 ¼ k2; a2 ¼ 2k; a3 ¼ 1; ai ¼ 0; iP 4; ð3:6Þ
and the corresponding coefficient matrix becomes
K ¼

k2 0
2k k2

1 2k k2

. .
. . .

. . .
.

0 1 2k k2

2
66664

3
77775: ð3:7Þ
In the case of negatons, we have
aðkÞ ¼ �k2; k 2 R ð3:8Þ
in the conditions (2.9), which implies that the Schr€oodinger operator �o2=ox2 þ u with zero potential has a negative
eigenvalue. Thus, we have
a1 ¼ �k2; a2 ¼ �2k; a3 ¼ �1; ai ¼ 0; iP 4; ð3:9Þ
and the corresponding coefficient matrix reads as
K ¼

�k2 0

�2k �k2

�1 �2k �k2

. .
. . .

. . .
.

0 �1 �2k �k2

2
66664

3
77775: ð3:10Þ
Therefore, all positons and negatons can be presented through the Wronskian formulation.

The manipulation in the previous section also allows us to generate interaction solutions among positons and

negatons. Let us choose the functions /i, 16 i6m, among the functions
cosðkixþ 4k3i t þ ciðkiÞÞ; sinðkixþ 4k3i t þ ciðkiÞÞ; ð3:11Þ
and the functions
coshðkix� 4k3i t þ ciðkiÞÞ; sinhðkix� 4k3i t þ ciðkiÞÞ; ð3:12Þ
where the ki�s are arbitrary constants and the ci�s are arbitrary functions. Then we have a new class of exact solutions to
the KdV equation (2.1):
um ¼ �2o2x ln f ¼ � 2ðffxx � f 2x Þ
f 2

; ð3:13Þ
where the function f is given by
f ¼ W ð/1; ok/1; . . . ; o
n1
k /1; . . . ;/m; ok/m; . . . ; o

nm
k /mÞ ð3:14Þ
with arbitrary non-negative integers n1; n2; . . . ; nm. This is an abroad class of interaction solutions among positons and
negatons to the KdV equation (2.1).

In particular, let us fix
/1 ¼ sinðkxþ 4k3t þ cÞ; /2 ¼ sinhðkx� 4k3t þ cÞ; ð3:15Þ
where k and c are two arbitrary constants. Then the Wronskian determinant f ¼ W ð/1;/2Þ becomes

f ¼ W ð/1;/2Þ ¼ kðsin nþ cosh n� � sinh n� cos nþÞ; ð3:16Þ
and the corresponding interaction solution between a simple positon and a simple negaton reads as
u ¼ �2o2x ln f ¼ �2o2x lnW ð/1;/2Þ ¼
4k2ðsinh2 n� � sin2 nþÞ

ðsin nþ cosh n� � sinh n� cos nþÞ2
; ð3:17Þ
where
nþ ¼ kxþ 4k3t þ c; n� ¼ kx� 4k3t þ c: ð3:18Þ



Fig. 1. Interaction solution: k ¼ 1, c ¼ 1 (left) and k ¼ 2, c ¼ �2 (right).
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The graphs of the solution in two cases are depicted with grid¼ [60; 60] in Fig. 1, which show the distribution of some

singularities.
4. General positons and negatons

In this section, we are going to present two classes of general positons and negatons to the KdV equation (2.1),

which provide us with new exact solutions to the KdV equation (2.1).

Let us first start from
�/þ;xx ¼ k2/þ; /þ;t ¼ �4/þ;xxx; k 2 R: ð4:1Þ
A general solution to the system (4.1) is given by
/þðkÞ ¼ cðkÞ cosðkxþ 4k3tÞ þ dðkÞ sinðkxþ 4k3tÞ; ð4:2Þ
where c and d are two arbitrary functions of k. Then based on our construction in Section 2, we obtain a class of exact
solutions to the KdV equation (2.1):
u ¼ �2o2x lnW ð/þðkÞ; ok/þðkÞ; . . . ; onk/þðkÞÞ; ð4:3Þ
where /þðkÞ is given by (4.2). Such solutions correspond to the positive eigenvalue of the Schr€oodinger spectral problem,
and simple positons determined by (3.1) and (3.2) are just their two examples in the cases of
c ¼ cosðcðkÞÞ; d ¼ � sinðcðkÞÞ and c ¼ sinðcðkÞÞ; d ¼ cosðcðkÞÞ:
If we choose c and d to be constants, then the Wronskian determinant involving the first-order derivative ok/þ becomes
W ð/þðkÞ; ok/þðkÞÞ ¼ � 1
2
ðc2 � d2Þ sinð2nþÞ þ cd cosð2nþÞ � ðc2 þ d2Þkx� 12ðc2 þ d2Þk3t; ð4:4Þ
and the corresponding general positon of order 1 reads as
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u ¼ �2o2x lnW ð/þðkÞ; ok/þðkÞÞ

¼ 4k2ðc2 þ d2Þ½ðc2 � d2Þxk þ 12ðc2 � d2Þk3t þ 2cd
 sinð2nþÞ

� ð1=2Þðc2 � d2Þ sinð2nþÞ þ cd cosð2nþÞ � ðc2 þ d2Þkx� 12ðc2 þ d2Þk3t
h i2
� 4k2ðc2 þ d2Þ½ð2cdkxþ 24cdk3t � c2 þ d2Þ cosð2nþÞ � ðc2 þ d2Þ


� ð1=2Þðc2 � d2Þ sinð2nþÞ þ cd cosð2nþÞ � ðc2 þ d2Þkx� 12ðc2 þ d2Þk3t
h i2 ; ð4:5Þ
where c, d and k are arbitrary constants and nþ is given by
nþ ¼ kxþ 4k3t: ð4:6Þ

The graphs of the solution in two cases are depicted with grid¼ [60; 60] in Fig. 2, which exhibit some singularities of the
solution.

Let us second start from
�/�;xx ¼ �k2/�; /�;t ¼ �4/�;xxx; k 2 R: ð4:7Þ
A general solution to the system (4.7) is given by
/�ðkÞ ¼ cðkÞ expðkx� 4k3tÞ þ dðkÞ expð�kxþ 4k3tÞ; ð4:8Þ
where c and d are two arbitrary functions of k. Then similarly, based on our construction in Section 2, we obtain
another class of exact solutions to the KdV equation (2.1):
u ¼ �2o2x lnW ð/�ðkÞ; ok/�ðkÞ; . . . ; onk/�ðkÞÞ; ð4:9Þ
where /�ðkÞ is given by (4.8). Such solutions correspond to the negative eigenvalue of the Schr€oodinger spectral problem,
and simple negatons determined by (3.3) and (3.4) are just their two special examples in the cases of
c ¼ 1

2
ecðkÞ; d ¼ 1

2
e�cðkÞ and c ¼ 1

2
ecðkÞ; d ¼ � 1

2
e�cðkÞ:
If we choose c and d to be constants, then the Wronskian determinant involving the first-order derivative ok/� becomes
W ð/�ðkÞ; ok/�ðkÞÞ ¼ c2e2n� � d2e�2n� þ 4cdkðx� 12k2tÞ; ð4:10Þ
Fig. 2. General positon: k ¼ 1, c ¼ �d ¼ 1 (left) and k ¼ 3, c ¼ d ¼ 1 (right).



Fig. 3. General negaton: k ¼ 1, 2c ¼ d ¼ 2 (left) and k ¼ 2, c ¼ �d ¼ 1 (right).
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and the corresponding general negaton of order 1 reads as
u ¼ �2o2x lnW ð/�ðkÞ; ok/�ðkÞÞ ¼
�32cdk2

�
c2ðkx� 12k3t � 1Þe2n� � d2ðkx� 12k3t þ 1Þe�2n� � 2cd

�
�
c2e2n� � d2e�2n� þ 4cdkðx� 12k2tÞ

�2 ; ð4:11Þ
where c, d and k are arbitrary constants and n� is given by
n� ¼ kx� 4k3t: ð4:12Þ
The graphs of the solution in two cases are depicted with grid¼ [60; 60] in Fig. 3, which show the distribution of some

singularities of the solution.
5. Conclusion and remarks

On one hand, a bridge between Wronskian solutions and generalized Wronskian solutions to the KdV equation was

built. It gives us a way to obtain generalized Wronskian solutions simply from Wronskian determinants. The basic idea

was used to generate positons, negatons and their interaction solutions to the KdV equation through the Wronskian

formulation. A specific interaction solution between two simple positon and negaton to the KdV equation (2.1) was

given by (3.17). On the other hand, general positons and negatons were also presented through the Wronskian for-

mulation. They provide new examples of Wronskian solutions. Two new specific solutions of general positons and

negatons to the KdV equation (2.1) were given by (4.5) and (4.11).

There are also interaction solutions between positons and solitons [8]. Such solutions can also be constructed

through the Wronskian determinant
f ¼ W ð/; ok/; . . . ; onk ;/1; . . . ;/N Þ; ð5:1Þ
where the function / is chosen from the functions in (3.11) and the functions /i are chosen as
/i ¼ coshðkix� 4k3i t þ ciÞ; ci ¼ constant; if i odd;

/i ¼ sinhðkix� 4k3i t þ ciÞ; ci ¼ constant; if i even:
Moreover, if we choose the function / from the functions in (3.12), then the Wronskian determinant given by (5.1)

generates interaction solutions between negatons and solitons to the KdV equation (2.1). Combining the constructions
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in (3.14) and (5.1) will give rise to more general interaction solutions among positons, negatons and solitons. We believe

that such an idea of constructing interaction solutions should work for other soliton equations, especially for the

perturbation KdV equations [9].

Finally, we point out that there is also another class of explicit exact solutions to the KdV equation (2.1), called

complexitons [10]. One-complexiton is given by
u ¼
�4b2 1þ cosð2dðx� �bbtÞ þ jÞ coshð2Dðxþ �aatÞ þ cÞ

h i
D sinð2dðx� �bbtÞ þ jÞ þ d sinhð2Dðxþ �aatÞ þ cÞ
h i2

þ 4ab sinð2dðx� �bbtÞ þ jÞ sinhð2Dðxþ �aatÞ þ cÞ

D sinð2dðx� �bbtÞ þ jÞ þ d sinhð2Dðxþ �aatÞ þ cÞ
h i2 ; ð5:2Þ
where a; b > 0, j and c are arbitrary real constants, and D, d, �aa and �bb are given by
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� a

2

vuut
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
þ a

2

vuut
;

�aa ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
þ 8a; �bb ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� 8a:
It requires a generalization of the conditions (2.7) to construct interaction solutions among rational solutions, solitons,

positons, negatons and complexitons, which will be discussed elsewhere. Positons, most of negatons (except solitons)

and complexitons exhibit different singularities. A general theory on singularity of the KdV equation needs to be ex-

plored.
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