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Evolution equations integraf:ie by the mverse scatieting transiorm are the compatibility
condition of two linear eigenvalue problems

{ Lvyp=74s, A spectral parameter,
W= At

Among these are the well-known KdV equation, AKNS equation in 14 1 dimensions and KP
equation, Davey-Stewartson equation in 1+ 2 dimensions!" 3, Manakov!¥ has presented the
L-A-8 inad representation of the compatibility condition

%{; =[4, L)+ BL, ' (1)
which js more approptiate for the two-dimensional case. It has been demonslrated that many
integrable systems possess this kind of [-A-B triad representations!®®, An illustrative

example is the following integrable system!”

{' n=Ar+a( )~ BUOT P et 208 5y~ 23, (2)
8= = As+2a(rs),— 2837 'r,), :
where §,=0,+48,, ;=0,—38,» A= —a3§+ ﬁﬁf‘,,f}: % S= %— .t and f# are arbiirary con-

stants. Three corresponding operators of its L-4-B triad representation are as follows:
L=33+m,+5
{ A= —-aca?—ﬁ&fl,uf!ﬂ(Ei,;lr,l)ﬁ,iHZaB;]‘Sf, (3)
B=20r,—2P07 't = — 207 ', :
When g=1 and §=0, the integrable system (2)is redueed to the two-dimensiona! dispersive

longwave equations!®
= —F&"}'(Fl)f‘{“ 23;'5&, Si-=5'§é+ 2(?’3){ (4)

In this repoit, we shall construct the algebraic structure related fo general

* Project supported by the National Science Foundation of Postdector of China.



[P TR I e vt oy i

e m s

e e B LI,

1230 CHINESE SCIENCE BULLETIN Vol. 37

((p+1)-dimensional } £-4-B triad representstions displayed in (1), A similar algebraic
structure corresponding to the Lax represcntations has been discussed in Ref. [9].

Let xeR’, u=ulx, )eS*(R? B)¥. By & we denote all complex (or real) fanctions
Plul=P(x, #, u) which are C*differentiable with respect to x, ¢ and C®-Gateaux
difierentiable with respect to u=u{x)™, and set F"={(P,. -, P,)'Pe®F }. By # wede
note all linear operators @=®(x, £, u): F'— F* which are C*-differentiable with respect to
X, t and C*-Gateaux differentiable with respect to u=wu(x}, and by 75 all matrix
differential operators I =1, ,,,: %" 2" with the following form!”

L =(£‘£j)rxr! Lﬁz Z Pi/[”]m: P;{[“IE% (5)
la|r£n=(r'u)

For Pe¥”, we use @' to stana for the Gateaux desivative operator of @, namely
(X = < ourex)| . xegr (6)
Je =0
In this report, we always assume that L=L(x, u)e® 7 and that L': 9 3 18 an injective
mapping. Evidently, if for Xe &7 there exists a pair of operators 4, Be# "such that
(4, L1=L'[X]—BL, (7}
then the evolution equation u,= X possesses an L-4-B trad representation (1), .

Definition . Let A, Be¥ ™", If there exists Xe %9 such that (7) hoids, then {4, B)is
called a Manakov’s pair of operators and X called an eigenvector field corresponding to the
Manakov’s pair (4, B). Moreover, we denote by # all Manakov’s pairs, by E(«)all
eigenvector fields, and by % all triples (4, B, X ) satisfying (7).

It is easy to see that every Manakov's pair has only one eigenvector field. Therefore for
the linear space 4, we can construct the following multiplication operation.

Definition 2. Let Manakov's pairs (4, B), (4, E')e_ﬂ; have eigenvector fields X,
XeE(.4,), respectively, We deofine the product of ( 4, B)and (A, B} as

[(4, B), (4, 8)]=([4, 4].[B B]), (8)

where )
[4. A]=A'[X]~A"[X]+] A4, 4]. (9
[8 B]=8[X]—B'[X)+[B. B] +[B. 4] ~[B, 4). (10)

Note that the multiplication operation {8 ) is obviously a bilinear binary operation,

Theorem 1 let (4, B, X}, (A4, B, X)e&. Then ([4, 4].[8, E],(X. X])e2,
where

£
7 e=0

Thus 4, constitutes an algebra under the multiplication aperation (8) .

[X,X)= (X{u+e X )—X(u+:2X}).
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Proof, Noticing that
[[4. 4, L]=—[{4. L], A1 -[(L. 4], 4)
= —[L'[X], A1 +{L’{X], 4] + [BL, 4] -~[ BL, 4]
and that {see Ref. [9])
(L [X]Y[X1 - (LR Y [ X]=L'{Y, Y=[X, X],
we can directly calculate
[{4: AL L1 =[A"[X]-A"[ X1 +] 4, A], L]
=[4; L}'[X] {4, LI'[X) +]BL, A] ~[BL, 4]
=(L/[X}Y[X]—{(BLY [X]-(L/[X] Y[X]+(BLY[X]
+[BL, A1 -[BL, 4] |
=L'[IX, X} -B'[X]E--BL'[X]+ B'[ X1 L+ BL'I X]
+[BL, A] ~|BL, 4}
=L([X, X} -R'[X]L+B'[X)L-B([A, L]+ BL)
+B([4, L]+ BLY+[BL, 4] —[BL, A]
=L[[X, X1+ (-B[X]+B‘[X]-[B. B] )L
— B[4, £]+ B4, 1) +{BL, A1 -[BL. 4]
=L'[[X, X]]+( - B'[X]+ B[ X1 -8, B])L
1[4, BIL ~[4, BIL
=L'[[x. ¥[8 B]L.
which just shows that ([4, ;]],[[B, F]], [X, X])belongs to the space &, It follows that the
linear space 4, constitutes an algebra with the multiplication operation (8). The proof is
complete,

Corollary 1. {E( £}, [ - . '} >formu a Lie algebma,

Corollary 1 shows that if two evolution equations u,=X, #,=X (X, X %7)all possess
L-A-B triad representations, then the evolution equation w,=[X, X'] also possesses a L-4-B
friad representation.

In the Cariesian product space & "x ¥, we define the following equivalent relation ~ :
(A, BY~ (4, B) «=[A, LI +BL=[4, Lj+BL. (4, B}, (4, B)e7 "x% " Set
K(LY={(4, B)e# 'x % |[4, L}+BL=0}. Obviously X,(L) is a subalgebra of {_#,,
[ D |
Theorem 2. The subalgebra (K, (L), [, ]|> is an ideal subalgebrn of { 4,
I D
Proof. For any (4, B, X)e #,(4, B)eK (L), it foltows from Theorem | that
[[A4. A]. L1+[B. B] L=L’[[ X, 0)] =0,
[[4.A]. £} +[B, B] L=L'[[0: X1]=0.
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These show that [{ 4, B), (4, :9-)]}, [{7. B). (4, B)] all belong to X,{(L). Therefore
the statement m the theorem is really true. The proof is complete.

Let (A, B)ew 7 7 We use CL( A, B)}to stand for the equivalent class to which (A,
B) belongs. Set CL{ #,)={CL(A, B)I(A4. B)e #,} By Theorem 2 we se¢ that CL{ £,)
= #,/K (L)is a quotient algebra, whose multiplication operation is as follows:

[CL(4.B), CL{A, BYp=CL([(4, B), (4, B)]), (4, B), (4 Bles, (11)

Theorem 3. The quotient algebra {CI{ #,},[ . - §) is a Lie algebra and isomorphic to
Lie algebra CE(#£). { . ]>.

Pmof: For any (A]: Bla X): (AZ’ Bp Y)s (A_;s B3u Z)E,gg, by Theorem 1 we have

[MAI’ Aiﬁ.A;]’f‘C}"Cle(Ala Azr Ag)s L]
=L[[[X. Y}, Z]+cyde(X, ¥, Z)] —(MBP Bzﬂ’as:ﬂ'+'cyde(3v By, 8,))L
= ~([[B1» B,]:B:]+eycle(By: By By) )L

This shows by (11 that
[cLia, By). CL{4y 8,)], CL( Ay By)]+cyele(CL(4,, B)). CL(Ay B,).
CL( A4y By) ) =0

Thus {CL(.#,), [* , -] ) constitutes a Lie algebra,

Now let us prove that two Lie algebras are isomorphic to each other, Make p: CL(.#,)
— E(4)), CL(A4, B)-> X((A. B, X)e4). Obviously p is a linear mapping. Note that for
(A, B, X), (4. B, X)e%, we have
p([CL(4. B), CL(4,B)])=p(CL([(4 B), (4. B)])
=[X, X]=1p(CL{4, B}), p(CL(A,B))].

Hence p is an isomorphism of Lic algebras, which implies that Lie algrbras {CL{ 4},
[-, J>and <E(#), [ -, ] yare isomorphic. The proof is complete.

Through the above theorem we easily see that when L=L(x, u}e% [is fixed and L’ is
injective, every evolution equation u,=X (XeE (_#,)) has just a set of Manakov’s pairs
CL(A4, B)in L-A4-B triad representations and no more, However, there exists an open prob-
lem in this kind of representations: How do we construct a comesponding Manakov's pair
of operatoss for a given evolution equation #,=X (XeE(.#,))? In addition, we have not
known yet what relations there exist between two sorts of Manakov's pairs of operators
cormesponding to different spectral operators Ly, L, (L,=L,(x, #)e¥ '}, i=1, 2}. These
need a further investigation,

The author would like to thank Profs. Gu Chachae and Hu Hesheng for their enthusiastic

guidance.
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