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Abstract

A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries (KdV)
equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea
is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general positons
and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are
explicitly presented as examples of Wronskian solutions.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The Korteweg—de Vries (KdV) equation is one of the most important models exhibiting the soliton phenomenon [1].
Its multi-soliton solutions [2] can be expressed by using a Wronskian determinant [3,4]. Matveev found that there also
exists another class of explicit solutions, called positons, to the KdV equation, which can be presented by a generalized
Wronskian determinant [5]; and afterwards, negatons were also constructed through taking advantage of the gener-
alized Wronskian determinant [6].

Solutions determined by the technique of Wronskian determinant and the technique of generalized Wronskian
determinant are called Wronskian solutions and generalized Wronskian solutions, respectively. Solitons are examples of
Wronskian solutions, and positons and negatons are examples of generalized Wronskian solutions. A natural question
to ask is whether there is any interrelation between Wronskian solutions and generalized Wronskian solutions. What
kind of relation one can have if it exists?

In this paper, we would like to build a bridge between Wronskian solutions and generalized Wronskian solutions.
This gives us a way to obtain generalized Wronskian solutions through Wronskian solutions to the KdV equation. The
basic idea is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general
positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV
equation are explicitly presented as examples of Wronskian solutions.

2. Bridge between Wronskians and generalized Wronskians

Let us specify the KdV equation as follows
u; — buu, + ., = 0, (2.1)
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where (also in the rest of the paper) g,,..,, is the conventional notation denoting the ith order partial derivative
O'g/dy; - - - 0y,. Hirota introduced the transformation [2]:

2 xx 2
u:—26§lnf:_%7 (2.2)
between the KdV equation (2.1) and the following bilinear equation
(DDs+ DS - f = fuf = fifi + freof = S + 3125 =0, (2:3)
where D, and D,, called the Hirota operators, are defined by
.1 o o
fx+kt+h)glx—Fkt—h) = Z T3 (D.DIf - g)k'W . (2.4)
by Y L

Solutions to the above bilinear KdV equation (2.3) can be given by the Wronskian determinant [3,4]:

AR R
0 1 N—1
W (b, o ) = ?) "’? (p;- | v (2:5)
4O 40 g
where
W =6 9 =g jE1 1<i<N. (26)

Sirianunpiboon et al. [7] furnished the following conditions
i =D iy b= 4, 1IN, (27)
=

where /;; are arbitrary real constants, to make the Wronskian determinant a solution to the bilinear KdV equation (2.3),
and showed that rational function solutions and their interaction solutions with multi-soliton ones to the KdV equation
can be obtained this way.
Matveev found [5] that there exists so-called generalized Wronskian solutions to the bilinear KdV equation (2.3),
which read as
W60, 0)., T = 1<i<n (28)

where the function ¢ satisfies
_¢,\'x = kzd)? (:bl = _4¢xxx7 k 6 [R

The resulting solutions to the KdV equation (2.1) are called positons, since the corresponding eigenfunctions are as-
sociated with positive eigenvalues of the Schrodinger spectral problem.

Generally, the generalized Wronskian determinant (2.8) gives rise to a solution to the bilinear KdV equation (2.3),
provided that the function ¢ satisfies

_¢xx = 1(k)¢7 ¢z = _4¢xxx7 (29)
with a being an arbitrary function of £ € R. Observe that if we have (2.9), then the function ¢ also satisfies
m - m i m—i mn m
@0 =Y (1) @A), @), = QD) >0, (2.10)
=0

Upon setting

10¢ 1 o

l//i+125@: %l = A iz0, (2.11)

it follows that the functions v, 1 <i<n + 1, satisfy a lower triangular system of second-order differential equations:
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_lpl,xx = all//h
ﬂ//Z = o + oy, (2.12)

7¢n+l.xx = G(”l+|l//l + [x"wZ +oeee O(|l//"+1.

This is to say,

o 0 lwbl
0%} oy '102

_'lex:/lq/a A= . . . , VY= . y (213)
A 5 I 1/

which is a special case of the conditions (2.7). Obviously, under the transformation (2.11), the above system of dif-
ferential equations, together with

lpi-f = _4l//i.xxx7 1 <is<n+ 1,

is equivalent to the conditions (2.9). Therefore, summing up, there exists a bridge going from the Wronskian to the
generalized Wronskian:

1
W i) = (H i—,) W2, 019). (2.14)
=1
The constant factor in (2.14) does not affect the final solution determined by (2.2), i.e., we have
u= _26)25 In W(%"//z: IR lpﬂ+1) = _263 In W(¢7 6k¢7 s 76Z¢) (215)
This implies that
u=-28InW(¢,op,...,¢) (2.16)

gives a solution to the KdV equation (2.1) if (2.9) holds, and that all such generalized Wronskian solutions to the KdV
equation can be obtained through the Wronskian formulation. However, (2.12) can have other solutions besides
(¢, 0k, ..., 00¢p) with ¢ solving (2.9), and thus not all Wronskian solutions are of generalized Wronskian type.

3. Positons, negatons and their interaction solutions

Two particular classes of generalized Wronskian solutions to the KdV equation are positons and negatons. It is
known that positons of order n are represented by using the generalized Wronskian determinant [5]:

F=W(h,%d,...,0lp), ¢ =cos(kx+ 4kt + y(k)), (3.1)
or

F=W(h,%d,...,0ip), ¢ =sin(kx+ 4kt +y(k)), (3.2)
where y is an arbitrary function of &; and that negatons of order n, by using the generalized Wronskian determinant [6]:

f=W(h,0p,....00¢), ¢ =cosh(kx — 4kt + y(k)), (3.3)
or

=W, %p,...,0¢), ¢ =sinh(kx — 4kt + y(k)), (3.4)

where y is an arbitrary function of &k as well. Note that two kinds of positons are equivalent to each other, due to the
existence of an arbitrary function y(k). But two kinds of negatons are functionally independent.
In the case of positons, we have

wk) =k, keR (3.5)

in the conditions (2.9), which implies that the Schrodinger operator —9%/0x? + u with zero potential has a positive
eigenvalue. Further, we have
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o=k, =2k o3=1 o=0i>4, (3.6)
and the corresponding coefficient matrix becomes
k? 0
2k K
A=|1 2k K . (3.7)
0 1 2 K

In the case of negatons, we have
ak) = —k>, keR (3.8)

in the conditions (2.9), which implies that the Schrodinger operator —d?/dx? 4+ u with zero potential has a negative
eigenvalue. Thus, we have

o =—k* op=-2k o3=-1, o=0, i>4, (3.9)
and the corresponding coefficient matrix reads as
—k? 0
2k -k
A=| -1 =2k -k . (3.10)
0 -1 =2k -k

Therefore, all positons and negatons can be presented through the Wronskian formulation.
The manipulation in the previous section also allows us to generate interaction solutions among positons and
negatons. Let us choose the functions ¢;, 1 <i<m, among the functions

cos(kx + 4kt +v,(k)),  sin(kx + 4kt +y,(k)), (3.11)
and the functions
cosh(kx — 4kt + y,(k;)),  sinh(kx — 4kt + 7;(k)), (3.12)

where the &;’s are arbitrary constants and the y,’s are arbitrary functions. Then we have a new class of exact solutions to
the KdV equation (2.1):

2(,ffxx B fxz)
um:—26flnf:—T’, (3.13)
where the function f is given by
f = W(¢l7 ak¢17 ce >a/:ll¢1; cees ¢m7ak¢m7 ce 7azm¢m) (314)
with arbitrary non-negative integers ny, ns, ..., n,. This is an abroad class of interaction solutions among positons and

negatons to the KdV equation (2.1).
In particular, let us fix

¢, = sin(kx + 4kt +7), ¢, = sinh(kx — 4Kt + ), (3.15)
where k and y are two arbitrary constants. Then the Wronskian determinant = W (¢,, ¢,) becomes

f=W(¢,,d,) =k(sin&, coshé_ —sinh &_cos &), (3.16)
and the corresponding interaction solution between a simple positon and a simple negaton reads as
4k2(sinh® £_ — sin® &,)

u=-20Inf=-20mW(d, ¢, = ,
(Inf * (91, 62) (sin &, cosh ¢ —sinh&_cos &, )’

(3.17)

where

& =k 445t +y, & =hke— 4Pt +y. (3.18)
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Fig. 1. Interaction solution: k = 1, y = 1 (left) and k£ = 2, y = —2 (right).

The graphs of the solution in two cases are depicted with grid =[60, 60] in Fig. 1, which show the distribution of some
singularities.

4. General positons and negatons

In this section, we are going to present two classes of general positons and negatons to the KdV equation (2.1),
which provide us with new exact solutions to the KdV equation (2.1).
Let us first start from

7¢+,xx = k2¢+a ¢+,t = 74¢+,xxxv keR. (41)
A general solution to the system (4.1) is given by
¢ (k) = c(k) cos(kx + 4k>1) + d (k) sin(kx + 4k°t), (4.2)

where ¢ and d are two arbitrary functions of k. Then based on our construction in Section 2, we obtain a class of exact
solutions to the KdV equation (2.1):

u= _26)2[ In W(¢+(k)’ak¢'+(k)v"' 7az¢+(k))7 (43)

where ¢, (k) is given by (4.2). Such solutions correspond to the positive eigenvalue of the Schrodinger spectral problem,
and simple positons determined by (3.1) and (3.2) are just their two examples in the cases of

c=cos(y(k)), d=—sin(y(k)) and c=sin(y(k)), d = cos(y(k)).
If we choose ¢ and d to be constants, then the Wronskian determinant involving the first-order derivative ;¢ becomes

W(g, (k),0, (k) = — % (* —d*)sin(2€,) + cd cos(2&.) — (4 d*)kx — 12(¢* + d*)kt, (4.4)

and the corresponding general positon of order 1 reads as
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w = —202 I W (g, (), 5. (k)
4k (c* + d?)[(? — d*)xk + 12(c* — d®)kt + 2¢d] sin(2E,)
= P
[ —(1/2)(c? — d?) sin(2€,) + cd cos(2E.) — (¢ + d?Yhx — 12(c? + d2)k3t]
4R2( + &) | (2edix + 24cdi3t — A + d?) cos(2€,) — (¢ + d?)]

_ -, (4.5)
[ — (1/2)(c? — d2) sin(2&,) + cd cos(2&, ) — (c2 + d2)kx — 12(c? + dZ)k%]

where ¢, d and k are arbitrary constants and &, is given by
&= he+ 4kt (4.6)
The graphs of the solution in two cases are depicted with grid =[60, 60] in Fig. 2, which exhibit some singularities of the

solution.
Let us second start from

=K, b, =—4d_... keR (4.7)
A general solution to the system (4.7) is given by
¢_(k) = c(k) exp(kx — 4k>t) + d (k) exp(—kx + 4k°t), (4.8)

where ¢ and d are two arbitrary functions of k. Then similarly, based on our construction in Section 2, we obtain
another class of exact solutions to the KdV equation (2.1):

u= 28 W($_(K),%p_(K), ..., 8 (K)), (4.9)

where ¢_ (k) is given by (4.8). Such solutions correspond to the negative eigenvalue of the Schrodinger spectral problem,
and simple negatons determined by (3.3) and (3.4) are just their two special examples in the cases of

c= %e“"("), d= %e”’(k) and c¢= %e”’(k), d= f%e’y(k).

If we choose ¢ and d to be constants, then the Wronskian determinant involving the first-order derivative 0,¢_ becomes

W(p_(k),0cp_(k)) = *e*- — d*e™*- + dedk(x — 12k%1), (4.10)
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Fig. 2. General positon: k =1, ¢ = —d =1 (left) and k =3, ¢ =d = 1 (right).
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Fig. 3. General negaton: k = 1, 2c =d = 2 (left) and k =2, ¢ = —d = 1 (right).
and the corresponding general negaton of order 1 reads as

—32cdk? {cz(kx — 1263 — 1% — d(kx — 1263t + 1)e % — 2cd]
u= =207 InW(p_(k),%p_(k)) = 2 ) (4.11)
{czezcl — dPe2 + Aedk(x — 12k2r)}

where ¢, d and k are arbitrary constants and &_ is given by
€ =hx — 4kt (4.12)

The graphs of the solution in two cases are depicted with grid =[60, 60] in Fig. 3, which show the distribution of some
singularities of the solution.

5. Conclusion and remarks

On one hand, a bridge between Wronskian solutions and generalized Wronskian solutions to the KdV equation was
built. It gives us a way to obtain generalized Wronskian solutions simply from Wronskian determinants. The basic idea
was used to generate positons, negatons and their interaction solutions to the KdV equation through the Wronskian
formulation. A specific interaction solution between two simple positon and negaton to the KdV equation (2.1) was
given by (3.17). On the other hand, general positons and negatons were also presented through the Wronskian for-
mulation. They provide new examples of Wronskian solutions. Two new specific solutions of general positons and
negatons to the KdV equation (2.1) were given by (4.5) and (4.11).

There are also interaction solutions between positons and solitons [8]. Such solutions can also be constructed
through the Wronskian determinant

J=W(d,0cd,.... 0051, dy), (5.1)
where the function ¢ is chosen from the functions in (3.11) and the functions ¢, are chosen as

¢; = cosh(kyx — 4k’t +7;), 7, = constant, if i odd,

¢; = sinh(kx — 4k’t +7,), 7, = constant, if i even.

Moreover, if we choose the function ¢ from the functions in (3.12), then the Wronskian determinant given by (5.1)
generates interaction solutions between negatons and solitons to the KdV equation (2.1). Combining the constructions
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in (3.14) and (5.1) will give rise to more general interaction solutions among positons, negatons and solitons. We believe
that such an idea of constructing interaction solutions should work for other soliton equations, especially for the
perturbation KdV equations [9].

Finally, we point out that there is also another class of explicit exact solutions to the KdV equation (2.1), called
complexitons [10]. One-complexiton is given by

—42[1+ cos(25(x — Br) + ) cosh(24(x + ar) + )]

u=

[A sin(28(x — ft) + ) + 5 sinh(24(x + &) + y)] ’
4aBsin(28(x — Bt) + ) sinh(24(x + ) + )
[A $in(20(x — fr) + ) + S sinh(24(x + ar) + y)] B

(5.2)

where o, f > 0, x and y are arbitrary real constants, and 4, J, & and 8 are given by

ocz—l—ﬁ— o? + ﬁ—l—a

G=4\/2+ [ +80, B=4y/a2+ ﬂ—Su

It requires a generalization of the conditions (2.7) to construct interaction solutions among rational solutions, solitons,
positons, negatons and complexitons, which will be discussed elsewhere. Positons, most of negatons (except solitons)
and complexitons exhibit different singularities. A general theory on singularity of the KdV equation needs to be ex-
plored.
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