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We construct matrix integrable fourth-order nonlinear Schrödinger equations through reducing the Ablowitz–

Kaup–Newell–Segur matrix eigenvalue problems. Based on properties of eigenvalue and adjoint eigenvalue prob-

lems, we solve the corresponding reflectionless Riemann–Hilbert problems, where eigenvalues could equal adjoint

eigenvalues, and formulate their soliton solutions via those reflectionless Riemann–Hilbert problems. Soliton solu-

tions are computed for three illustrative examples of scalar and two-component integrable fourth-order nonlinear

Schrödinger equations.
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Abundant nonlinear phenomena in physical sciences

and engineering can be described by integrable models. [1]

When lower-order perturbations are taken into account,

two prototypical examples of integrable models, the non-

linear Schrödinger (NLS) equation and the modified

Korteweg–de Vries (mKdV) equation, are introduced to

learn and identify wave propagation in nonlinear media. [2]

By presenting integrable models as the compatibility con-

ditions (i.e., zero curvature equations), matrix eigenvalue

problems are used to solve their Cauchy problems by the

inverse scattering transform. [3,4]

By taking account of the invariance of zero curva-

ture equations under group constraints, nonlocal inte-

grable models can be generated from Lax pairs of ma-

trix eigenvalue problems. Such integrable models keep the

integrable structures that the original integrable models

exhibit (see, e.g., Refs. [5–7] for nonlocal reduced inte-

grable models). If one group constraint is taken into con-

sideration, we can formulate three classes of local inte-

grable models, i.e., one class of NLS type and two classes

of mKdV type, [8,9] and five classes of nonlocal integrable

models, i.e., three classes of NLS type and two classes

of mKdV type. [10] On the other hand, Riemann–Hilbert

problems have been widely applied for constructing soliton

solutions. [11,12] Indeed, many local and nonlocal integrable

models have been investigated by considering the associ-

ated Riemann–Hilbert problems (see, e.g., Refs. [13–15]

and Refs. [7,16–19] for details in the local and nonlocal

cases, respectively).

It should also be noted that the standard inte-

grable NLS model of second-order plays a significant

role in nonlinear optics, used as the governing equa-

tion for the propagation of wave field envelope in weakly

nonlinear dispersive media (see, e.g., Ref. [20]). Its

vector and matrix integrable generalizations were pro-

posed, for which there exist higher-order symmetries; [21]

and its continuous, semi-discrete and fully discrete ma-

trix versions were analyzed and solved in terms of bi-

differential graded algebras. [22] A fractional generalized

NLS equation with a combined second- and third-order

nonlinearity was recently studied, with its symmetric

and antisymmetric soliton solutions being constructed

and the influence of the Lévy index on diverse soli-

tons being analyzed. [23] A (3+1)-dimensional normalized

NLS equation with variable-coefficients was used to de-

scribe light bullets in a tapered graded-index waveg-

uide with parity-time-symmetric potentials. [24] An energy-

conservation deep-learning method was constructed to

study a coupled system of NLS equations and to ana-

lyze its formation mechanism of vector solitons in bire-

fringent fibers. [25] Moreover, higher-order analogous inte-

grable models were formulated and studied to explore non-

linear dispersive waves in optical fibers and water waves

(see, e.g., Refs. [20,26]).

In this Letter, we present a paradigmatic example of

applications of Riemann–Hilbert problems. We formulate

a class of reduced matrix hierarchies of integrable models

of AKNS type, including reduced matrix integrable fourth-

order models of NLS type, and apply the Riemann–Hilbert

technique to construction of their soliton solutions. Specif-

ically, we present a kind of group constraints of the AKNS

matrix eigenvalue problems to formulate reduced matrix

hierarchies of integrable models of AKNS type, including

matrix integrable fourth-order models of NLS type. Based

on properties of eigenvalue and adjoint eigenvalue prob-

lems, we solve the corresponding reflectionless Riemann–

Hilbert problems, in which eigenvalues could be equal to

adjoint eigenvalues, and compute soliton solutions to the
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resulting reduced matrix integrable models of AKNS type,

particularly to one scalar integrable fourth-order model of

NLS type and two two-component systems of integrable

fourth-order models of NLS type. The scalar integrable

fourth-order model reads

−𝑖𝑝1,𝑡 = 𝑝1,𝑥𝑥𝑥𝑥 + 6𝜎𝑝*1𝑝
2
1,𝑥 + 4𝜎𝑝1|𝑝1,𝑥|2 + 8𝜎|𝑝1|2𝑝1,𝑥𝑥

+ 2𝜎𝑝21𝑝
*
1,𝑥𝑥 + 6𝜎2|𝑝1|4𝑝1, (1)

where 𝜎 ∈ C is an arbitrary nonzero constant, * stands

for the complex conjugation, and |𝑝1| denotes the absolute
value of 𝑝1. The final section concludes our findings and

gives several remarks for future studies.

Reduced Matrix Integrable mKdV Hierarchies—The

Matrix AKNS Integrable Hierarchies Revisited. To express

the subsequent analysis clearly, let us first recall the AKNS

hierarchies of matrix integrable models. As usual, we as-

sume that 𝑝 and 𝑞 denote two matrix potentials:

𝑝 = 𝑝(𝑥, 𝑡) = (𝑝𝑗𝑘)𝑚×𝑛, 𝑞 = 𝑞(𝑥, 𝑡) = (𝑞𝑘𝑗)𝑛×𝑚, (2)

where 𝑚,𝑛 are two given natural numbers. The matrix

AKNS eigenvalue problems are defined by

− 𝑖𝜑𝑥 = 𝑈𝜑 = 𝑈(𝑢, 𝜆)𝜑 = (𝜆𝛬+ 𝑃 )𝜑,

− 𝑖𝜑𝑡 = 𝑉 [𝑟]𝜑 = 𝑉 [𝑟](𝑢, 𝜆)𝜑 = (𝜆𝑟𝛺+𝑄[𝑟])𝜑, 𝑟 ≥ 0, (3)

where 𝜆 stands for the spectral parameter. The constant

square matrices 𝛬 and 𝛺 are given by

𝛬 = diag(𝛼1𝐼𝑚, 𝛼2𝐼𝑛), 𝛺 = diag(𝛽1𝐼𝑚, 𝛽2𝐼𝑛), (4)

where 𝐼𝑠 denotes the identity matrix of size 𝑠, and 𝛼1, 𝛼2

and 𝛽1, 𝛽2 are two arbitrary pairs of distinct real constants.

Moreover, the other two involved square matrices of size

𝑚+ 𝑛 are defined by

𝑃 = 𝑃 (𝑢) =

[︃
0 𝑝

𝑞 0

]︃
, (5)

called the potential matrix, and

𝑄[𝑟] =

𝑟−1∑︁
𝑠=0

𝜆𝑠

[︃
𝑎[𝑟−𝑠] 𝑏[𝑟−𝑠]

𝑐[𝑟−𝑠] 𝑑[𝑟−𝑠]

]︃
, (6)

where 𝑎[𝑠], 𝑏[𝑠], 𝑐[𝑠] and 𝑑[𝑠] are determined recursively by

𝑏[0] = 0, 𝑐[0] = 0, 𝑎[0] = 𝛽1𝐼𝑚, 𝑑[0] = 𝛽2𝐼𝑛, (7a)

𝑏[𝑠+1] =
1

𝛼
(−𝑖𝑏[𝑠]𝑥 − 𝑝𝑑[𝑠] + 𝑎[𝑠]𝑝), 𝑠 ≥ 0, (7b)

𝑐[𝑠+1] =
1

𝛼
(𝑖𝑐[𝑠]𝑥 + 𝑞𝑎[𝑠] − 𝑑[𝑠]𝑞), 𝑠 ≥ 0, (7c)

𝑎[𝑠]
𝑥 = 𝑖(𝑝𝑐[𝑠] − 𝑏[𝑠]𝑞), 𝑑[𝑠]𝑥 = 𝑖(𝑞𝑏[𝑠] − 𝑐[𝑠]𝑝), 𝑠 ≥ 1, (7d)

with 𝛼 = 𝛼1 − 𝛼2 and zero constants of integration being

chosen. Based on the relations in (7), we can see that

𝑊 =
∑︁
𝑠≥0

𝜆−𝑠

[︃
𝑎[𝑠] 𝑏[𝑠]

𝑐[𝑠] 𝑑[𝑠]

]︃
(8)

presents a solution to the stationary zero curvature equa-

tion

𝑊𝑥 = 𝑖[𝑈,𝑊 ], (9)

which plays a crucial role in defining an integrable hierar-

chy.

By using computer algebra systems, we can directly

work out all sets of 𝑎[𝑠], 𝑏[𝑠], 𝑐[𝑠] and 𝑑[𝑠], 𝑠 ≥ 1, which are

differential polynomials of 𝑝 and 𝑞 with respect to 𝑥. For

example, we can have

𝑏[5] =
𝛽

𝛼5
[𝑝𝑥𝑥𝑥𝑥 + 4𝑝𝑞𝑝𝑥𝑥 + (6𝑝𝑥𝑞 + 2𝑝𝑞𝑥)𝑝𝑥

+ (4𝑝𝑥𝑥𝑞 + 2𝑝𝑥𝑞𝑥 + 2𝑝𝑞𝑥𝑥 + 6𝑝𝑞𝑝𝑞)𝑝],

𝑐[5] =
𝛽

𝛼5
[𝑞𝑥𝑥𝑥𝑥 + 4𝑞𝑥𝑥𝑝𝑞 + 𝑞𝑥(6𝑝𝑞𝑥 + 2𝑝𝑥𝑞)

+ 𝑞(4𝑝𝑞𝑥𝑥 + 2𝑝𝑥𝑞𝑥 + 2𝑝𝑥𝑥𝑞 + 6𝑝𝑞𝑝𝑞)],

𝑎[5] =
𝛽

𝛼5
𝑖[6𝑝𝑞(𝑝𝑞𝑥 − 𝑝𝑥𝑞) + 𝑝𝑞𝑥𝑥𝑥 − 𝑝𝑥𝑥𝑥𝑞

+ 𝑝𝑥𝑥𝑞𝑥 − 𝑝𝑥𝑞𝑥𝑥],

𝑑[5] =
𝛽

𝛼5
𝑖[2𝑞(𝑝𝑥𝑞 − 𝑝𝑞𝑥)𝑝+ 4𝑞𝑝𝑞𝑝𝑥 − 4𝑞𝑥𝑝𝑞𝑝+ 𝑞𝑝𝑥𝑥𝑥

− 𝑞𝑥𝑥𝑥𝑝+ 𝑞𝑥𝑥𝑝𝑥 − 𝑞𝑥𝑝𝑥𝑥];

where 𝛽 = 𝛽1 − 𝛽2. Now, we can see the zero-curvature

equations

𝑈𝑡 − 𝑉 [𝑟]
𝑥 + 𝑖[𝑈, 𝑉 [𝑟]] = 0, 𝑟 ≥ 0, (10)

which are the compatibility conditions of the two matrix

eigenvalue problems in (3), generate one so-called matrix

AKNS integrable hierarchy (see, e.g., Ref. [27]):

𝑝𝑡 = 𝑖𝛼𝑏[𝑟+1], 𝑞𝑡 = −𝑖𝛼𝑐[𝑟+1], 𝑟 ≥ 0, (11)

which possesses a bi-Hamiltonian structure. The nonlinear

integrable models with 𝑟 = 2 and 𝑟 = 4 in the hierarchy

give us the matrix NLS equations:

𝑝𝑡 = − 𝛽

𝛼2
𝑖(𝑝𝑥𝑥 + 2𝑝𝑞𝑝), 𝑞𝑡 =

𝛽

𝛼2
𝑖(𝑞𝑥𝑥 + 2𝑞𝑝𝑞), (12)

and the matrix fourth-order NLS equations:

𝑝𝑡 =
𝛽

𝛼4
𝑖[𝑝𝑥𝑥𝑥𝑥 + 4𝑝𝑞𝑝𝑥𝑥 + 2(3𝑝𝑥𝑞 + 𝑝𝑞𝑥)𝑝𝑥

+ 2(2𝑝𝑥𝑥𝑞 + 𝑝𝑥𝑞𝑥 + 𝑝𝑞𝑥𝑥 + 3𝑝𝑞𝑝𝑞)𝑝],

𝑞𝑡 = − 𝛽

𝛼4
𝑖[𝑞𝑥𝑥𝑥𝑥 + 4𝑞𝑥𝑥𝑝𝑞 + 2𝑞𝑥(3𝑝𝑞𝑥 + 𝑝𝑥𝑞)

+ 2𝑞(2𝑝𝑞𝑥𝑥 + 𝑝𝑥𝑞𝑥 + 𝑝𝑥𝑥𝑞 + 3𝑝𝑞𝑝𝑞)], (13)

where 𝛼 = 𝛼1−𝛼2 and 𝛽 = 𝛽1−𝛽2 are arbitrary constants,

and the two matrix potentials, 𝑝 and 𝑞, are defined by (2).

Reduced Matrix AKNS Integrable Hierarchies. We

would like to construct a kind of novel reduced matrix

integrable AKNS models by taking a kind of group con-

straints for the matrix AKNS eigenvalue problems in (3)

(see Refs. [8,28] for other applications).

Assume that 𝛴1 and 𝛴2 are a pair of constant invert-

ible Hermitian matrices of sizes 𝑚 and 𝑛, respectively. Let

us consider a kind of group constraints for the spectral

matrix 𝑈 :

𝑈†(𝑥, 𝑡, 𝜆*) = [𝑈(𝑥, 𝑡, 𝜆*)]† = 𝛴𝑈(𝑥, 𝑡, 𝜆)𝛴−1, (14)

where * denotes the complex conjugation, as indicated in

the introduction, † denotes the Hermitian transpose, and

the constant invertible Hermitian matrix 𝛴 is defined by

𝛴 =

[︃
𝛴1 0

0 𝛴2

]︃
. (15)
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It is easy to see that every group constraint requires

𝑃 †(𝑥, 𝑡) = 𝛴𝑃 (𝑥, 𝑡)𝛴−1, (16)

and more precisely, it requires either of the constraints for

the two matrix potentials:

𝑞(𝑥, 𝑡) = 𝛴−1
2 𝑝†(𝑥, 𝑡)𝛴1, (17)

𝑝(𝑥, 𝑡) = 𝛴−1
1 𝑞†(𝑥, 𝑡)𝛴2. (18)

Moreover, we observe that under the group constraints in

(14), we can have

𝑊 †(𝑥, 𝑡, 𝜆) = [𝑊 (𝑥, 𝑡, 𝜆)]† = 𝛴𝑊 (𝑥, 𝑡, 𝜆)𝛴−1, (19)

and this implies that we have

𝑉 [𝑟]†(𝑥, 𝑡, 𝜆*) = [𝑉 [𝑟](𝑥, 𝑡, 𝜆*)]† = 𝛴𝑉 [𝑟](𝑥, 𝑡, 𝜆)𝛴−1, (20)

or equivalently, we have

𝑄[𝑟]†(𝑥, 𝑡, 𝜆*) = [𝑄[𝑟](𝑥, 𝑡, 𝜆*)]† = 𝛴𝑄[𝑟](𝑥, 𝑡, 𝜆)𝛴−1, (21)

where 𝑟 ≥ 0.

Consequently, it is direct to see that under one poten-

tial constraint defined by Eq. (17) or (18), the integrable

matrix AKNS models in (11) reduce to one hierarchy of

reduced matrix integrable AKNS models:

𝑝𝑡 = 𝑖𝛼𝑏[𝑟+1]|
𝑞=𝛴−1

2 𝑝†𝛴1
, 𝑟 ≥ 0, (22)

where 𝑝 is an 𝑚× 𝑛 matrix potential, or

𝑞𝑡 = −𝑖𝛼𝑐[𝑟+1]|
𝑝=𝛴−1

1 𝑞†𝛴2
, 𝑟 ≥ 0, (23)

where 𝑞 is an 𝑛 × 𝑚 matrix potential. In the above re-

duced matrix integrable models, 𝛴1 and 𝛴2 are a pair of

arbitrary invertible Hermitian matrices of sizes 𝑚 and 𝑛,

respectively. Each reduced equation in the hierarchy (22)

or (23) with a fixed integer 𝑟 ≥ 0 possesses a Lax pair of

the reduced spatial and temporal matrix eigenvalue prob-

lems in (3), and infinitely many symmetries and conserved

densities from those for the integrable matrix AKNS mod-

els in (11).

Reduced Matrix Integrable Fourth-Order NLS Equa-

tions. If we take 𝑟 = 2 and 𝑟 = 4, then the reduced

matrix integrable AKNS models in (22) give a kind of ma-

trix integrable second-order NLS equations

𝑝𝑡 = − 𝛽

𝛼2
𝑖(𝑝𝑥𝑥 + 2𝑝𝛴−1

2 𝑝†𝛴1𝑝), (24)

and a kind of matrix integrable matrix fourth-order NLS

equations:

𝑝𝑡 =
𝛽

𝛼4
𝑖[𝑝𝑥𝑥𝑥𝑥 + 4𝑝𝛴−1

2 𝑝†𝛴1𝑝𝑥𝑥 + 2(3𝑝𝑥𝛴
−1
2 𝑝†𝛴1

+ 𝑝𝛴−1
2 𝑝†

𝑥𝛴1)𝑝𝑥 + 2(2𝑝𝑥𝑥𝛴
−1
2 𝑝†𝛴1 + 𝑝𝑥𝛴

−1
2 𝑝†

𝑥𝛴1

+ 𝑝𝛴−1
2 𝑝†

𝑥𝑥𝛴1)𝑝+ 6(𝑝𝛴−1
2 𝑝†𝛴1)

2𝑝], (25)

where 𝑝 is an 𝑚 × 𝑛 matrix potential, and 𝛴1 and 𝛴2

are two arbitrary constant invertible Hermitian matrices

of sizes 𝑚 and 𝑛, respectively.

In what follows, we are going to compute three illus-

trative examples of these novel reduced matrix integrable

fourth-order NLS equations, by selecting different values

for 𝑚,𝑛 and appropriate choices for 𝛴.

Let us first consider 𝑚 = 𝑛 = 1. When we take

𝛴1 = 1, 𝛴−1
2 = 𝜎, (26)

we obtain the following scalar integrable fourth-order NLS

equation

𝑝1,𝑡 =
𝛽

𝛼4
𝑖(𝑝1,𝑥𝑥𝑥𝑥 + 6𝜎𝑝*1𝑝

2
1,𝑥 + 4𝜎𝑝1|𝑝1,𝑥|2

+ 8𝜎|𝑝1|2𝑝1,𝑥𝑥 + 2𝜎𝑝21𝑝
*
1,𝑥𝑥 + 6𝜎2|𝑝1|4𝑝1), (27)

where 𝑝 = (𝑝1) and 𝜎 ̸= 0 is an arbitrary complex con-

stant. A special case of this equation with 𝜎 = 1 has been

solved by Darboux transformation. [29]

Let us second consider 𝑚 = 1 and 𝑛 = 2. When we

take

𝛴1 = 1, 𝛴−1
2 =

[︃
𝜎1 0

0 𝜎2

]︃
, (28)

we obtain a two-component system of integrable fourth-

order NLS equations:

𝑝1,𝑡 =
𝛽

𝛼4
𝑖[𝑝1,𝑥𝑥𝑥𝑥 + 4(2𝜎1|𝑝1|2 + 𝜎2|𝑝2|2)𝑝1,𝑥𝑥

+ 4𝜎2𝑝1𝑝
*
2𝑝2,𝑥𝑥 + 2𝜎1𝑝

2
1𝑝

*
1,𝑥𝑥 + 2𝜎2𝑝1𝑝2𝑝

*
2,𝑥𝑥

+ 6𝜎1𝑝
*
1𝑝

2
1,𝑥 + 2(2𝜎1𝑝1𝑝

*
1,𝑥 + 3𝜎2𝑝

*
2𝑝2,𝑥

+ 𝜎2𝑝2𝑝
*
2,𝑥)𝑝1,𝑥 + 2𝜎2|𝑝2,𝑥|2𝑝1

+ 6(𝜎1|𝑝1|2 + 𝜎2|𝑝2|2)2𝑝1],

𝑝2,𝑡 =
𝛽

𝛼4
𝑖[𝑝2,𝑥𝑥𝑥𝑥 + 4𝜎1𝑝

*
1𝑝2𝑝1,𝑥𝑥 + 4(𝜎1|𝑝1|2

+ 2𝜎2|𝑝2|2)𝑝2,𝑥𝑥 + 2𝜎1𝑝1𝑝2𝑝
*
1,𝑥𝑥 + 2𝜎2𝑝

2
2𝑝

*
2,𝑥𝑥

+ 6𝜎2𝑝
*
2𝑝

2
2,𝑥 + 2(3𝜎1𝑝

*
1𝑝1,𝑥 + 2𝜎2𝑝2𝑝

*
2,𝑥

+ 𝜎1𝑝1𝑝
*
1,𝑥)𝑝2,𝑥 + 2𝜎1|𝑝1,𝑥|2𝑝2

+ 6(𝜎1|𝑝1|2 + 𝜎2|𝑝2|2)2𝑝2], (29)

where 𝑝 = (𝑝1, 𝑝2), and 𝜎1, 𝜎2 are two arbitrary nonzero

complex constants.

Let us third consider 𝑚 = 1 and 𝑛 = 2. When we take

𝛴1 = 1, 𝛴−1
2 =

[︃
0 𝜎1

𝜎2 0

]︃
, (30)

we obtain another two-component system of integrable

fourth-order NLS equations:

𝑝1,𝑡 =
𝛽

𝛼4
𝑖[𝑝1,𝑥𝑥𝑥𝑥 + 4(2𝜎1𝑝1𝑝

*
2 + 𝜎2𝑝

*
1𝑝2)𝑝1,𝑥𝑥

+ 4𝜎2|𝑝1|2𝑝2,𝑥𝑥 + 2𝜎2𝑝1𝑝2𝑝
*
1,𝑥𝑥 + 2𝜎1𝑝

2
1𝑝

*
2,𝑥𝑥

+ 6𝜎1𝑝
*
2𝑝

2
1,𝑥 + 2(2𝜎1𝑝1𝑝

*
2,𝑥 + 3𝜎2𝑝

*
1𝑝2,𝑥

+ 𝜎2𝑝2𝑝
*
1,𝑥)𝑝1,𝑥 + 2𝜎2𝑝

*
1,𝑥𝑝2,𝑥𝑝1

+ 6(𝜎1𝑝1𝑝
*
2 + 𝜎2𝑝

*
1𝑝2)

2𝑝1],

𝑝2,𝑡 =
𝛽

𝛼4
𝑖[𝑝2,𝑥𝑥𝑥𝑥 + 4𝜎1|𝑝2|2𝑝1,𝑥𝑥

+ 4(𝜎1𝑝1𝑝
*
2 + 2𝜎2𝑝

*
1𝑝2)𝑝2,𝑥𝑥 + 2𝜎2𝑝

2
2𝑝

*
1,𝑥𝑥

+ 2𝜎1𝑝1𝑝2𝑝
*
2,𝑥𝑥 + 6𝜎2𝑝

*
1𝑝

2
2,𝑥 + 2(3𝜎1𝑝

*
2𝑝1,𝑥

+ 2𝜎2𝑝2𝑝
*
1,𝑥 + 𝜎1𝑝1𝑝

*
2,𝑥)𝑝2,𝑥 + 2𝜎1𝑝1,𝑥𝑝

*
2,𝑥𝑝2

+ 6(𝜎1𝑝1𝑝
*
2 + 𝜎2𝑝

*
1𝑝2)

2𝑝2], (31)
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where 𝑝 = (𝑝1, 𝑝2), and 𝜎1, 𝜎2 are two arbitrary nonzero

complex constants.

Soliton Solutions via Riemann–Hilbert Problems—

Properties of Eigenvalue and Adjoint Eigenvalue Problems.

It is easy to see that under the group constraints in (14),

we can see that 𝜆 is an eigenvalue of the matrix eigenvalue

problems in (3) if and only if �̂� = 𝜆* is an adjoint eigen-

value, i.e., the adjoint matrix eigenvalue problems hold:

𝑖𝜑𝑥 = 𝜑𝑈 = 𝜑𝑈(𝑢, �̂�), 𝑖𝜑𝑡 = 𝜑𝑉 [𝑟] = 𝜑𝑉 [𝑟](𝑢, �̂�), (32)

where 𝑟 ≥ 0.

Moreover, under each group constraint in (14), if 𝜑(𝜆)

presents an eigenfunction of the matrix eigenvalue prob-

lems in (3) associated with an eigenvalue 𝜆, then 𝜑†(𝜆*)𝛴

defines an adjoint eigenfunction associated with the same

eigenvalue 𝜆.

Solutions to Reflectionless Riemann–Hilbert Problems.

We would like to formulate solutions to the corresponding

reflectionless Riemann–Hilbert problems.

Let 𝑁 ≥ 0 be an arbitrarily given integer. First, we

take 𝑁 eigenvalues 𝜆𝑘 and 𝑁 adjoint eigenvalues �̂�𝑘:

𝜆𝑘, 1 ≤ 𝑘 ≤ 𝑁 : 𝜇1, . . . , 𝜇𝑁 , (33)

and

�̂�𝑘, 1 ≤ 𝑘 ≤ 𝑁 : 𝜇*
1, · · · , 𝜇*

𝑁 , (34)

where 𝜇𝑘 ∈ C, 1 ≤ 𝑘 ≤ 𝑁 , and 𝑣𝑘 denote their correspond-

ing eigenfunctions and adjoint eigenfunctions by

𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑁, and 𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑁, (35)

respectively. If we do not assume

{𝜆𝑘 | 1 ≤ 𝑘 ≤ 𝑁} ∩ {�̂�𝑘 | 1 ≤ 𝑘 ≤ 𝑁} = ∅,

then we have to use the following generalized solutions to

the reflectionless Riemann–Hilbert problems:

𝐺+(𝜆) = 𝐼𝑚+𝑛 −
𝑁∑︁

𝑘,𝑙=1

𝑣𝑘(𝑀
−1)𝑘𝑙𝑣𝑙

𝜆− �̂�𝑙

,

(𝐺−)−1(𝜆) = 𝐼𝑚+𝑛 +

𝑁∑︁
𝑘,𝑙=1

𝑣𝑘(𝑀
−1)𝑘𝑙𝑣𝑙

𝜆− 𝜆𝑘
, (36)

where 𝑀 is a square matrix of size 𝑁 , whose entries are

given by

𝑚𝑘𝑙 =

{︃
𝑣𝑘𝑣𝑙

𝜆𝑙−�̂�𝑘
, if 𝜆𝑙 ̸= �̂�𝑘,

0, if 𝜆𝑙 = �̂�𝑘,
(37)

where 1 ≤ 𝑘, 𝑙 ≤ 𝑁 .

Indeed, as shown in Ref. [17], these two matrices𝐺+(𝜆)

and 𝐺−(𝜆) solve the reflectionless Riemann–Hilbert prob-

lem:

(𝐺−)−1(𝜆)𝐺+(𝜆) = 𝐼𝑚+𝑛, 𝜆 ∈ R, (38)

provided that we have the orthogonal condition:

𝑣𝑘𝑣𝑙 = 0 if 𝜆𝑙 = �̂�𝑘, (39)

where 1 ≤ 𝑘, 𝑙 ≤ 𝑁 .

Soliton Solutions. Let us take zero potentials in the

matrix eigenvalue problems in (3). Then, we can obtain

𝑣𝑘 = 𝑣𝑘(𝑥, 𝑡, 𝜆𝑘) = e𝑖𝜆𝑘𝛬𝑥+𝑖𝜆𝑟+1
𝑘

𝛺𝑡𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁, (40)

and following the above analysis, we can assume to take

𝑣𝑘 = 𝑣𝑘(𝑥, 𝑡, �̂�𝑘) = 𝑣†
𝑘(𝑥, 𝑡, 𝜆

*
𝑘)𝛴

= �̂�𝑘e
−𝑖�̂�𝑘𝛬𝑥−𝑖�̂�𝑟+1

𝑘
𝛺𝑡,

�̂�𝑘 = 𝑤†
𝑘𝛴, 1 ≤ 𝑘 ≤ 𝑁, (41)

where 𝑤𝑘 (1 ≤ 𝑘 ≤ 𝑁) are arbitrary constant column vec-

tors. Furthermore, the orthogonal condition (39) becomes

𝑤†
𝑘𝛴𝑤𝑙 = 0 if 𝜆𝑙 = �̂�𝑘, (42)

where 1 ≤ 𝑘, 𝑙 ≤ 𝑁 .

A standard step to compute soliton solutions is to make

an asymptotic expansion

𝐺+(𝜆) = 𝐼𝑚+𝑛 +
1

𝜆
𝐺+

1 +O
(︁ 1

𝜆2

)︁
, (43)

as 𝜆 → ∞, we obtain

𝐺+
1 = −

𝑁∑︁
𝑘,𝑙=1

𝑣𝑘(𝑀
−1)𝑘𝑙𝑣𝑙. (44)

A substitution of this into the matrix spatial eigenvalue

problems recovers the potential matrix:

𝑃 = −[𝛬,𝐺+
1 ] = lim

𝜆→∞
𝜆[𝐺+(𝜆), 𝛬]. (45)

This provides us with the 𝑁 -soliton solutions to the matrix

integrable AKNS models in (11):

𝑝 = 𝛼

𝑁∑︁
𝑘,𝑙=1

𝑣1𝑘(𝑀
−1)𝑘𝑙𝑣

2
𝑙 ,

𝑞 = −𝛼

𝑁∑︁
𝑘,𝑙=1

𝑣2𝑘(𝑀
−1)𝑘𝑙𝑣

1
𝑙 . (46)

In the above solution formulas, we have split 𝑣𝑘 =

((𝑣1𝑘)
T, (𝑣2𝑘)

T)T and 𝑣𝑘 = (𝑣1𝑘, 𝑣
2
𝑘) for each 1 ≤ 𝑘 ≤ 𝑁 ,

where 𝑣1𝑘 and 𝑣2𝑘 are column vectors of dimensions 𝑚 and

𝑛, respectively, while 𝑣1𝑘 and 𝑣2𝑘 are row vectors of dimen-

sions 𝑚 and 𝑛, respectively.

To compute 𝑁 -soliton solutions to the reduced matrix

integrable AKNS models in (22), we must check if 𝐺+
1 de-

fined by Eq. (44) satisfies the involution property or not:

(𝐺+
1 )

T = −𝛴𝐺+
1 𝛴

−1. (47)

This property exactly means that the resulting potential

matrix 𝑃 determined by Eq. (45) will satisfy the group

constraint condition in (16). Accordingly, the above 𝑁 -

soliton solutions to the matrix AKNS integrable models in

(11) are reduced to the following 𝑁 -soliton solutions:

𝑝 = 𝛼

𝑁∑︁
𝑘,𝑙=1

𝑣1𝑘(𝑀
−1)𝑘𝑙𝑣

2
𝑙 , (48)

to the reduced matrix integrable AKNS models in (22).

To sum up, if we have the orthogonal condition for 𝑤𝑘,

1 ≤ 𝑘 ≤ 𝑁 , in (42) and the involution property in (47),

then the formula (48), together with (36), (37), (40) and
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(41), provides 𝑁 -soliton solutions to the reduced matrix

integrable AKNS models in (22), particularly to the ma-

trix integrable NLS equations in (25).

Lastly, we would like to present three examples of

one-soliton solutions in the cases of 𝑚 = 𝑛 = 1 and

𝑚 = 𝑛/2 = 1. Let us consider 𝜆1 = 𝜇, �̂�1 = 𝜇*, where

𝜇 ∈ C, and define

𝑤1 = (𝑤1,1, 𝑤1,2)
T, 𝑤1,1, 𝑤1,2 ∈ R, for 𝑛 = 1, (49)

and

𝑤1 = (𝑤1,1, 𝑤1,2, 𝑤1,3)
T,

𝑤1,1, 𝑤1,2, 𝑤1,3 ∈ C, for 𝑛 = 2. (50)

Following the above general formulation of soliton solu-

tions, the first situation leads to a class of one-soliton so-

lutions to the integrable fourth-order NLS Eq. (27) with

𝜎 = 1:

𝑝1 = [(𝛼1 − 𝛼2)(𝜇− 𝜇*)𝑤1,1𝑤1,2]

·
[︀
𝑤2

1,1e
−𝑖(𝛼1−𝛼2)𝜇

*𝑥−𝑖(𝛽1−𝛽2)𝜇
*4𝑡

+ 𝑤2
1,2e

−𝑖(𝛼1−𝛼2)𝜇𝑥−𝑖(𝛽1−𝛽2)𝜇
4 𝑡]︀−1

, (51)

where 𝜇 ∈ C, 𝑤1,1, 𝑤1,2 ∈ R are arbitrary nonzero con-

stants. The second situation yields the following one-

soliton solutions to the integrable fourth-order NLS equa-

tions in (29):

𝑝1 =
(𝛼1 − 𝛼2)(𝜇− 𝜇*)𝑤*

1,2

𝜎1𝑤*
1,1e

−𝑖(𝛼1−𝛼2)𝜇*𝑥−𝑖(𝛽1−𝛽2)𝜇*4𝑡
,

𝑝2 =
(𝛼1 − 𝛼2)(𝜇− 𝜇*)𝑤*

1,3

𝜎2𝑤*
1,1e

−𝑖(𝛼1−𝛼2)𝜇*𝑥−𝑖(𝛽1−𝛽2)𝜇*4𝑡
, (52)

where 𝑤1,2, 𝑤1,3 ∈ C need to satisfy the condition

𝜎1|𝑤1,|2 + 𝜎2|𝑤1,2|2 = 0; (53)

and the following one-soliton solutions to the integrable

fourth-order equations in (31):

𝑝1 =
(𝛼1 − 𝛼2)(𝜇− 𝜇*)𝑤*

1,3

𝜎1𝑤*
1,1e

−𝑖(𝛼1−𝛼2)𝜇*𝑥−𝑖(𝛽1−𝛽2)𝜇*4𝑡
,

𝑝2 =
(𝛼1 − 𝛼2)(𝜇− 𝜇*)𝑤*

1,2

𝜎2𝑤*
1,1e

−𝑖(𝛼1−𝛼2)𝜇*𝑥−𝑖(𝛽1−𝛽2)𝜇*4𝑡
, (54)

where 𝑤1,2, 𝑤1,3 ∈ C need to satisfy the condition

𝜎1𝑤1,2𝑤
*
1,3 + 𝜎2𝑤

*
1,2𝑤1,3 = 0. (55)

The conditions in (53) and (55) are just consequences of

the involution property in (47).

Concluding Remarks. A kind of reduced matrix lo-

cal integrable AKNS models, including matrix integrable

fourth-order NLS equations, and their soliton solutions

have been constructed. The formulation of soliton so-

lutions has been established by using the associated

Riemann–Hilbert problems. Three illustrative examples

of the resulting matrix integrable fourth-order NLS equa-

tions have been worked out, together with their one-soliton

solutions.

We point out that there is another kind of group con-

straints, through which one can create local reduced in-

tegrable mKdV equations from the AKNS matrix eigen-

value problems. [9] Therefore, there are more diverse matrix

integrable mKdV equations than matrix integrable NLS

equations. In the nonlocal case, the situation becomes

different. [10]

We also remark that it is very interesting to explore

more reduced local integrable models by different kinds

of group constraints from other Lax pairs, [30,31] integrable

couplings [32] and variable-coefficient integrable models. [33]

When conducting group constraints, we can assume to in-

clude the shifts of potentials:

𝑈†(𝑥+ 𝑥0, 𝑡+ 𝑡0, 𝜆
*) = [𝑈(𝑥+ 𝑥0, 𝑡+ 𝑡0, 𝜆

*)]†

=𝛴𝑈(𝑥, 𝑡, , 𝜆)𝛴−1, (56)

where 𝑥0, 𝑥
′
0, 𝑡0, 𝑡

′
0 are arbitrary real constants, to gener-

ate diverse reduced integrable models. It is also surely

important to study dynamical properties of exact an-

alytical solutions, including lump and breather wave

solutions, [34,35] rogue wave solutions, [36,37] Wronskian

solutions, [38,39] algebro-geometric solutions [40,41] and soli-

tonless solutions, [42] from a perspective of the Riemann–

Hilbert technique. Such studies will supplement the ex-

isting theory on fourth-order NLS equations and their

applications. [43–45]
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