

a. It is easily seen

THE ALGEBRAIC STRUCTURE RELATED TO L-A-B TRIAD REPRESENTATIONS OF INTEGRABLE SYSTEMS*

MA WENXIU (马文秀)

(Institute of Mathematics, Fudan University, Shanghai 200433, PRC)

Received September 5, 1991

Keywords: Integrable system, L-A-B triad representation, quotient algebra.

Evolution equations integrable by the inverse scattering transform are the compatibility condition of two linear eigenvalue problems

$$\begin{cases} L\psi = \lambda\psi, \lambda \text{ spectral parameter,} \\ \psi_t = A\psi. \end{cases}$$

Among these are the well-known KdV equation, AKNS equation in 1+1 dimensions and KP equation, Davey-Stewartson equation in 1+2 dimensions^[1-2]. Manakov^[3] has presented the L-A-B triad representation of the compatibility condition

$$\frac{\partial L}{\partial t} = [A, L] + BL, \quad (1)$$

which is more appropriate for the two-dimensional case. It has been demonstrated that many integrable systems possess this kind of L-A-B triad representations^[3-8]. An illustrative example is the following integrable system^[7]

$$\begin{cases} r_t = \Delta r + \alpha(r^2)_\xi - \beta((\partial_\xi^{-1}r_\eta)^2)_\xi + 2\alpha\partial_\eta^{-1}s_{\xi\xi} - 2\beta s_\eta, \\ s_t = -\Delta s + 2\alpha(rs)_\xi - 2\beta(s\partial_\xi^{-1}r_\eta)_\eta, \end{cases} \quad (2)$$

where $\partial_\eta = \partial_x + \partial_y$, $\partial_\xi = \partial_x - \partial_y$, $\Delta = -\alpha\partial_\xi^2 + \beta\partial_\eta^2$, $f_\xi = \frac{\partial f}{\partial \xi}$, $f_\eta = \frac{\partial f}{\partial \eta}$, α and β are arbitrary constants. Three corresponding operators of its L-A-B triad representation are as follows:

$$\begin{cases} L = \partial_\eta\partial_\xi + r\partial_\eta + s, \\ A = -\alpha\partial_\xi^2 - \beta\partial_\eta^2 - 2\beta(\partial_\xi^{-1}r_\eta)\partial_\eta - 2\alpha\partial_\eta^{-1}s_\xi, \\ B = 2\alpha r_\xi - 2\beta\partial_\xi^{-1}r_\eta = -2\partial_\xi^{-1}\Delta r. \end{cases} \quad (3)$$

When $\alpha=1$ and $\beta=0$, the integrable system (2) is reduced to the two-dimensional dispersive longwave equations^[8]

$$r_t = -r_{\xi\xi} + (r^2)_\xi + 2\partial_\eta^{-1}s_{\xi\xi}, \quad s_t = s_{\xi\xi} + 2(rs)_\xi. \quad (4)$$

In this report, we shall construct the algebraic structure related to general

* Project supported by the National Science Foundation of Postdoctor of China.

$(p+1)$ -dimensional L - A - B triad representations displayed in (1). A similar algebraic structure corresponding to the Lax representations has been discussed in Ref. [9].

Let $x \in \mathbb{R}^p$, $u = u(x, t) \in S^q(\mathbb{R}^p, \mathbb{R})$ ^[9]. By \mathcal{B} we denote all complex (or real) functions $P[u] = P(x, t, u)$ which are C^∞ -differentiable with respect to x , t and C^∞ -Gateaux differentiable with respect to $u = u(x)$ ^[9], and set $\mathcal{B}' = \{(P_1, \dots, P_p)^T | P_i \in \mathcal{B}\}$. By \mathcal{V}' we denote all linear operators $\Phi = \Phi(x, t, u) : \mathcal{B}' \rightarrow \mathcal{B}'$ which are C^∞ -differentiable with respect to x , t and C^∞ -Gateaux differentiable with respect to $u = u(x)$, and by \mathcal{V}'_0 all matrix differential operators $L = L(x, t, u) : \mathcal{B}' \rightarrow \mathcal{B}'$ with the following form^[9]

$$L = (L_{ij})_{p \times p}, L_{ij} = \sum_{|\alpha| \leq \alpha(i,j)} p_\alpha^{ij}[u] D^\alpha, P_\alpha^{ij}[u] \in \mathcal{B}. \quad (5)$$

For $\Phi \in \mathcal{V}'$, we use Φ' to stand for the Gateaux derivative operator of Φ , namely

$$\Phi'[X] = \left. \frac{\partial}{\partial \varepsilon} \Phi(u + \varepsilon X) \right|_{\varepsilon=0}, X \in \mathcal{B}^q. \quad (6)$$

In this report, we always assume that $L = L(x, u) \in \mathcal{V}'_0$ and that $L' : \mathcal{B}^q \rightarrow \mathcal{V}'_0$ is an injective mapping. Evidently, if for $X \in \mathcal{B}^q$ there exists a pair of operators $A, B \in \mathcal{V}'$ such that

$$[A, L] = L'[X] - BL, \quad (7)$$

then the evolution equation $u_t = X$ possesses an L - A - B triad representation (1).

Definition 1. Let $A, B \in \mathcal{V}'$. If there exists $X \in \mathcal{B}^q$ such that (7) holds, then (A, B) is called a Manakov's pair of operators and X called an eigenvector field corresponding to the Manakov's pair (A, B) . Moreover, we denote by \mathcal{M} all Manakov's pairs, by $E(\mathcal{M})$ all eigenvector fields, and by \mathcal{G} all triples (A, B, X) satisfying (7).

It is easy to see that every Manakov's pair has only one eigenvector field. Therefore for the linear space \mathcal{M} , we can construct the following multiplication operation.

Definition 2. Let Manakov's pairs (A, B) , $(\bar{A}, \bar{B}) \in \mathcal{M}$ have eigenvector fields X , $\bar{X} \in E(\mathcal{M})$, respectively. We define the product of (A, B) and (\bar{A}, \bar{B}) as

$$[(A, B), (\bar{A}, \bar{B})] = ([A, \bar{A}], [B, \bar{B}]), \quad (8)$$

where

$$[A, \bar{A}] = A'[\bar{X}] - \bar{A}'[X] + [A, \bar{A}], \quad (9)$$

$$[B, \bar{B}] = B'[\bar{X}] - \bar{B}'[X] + [B, \bar{B}] + [B, \bar{A}] - [\bar{B}, A]. \quad (10)$$

Note that the multiplication operation (8) is obviously a bilinear binary operation.

Theorem 1 Let (A, B, X) , $(\bar{A}, \bar{B}, \bar{X}) \in \mathcal{G}$. Then $([A, \bar{A}], [B, \bar{B}], [X, \bar{X}]) \in \mathcal{G}$, where

$$[X, \bar{X}] = \left. \frac{\partial}{\partial \varepsilon} \right|_{\varepsilon=0} (X(u + \varepsilon \bar{X}) - \bar{X}(u + \varepsilon X)).$$

Thus \mathcal{G} constitutes an algebra under the multiplication operation (8).

Proof. No

and that (see

we can directly

[

which just show linear space \mathcal{M} complete.

Corollary 1

Corollary 1

L-**A**-**B** triad rep
triad representat

In the Cart

$(A, B) \sim ($

$K, L) = \{(A,$
[\cdot , \cdot]),

Theorem 2

[\cdot , \cdot]),

Proof. For

ilar algebraic
9].
real) functions
 C^∞ -Gateaux
By \mathcal{V}' we de-
with respect to
all matrix

ly

(6)

is an injective
that

(7)

en (A, B) is
onding to the
by $E(\mathcal{M}_v)$ all

Therefore for

tor fields X ,

(8)

(9)
(10)
eration.

 $(\bar{A}, \bar{B}) \in \mathcal{R}_v$

Proof. Noticing that

$$\begin{aligned} [[A, \bar{A}], L] &= -[[\bar{A}, L], A] - [[L, A], \bar{A}] \\ &= -[L'[\bar{X}], A] + [L'[X], \bar{A}] + [\bar{B}L, A] - [BL, \bar{A}] \end{aligned}$$

and that (see Ref. [9])

$$(L'[X])Y[\bar{X}] - (L'[\bar{X}])Y[X] = L'[Y], Y = [X, \bar{X}],$$

we can directly calculate

$$\begin{aligned} [[A, \bar{A}], L] &= [A'[\bar{X}] - \bar{A}'[X] + [A, \bar{A}], L] \\ &= [A, L]'[\bar{X}] - [\bar{A}, L]'[X] + [\bar{B}L, A] - [BL, \bar{A}] \\ &= (L'[X])Y[\bar{X}] - (BL)Y[\bar{X}] - (L'[\bar{X}])Y[X] + (\bar{B}L)Y[X] \\ &\quad + [\bar{B}L, A] - [BL, \bar{A}] \\ &= L'[[X, \bar{X}]] - B'[\bar{X}]L - BL'[\bar{X}] + \bar{B}'[X]L + \bar{B}L'[X] \\ &\quad + [\bar{B}L, A] - [BL, \bar{A}] \\ &= L'[[X, \bar{X}]] - B'[\bar{X}]L + \bar{B}'[X]L - B([\bar{A}, L] + \bar{B}L) \\ &\quad + \bar{B}([A, L] + BL) + [\bar{B}L, A] - [BL, \bar{A}] \\ &= L'[[X, \bar{X}]] + (-B'[\bar{X}] + \bar{B}'[X] - [B, \bar{B}])L \\ &\quad - B[\bar{A}, L] + \bar{B}[A, L] + [\bar{B}L, A] - [BL, \bar{A}] \\ &= L'[[X, \bar{X}]] + (-B'[\bar{X}] + \bar{B}'[X] - [B, \bar{B}])L \\ &\quad + [\bar{A}, B]L - [A, \bar{B}]L \\ &= L'[[X, \bar{X}]] - [B, \bar{B}]L, \end{aligned} \tag{5}$$

which just shows that $([[A, \bar{A}], [B, \bar{B}], [X, \bar{X}])$ belongs to the space \mathcal{R}_v . It follows that the linear space \mathcal{M}_v constitutes an algebra with the multiplication operation (8). The proof is complete.

Corollary 1. $\langle E(\mathcal{M}_v), [\cdot, \cdot] \rangle$ forms a Lie algebra.

Corollary 1 shows that if two evolution equations $u_i = X, u_i = \bar{X}$ ($X, \bar{X} \in \mathcal{V}'$) all possess L - A - B triad representations, then the evolution equation $u_i = [X, \bar{X}]$ also possesses a L - A - B triad representation.

In the Cartesian product space $\mathcal{V}' \times \mathcal{V}'$, we define the following equivalent relation \sim :

$(A, B) \sim (\bar{A}, \bar{B}) \iff [A, L] + BL = [\bar{A}, L] + \bar{B}L, (A, B), (\bar{A}, \bar{B}) \in \mathcal{V}' \times \mathcal{V}'$. Set $K_v(L) = \{(A, B) \in \mathcal{V}' \times \mathcal{V}' | [A, L] + BL = 0\}$. Obviously $K_v(L)$ is a subalgebra of $\langle \mathcal{M}_v, [\cdot, \cdot] \rangle$.

Theorem 2. The subalgebra $\langle K_v(L), [\cdot, \cdot] \rangle$ is an ideal subalgebra of $\langle \mathcal{M}_v, [\cdot, \cdot] \rangle$.

Proof. For any $(A, B, X) \in \mathcal{R}_v, (\bar{A}, \bar{B}) \in K_v(L)$, it follows from Theorem 1 that

$$\begin{aligned} [[A, \bar{A}], L] + [B, \bar{B}]L &= L'[[X, 0]] = 0, \\ [[\bar{A}, A], L] + [\bar{B}, B]L &= L'[[0, X]] = 0. \end{aligned}$$

These show that $[(A, B), (\bar{A}, \bar{B})]$, $[(\bar{A}, \bar{B}), (A, B)]$ all belong to $K_v(L)$. Therefore the statement in the theorem is really true. The proof is complete.

Let $(A, B) \in \mathcal{V} \times \mathcal{V}$. We use $CL(A, B)$ to stand for the equivalent class to which (A, B) belongs. Set $CL(\mathcal{M}_v) = \{CL(A, B) | (A, B) \in \mathcal{M}_v\}$. By Theorem 2 we see that $CL(\mathcal{M}_v) = \mathcal{M}_v / K_v(L)$ is a quotient algebra, whose multiplication operation is as follows:

$$[CL(A, B), CL(\bar{A}, \bar{B})] = CL([(A, B), (\bar{A}, \bar{B})]), (A, B), (\bar{A}, \bar{B}) \in \mathcal{M}_v. \quad (11)$$

Theorem 3. *The quotient algebra $\langle CL(\mathcal{M}_v), [\cdot, \cdot] \rangle$ is a Lie algebra and isomorphic to Lie algebra $\langle E(\mathcal{M}_v), [\cdot, \cdot] \rangle$.*

Proof. For any $(A_1, B_1, X), (A_2, B_2, Y), (A_3, B_3, Z) \in \mathcal{V}_v$, by Theorem 1 we have

$$\begin{aligned} & [[(A_1, A_2), A_3] + \text{cycle}(A_1, A_2, A_3), L] \\ & = L'[[[X, Y], Z] + \text{cycle}(X, Y, Z)] - ([(B_1, B_2), B_3] + \text{cycle}(B_1, B_2, B_3))L \\ & = - ([(B_1, B_2), B_3] + \text{cycle}(B_1, B_2, B_3))L. \end{aligned}$$

This shows by (11) that

$$[[CL(A_1, B_1), CL(A_2, B_2)], CL(A_3, B_3)] + \text{cycle}(CL(A_1, B_1), CL(A_2, B_2), CL(A_3, B_3)) = 0.$$

Thus $\langle CL(\mathcal{M}_v), [\cdot, \cdot] \rangle$ constitutes a Lie algebra.

Now let us prove that two Lie algebras are isomorphic to each other. Make $\rho: CL(\mathcal{M}_v) \rightarrow E(\mathcal{M}_v)$, $CL(A, B) \mapsto X((A, B, X) \in \mathcal{V}_v)$. Obviously ρ is a linear mapping. Note that for $(A, B, X), (\bar{A}, \bar{B}, \bar{X}) \in \mathcal{V}_v$, we have

$$\begin{aligned} \rho([(CL(A, B), CL(\bar{A}, \bar{B}))]) &= \rho(CL([(A, B), (\bar{A}, \bar{B})])) \\ &= [X, \bar{X}] = [\rho(CL(A, B)), \rho(CL(\bar{A}, \bar{B}))]. \end{aligned}$$

Hence ρ is an isomorphism of Lie algebras, which implies that Lie algebras $\langle CL(\mathcal{M}_v), [\cdot, \cdot] \rangle$ and $\langle E(\mathcal{M}_v), [\cdot, \cdot] \rangle$ are isomorphic. The proof is complete.

Through the above theorem we easily see that when $L = L(x, u) \in \mathcal{V}_0^2$ is fixed and L' is injective, every evolution equation $u_i = X (X \in E(\mathcal{M}_v))$ has just a set of Manakov's pairs $CL(A, B)$ in L -A-B triad representations and no more. However, there exists an open problem in this kind of representations: How do we construct a corresponding Manakov's pair of operators for a given evolution equation $u_i = X (X \in E(\mathcal{M}_v))$? In addition, we have not known yet what relations there exist between two sorts of Manakov's pairs of operators corresponding to different spectral operators L_1, L_2 ($L_i = L_i(x, u) \in \mathcal{V}_0^2, i=1, 2$). These need a further investigation.

The author would like to thank Profs. Gu Chaohao and Hu Hesheng for their enthusiastic guidance.

REFERENCES

[1] Ablowitz, M. J. & Segur, H., *Solitons and Inverse Scattering Transform*, SIAM, Philadelphia, 1981.

- [2] Calogero, F. 1982; 1986
- [3] Manakov, S.
- [4] Zakharov, V.
- [5] Veselov, A. I.
- [6] Novikov, S.
- [7] Konopelchenko, B.
- [8] Boiti, M., J.
- [9] Ma, W. X., J.

(L): Therefore
is to which (A,
that $CL(\mathcal{M}_v)$
ows:
 $\bar{B}) \in \mathcal{M}_v$. (11)
nd isomorphic to

[2] Calogero, F. & Degasperis, A., *Spectral Transform and Solitons*, Vols I, II, North-Holland, Amsterdam, 1982; 1986
 [3] Manakov, S. V., *Usp. Mat. Nauk.*, 31(1976), 245
 [4] Zakharov, V. E., *Lecture Notes in Physics*, 153(1982), 190
 [5] Veselov, A. P. & Novikov, S. P., *Dokl. Akad. Nauk.*, 279(1984), 20.
 [6] Novikov, S. P. & Veselov, A. P., *Physica D*, 18(1986), 267.
 [7] Konopelchenko, B. G., *Inverse Problems*, 4(1988), 151.
 [8] Boiti, M., Leon, J. J. P. & Pempinelli, F., *Inverse Problems*, 3(1987), 25.
 [9] Ma, W. X., *Selected Papers of Chinese Postdoctors*, Vol. 4, Beijing University Press, Beijing, 1991, p. 1

em 1 we have

$B_3))L$

$A_2, B_2)$,

Take $\rho: CL(\mathcal{M}_v)$
Note that for

ras $\langle CL(\mathcal{M}_v),$

fixed and L' is
anakov's pairs
an open prob-
manakov's pair
1, we have not
s of operators
 $= 1, 2$). These

their enthusiastic