
Communications in Nonlinear Science and Numerical Simulation 126 (2023) 107460

s
a
f

w

T

h
1

Contents lists available at ScienceDirect

Communications in Nonlinear Science and
Numerical Simulation

journal homepage: www.elsevier.com/locate/cnsns

Research paper

Four-component integrable hierarchies and their Hamiltonian
structures
Wen-Xiu Ma ∗

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South
Africa

a r t i c l e i n f o

Article history:
Received 11 January 2023
Received in revised form 12 July 2023
Accepted 22 July 2023
Available online 29 July 2023

MSC:
37K15
35Q55
37K40

Keywords:
Matrix spectral problem
Zero curvature equation
Integrable hierarchy NLS equations
mKdV equations

a b s t r a c t

We aim to construct four-component integrable hierarchies from a kind of matrix
spectral problems within the zero curvature formulation. The Liouville integrability of
the resulting hierarchies are guaranteed through establishing Hamiltonian structures
by the trace identity. Illustrative examples include novel four-component nonlinear
Schrödinger type equations and modified Korteweg–de Vries type equations.
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1. Introduction

Zero curvature equations play an crucial role in studying integrable equations in soliton theory [1–3]. It is an essential
tep to formulate appropriate matrix spectral problems. Let us consider a q-dimensional potential: u = (u1, . . . , uq)T and
ssume that λ is the spectral parameter. The starting point is to use loop algebras to determine spectral matrices of the
orm:

U = U(u, λ) = e0(λ) + u1e1(λ) + · · · + uqeq(λ), (1.1)

here e1, . . . , eq are linear independent and e0 is a pseudo-regular element in a loop algebra g̃:

Ker ade0 ⊕ Im ade0 = g̃, and Ker ade0 is commutative.

his property ensures that there is a Laurent series solution W =
∑

i≥0 λ−iWi to the stationary zero curvature equation:

Wx = i[U,W ]. (1.2)
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Then, an integrable hierarchy can be presented through zero curvature equations:

Ut − V [r]
x + i[U, V r]

] = 0, r ≥ 0, (1.3)

hich are the compatibility conditions between the spatial and temporal matrix spectral problems:

iφx = Uφ, iφt = V [r]φ, r ≥ 0. (1.4)

amiltonian structures of the resulting integrable equations could be worked out [4,5] by applying the trace identity:
δ

δu

∫
tr

(
W

∂U
∂λ

)
dx = λ−γ ∂

∂λ
λγ tr

(
W

∂U
∂u

)
, (1.5)

here δ
δu denotes the variational derivative with respect to u and γ is the constant:

γ = −
λ

2
∂

∂λ
ln |tr(W 2)|.

Many integrable hierarchies are generated in this way, based on the special linear algebras (see, e.g., [2,6–10]), and
the special orthogonal algebras (see, e.g., [11–13]). Usually, bi-Hamiltonian structures can be furnished, which show the
Liouville integrability of the associated zero curvature equations [14]. There are many integrable hierarchies with two
components, p and q, and four such well-known integrable hierarchies are associated with the following spectral matrices:

U =

[
λp
q −λ

]
, U =

[
λ2 λp
λq −λ2

]
, U =

[
λ λp
λq −λ

]
, U =

[
λr λp
λq −λr

]
,

here pq + r2 = 1. The corresponding integrable hierarchies are the Ablowitz–Kaup–Newell–Segur hierarchy [2], the
aup–Newell hierarchy [15], the Wadati–Konno–Ichikawa hierarchy [16] and the Heisenberg hierarchy [17], respectively.
This paper aims to construct integrable hierarchies of four-component equations within the zero curvature formulation.

otivated by recent studies on group reductions of matrix spectral problems (see, e.g., [13,18]), we take a special kind
f reduced spatial spectral matrices in the construction process. By applying the trace identity, we furnish Hamiltonian
tructures for the resulting integrable hierarchies. Two illustrative examples are four-component nonlinear Schrödinger
ype equations and four-component modified Korteweg–de Vries type equations. The final section provides a conclusion,
ogether with some concluding remarks.

. An integrable Hamiltonian hierarchy with four components

Within the zero curvature formulation, let us consider a matrix spectral problem of the form:

−iφx = Uφ = U(u, λ)φ, U =

⎡⎢⎢⎢⎢⎢⎣
−λ p1 p2 p2 p1 0
q1 0 0 0 0 p1
q2 0 0 0 0 p2
q2 0 0 0 0 p2
q1 0 0 0 0 p1
0 q1 q2 q2 q1 λ

⎤⎥⎥⎥⎥⎥⎦ , (2.1)

here u is the four-dimensional potential

u = u(x, t) = (p1, p2, q1, q2)T . (2.2)

his spectral problem cannot be reduced from the matrix Ablowitz–Kaup–Newell–Segur spectral problem (see, e.g., [18]).
In order to construct an associated integrable hierarchy, we first solve the stationary zero curvature equation (1.2) by

earching for a Laurent series solution:

W =

⎡⎢⎢⎢⎢⎢⎣
−a b1 b2 b2 b1 0
c1 0 d d 0 b1
c2 −d 0 0 −d b2
c2 −d 0 0 −d b2
c1 0 d d 0 b1
0 c1 c2 c2 c1 a

⎤⎥⎥⎥⎥⎥⎦ =

∑
s≥0

λ−sW [s], (2.3)

ith

W [s]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a[s] b[s]
1 b[s]

2 b[s]
2 b[s]

1 0

c[s]
1 0 d[s] d[s] 0 b[s]

1

c[s]
2 −d[s] 0 0 −d[s] b[s]

2

c[s]
2 −d[s] 0 0 −d[s] b[s]

2

c[s]
1 0 d[s] d[s] 0 b[s]

1
[s] [s] [s] [s] [s]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.4)
0 c1 c2 c2 c1 a
2
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Obviously, the corresponding stationary zero curvature equation yields the initial conditions:

a[0]
x = 0, b[0]

1 = b[0]
2 = c[0]

1 = c[0]
2 = 0, d[0]

x = 0, (2.5)

nd the recursion relation:{
b[s+1]
1 = ib[s]

1,x + p1a[s]
− 2p2d[s],

b[s+1]
2 = ib[s]

2,x + p2a[s]
+ 2p1d[s],

(2.6){
c[s+1]
1 = −ic[s]

1,x + q1a[s]
+ 2q2d[s],

c[s+1]
2 = −ic[s]

2,x + q2a[s]
− 2q1d[s],

(2.7)

nd ⎧⎪⎨⎪⎩
d[s+1]
x = i(q1b

[s+1]
2 − q2b

[s+1]
1 + p1c

[s+1]
2 − p2c

[s+1]
1 ),

a[s+1]
x = i(2q1b

[s+1]
1 + 2q2b

[s+1]
2 − 2p1c

[s+1]
1 − 2p2c

[s+1]
2 )

= −2(q1b
[s]
1,x + q2b

[s]
2,x + p1c

[s]
1,x + p2c

[s]
2,x),

(2.8)

here s ≥ 0. We take the initial values,

a[0]
= 1, d[0]

= 0, (2.9)

nd choose the constant of integration as zero,

a[s]
|u=0 = 0, d[s]

|u=0 = 0, s ≥ 1. (2.10)

hen, we can work out

b[1]
1 = p1, b[1]

2 = p2, c[1]
1 = q1, c[1]

2 = q2, a[1]
= 0, d[1]

= 0;{
b[2]
1 = ip1,x, b[2]

2 = ip2,x, c[2]
1 = −iq1,x, c[2]

2 = −iq2,x,
a[2]

= −2p1q1 − 2p2q2, d[2]
= p1q2 − p2q1;{

b[3]
1 = −p1,xx − 2p21q1 − 4p1p2q2 + 2p22q1,

b[3]
2 = −p2,xx + 2p21q2 − 4p1p2q1 − 2p22q2,{

c[3]
1 = −q1,xx − 2p1q21 + 2p1q22 − 4p2q1q2,

c[3]
2 = −q2,xx − 4p1q1q2 + 2p2q21 − 2p2q22,{

a[3]
= 2i(p1q1,x − p1,xq1 + p2q2,x − p2,xq2),

d[3]
= −i(p1q2,x − p2q1,x − p1,xq2 + p2,xq1);

nd {
b[4]
1 = −i(p1,xxx + 6p1p1,xq1 + 6p1p2,xq2 − 6p2p2,xq1 + 6p1,xp2q2),

b[4]
2 = −i(p2,xxx + 6p1p2,xq1 − 6p1p1,xq2 + 6p1,xp2q1 + 6p2p2,xq2),{

c[4]
1 = i(q1,xxx + 6p1q1q1,x − 6p1q2q2,x + 6p2q1q2,x + 6p2q1,xq2),

c[4]
2 = i(q2,xxx + 6p1q1q2,x + 6p1q1,xq2 − 6p2q1q1,x + 6p2q2q2,x),⎧⎪⎪⎪⎨⎪⎪⎪⎩
a[4]

= 6p21q
2
1 − 6p21q

2
2 + 24p1p2q1q2 − 6p22q

2
1 + 6p22q

2
2

+2p1q1,xx + 2p1,x,xq1 + 2p2q2,xx + 2p2,xxq2 − 2p1,xq1,x − 2p2,xq2,x,
d[4]

= −6(p1q1 + p2q2)(p1q2 − p2q1) − p1,xxq2 + p2,xxq1
+p2q1,xx − p1q2,xx + p1,xq2,x − p2,xq1,x.

At this moment, we can see that the temporal matrix spectral problems:

−iφt = V [r]φ = V [r](u, λ)φ, V [r]
= (λrW )+ =

r∑
s=0

λsW [r−s], r ≥ 0, (2.11)

re the other parts of Lax pairs of matrix spectral problems in the zero curvature formulation. The compatibility conditions
f the spatial and temporal matrix spectral problems in (2.1) and (2.11) are the zero curvature equations in (1.3). Those
quations generate a four-component integrable hierarchy:

[r] [r+1] [r+1] [r+1] [r+1] T
utr = K = (ib1 , ib2 , −ic1 , −ic2 ) , r ≥ 0, (2.12)

3
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or more concretely,

p1,tr = ib[r+1]
1 , p2,tr = ib[r+1]

2 , q1,tr = −ic[r+1]
1 , q2,tr = −ic[r+1]

2 , r ≥ 0. (2.13)

The first two nonlinear examples in this integrable hierarchy are the nonlinear Schrödinger type equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
ip1,t2 = p1,xx + 2p21q1 + 4p1p2q2 − 2p22q1,
ip2,t2 = p2,xx − 2p21q2 + 4p1p2q1 + 2p22q2,
iq1,t2 = −q1,xx − 2p1q21 + 2p1q22 − 4p2q1q2,
iq2,t2 = −q2,xx − 4p1q1q2 + 2p2q21 − 2p2q22,

(2.14)

nd the modified Korteweg–de Vries type equations⎧⎪⎪⎨⎪⎪⎩
p1,t3 = p1,xxx + 6p1p1,xq1 + 6p1p2,xq2 − 6p2p2,xq1 + 6p1,xp2q2,
p2,t3 = p2,xxx + 6p1p2,xq1 − 6p1p1,xq2 + 6p1,xp2q1 + 6p2p2,xq2,
q1,t3 = −q1,xxx − 6p1q1q1,x + 6p1q2q2,x − 6p2q1q2,x − 6p2q1,xq2,
q2,t3 = −q2,xxx − 6p1q1q2,x − 6p1q1,xq2 + 6p2q1q1,x − 6p2q2q2,x.

(2.15)

hey add to the class of integrable nonlinear Schrödinger equations and modified Korteweg–de Vries equations.

. Hamiltonian structures

To establish Hamiltonian structures for the integrable hierarchy (2.13), we apply the trace identity (1.5) to the matrix
pectral problem (2.1). Noting that the solution W is given by (2.3), we can directly compute

tr
(
W

∂U
∂λ

)
= 2a, tr

(
W

∂U
∂u

)
= 4(c1, c2, b1, b2)T ,

nd hence, we have
δ

δu

∫
a[s+1]λ−s−1 dx = 2λ−γ ∂

∂λ
λγ−s(c[s]

1 , c[s]
2 , b[s]

1 , b[s]
2 )T , s ≥ 0.

pon considering the case with s = 2, we know γ = 0, and therefore, we obtain

δH[s]

δu
=

δ

δu

∫
H [s] dx = 2(c[s+1]

1 , c[s+1]
2 , b[s+1]

1 , b[s+1]
2 )T , s ≥ 0, (3.1)

here the Hamiltonian functionals are given by

H[s]
= −

∫
a[s+2]

s + 1
dx, s ≥ 0. (3.2)

This allows us to establish the Hamiltonian structures for the integrable hierarchy (2.13):

utr = Kr = J
δH[r]

δu
, J =

⎡⎢⎢⎢⎣
0

1
2 i 0

0 1
2 i

−
1
2 i 0

0 −
1
2 i

0

⎤⎥⎥⎥⎦ , r ≥ 0, (3.3)

here J is a Hamiltonian operator and the Hamiltonian functionals H[r] are defined by (3.2). These Hamiltonian structures
show a relation S = J δH

δu from a conserved functional H to a symmetry S. The commuting characteristic of those
ymmetries:

[[Ks1 , Ks2 ]] = K ′

s1 (u)[Ks2 ] − K ′

s2 (u)[Ks1 ] = 0, s1, s2 ≥ 0, (3.4)

is guaranteed by exploring a Lax operator algebra:

[[V [s1], V [s2]
]] = V [s1]′(u)[K [s2]

] − V [s2]′(u)[K [s1]
] + [V [s1], V [s2]

] = 0, s1, s2 ≥ 0, (3.5)

which is a consequence of the isospectral zero curvature equations (see [19] for details). It further follows from the
Hamiltonian structures that the conserved functionals also commute under the corresponding Poisson bracket:

{Hs1 ,Hs2}J =

∫ (δH[s1]

δu

)T J δH[s2]

δu
dx = 0, s1, s2 ≥ 0. (3.6)

y combining J with a recursion operator [20], generated from Ks determined by (2.6), (2.7) and (2.8), bi-Hamiltonian
tructures [14] can also be established for the integrable equations in the hierarchy (2.13).
4
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4. Generalized integrable hierarchies

Let n ≥ 1 be an arbitrary natural number. If we take a generalization of the matrix spectral problem (2.1):

iφx = Uφ, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ p1 p2 · · · p2 p1 0
q1
q2
...

q2
q1

0

p1
p2
...

p2
p1

0 q1 q2 · · · q2 q1 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+4)×(n+4)

, (4.1)

nd a Laurent series solution

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a b1 b2 · · · b2 b1 0
c1 0 d · · · d 0 b1
c2 −d 0 · · · 0 −d b2
...

...
...

. . .
...

...
...

c2 −d 0 · · · 0 −d b2
c1 0 d · · · d 0 b1
0 c1 c2 · · · c2 c1 a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+4)×(n+4)

=

∑
s≥0

λ−sW [s],

with W [s] being defined by

W [s]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a[s] b[s]
1 b[s]

2 · · · b[s]
2 b[s]

1 0

c[s]
1 0 d[s]

· · · d[s] 0 b[s]
1

c[s]
2 −d[s] 0 · · · 0 −d[s] b[s]

2
...

...
...

. . .
...

...
...

c[s]
2 −d[s] 0 · · · 0 −d[s] b[s]

2

c[s]
1 0 d[s]

· · · d[s] 0 b[s]
1

0 c[s]
1 c[s]

2 · · · c[s]
2 c[s]

1 −a[s]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(n+4)×(n+4)

,

to the stationary zero curvature equation (1.2), then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1,x = i(p1a − np2d − λb1),
b2,x = i(p2a + 2p1d − λb2),
c1,x = −i(q1a + nq2d − λc1),
c2,x = −i(q2a − 2q1d − λc2),
dx = i(q1b2 − q2b1 + p1c2 − p2c1),
ax = i(2q1b1 + nq2b2 − 2p1c1 − np2c2)

= −(2q1b1,x + nq2b2,x + 2p1c1,x + np2c2,x),

and

δ

δu

∫
a dx = λ−γ ∂

∂λ
λγ (2c1, nc2, 2b1, nb2)T .

Therefore, we obtain the Hamiltonian structures of those associated integrable equations:

utr = Kr = (ib[r+1]
1 , ib[r+1]

2 , −ic[r+1]
1 , −ic[r+1]

2 )T = J
δH[r]

δu
, r ≥ 0, (4.2)

here

J =

⎡⎢⎢⎢⎣
0

1
2 i 0

0 1
n i

−
1
2 i 0

1 0

⎤⎥⎥⎥⎦ , H[r]
= −

∫
a[r+2]

r + 1
, r ≥ 0. (4.3)
0 − n i
5
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If we take the initial values in (2.9) and zero constants of integration, then we can work out the first two nonlinear
xamples in those generalized hierarchies, which are the nonlinear Schrödinger type equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

ip1,t2 = p1,xx + 2p21q1 + 2np1p2q2 − np22q1,
ip2,t2 = p2,xx − 2p21q2 + 4p1p2q1 + np22q2,
iq1,t2 = −q1,xx − 2p1q21 + np1q22 − 2np2q1q2,
iq2,t2 = −q2,xx − 4p1q1q2 + 2p2q21 − np2q22,

(4.4)

nd the modified Korteweg–de Vries type equations⎧⎪⎪⎨⎪⎪⎩
p1,t3 = p1,xxx + 6p1p1,xq1 + 3np1p2,xq2 − 3np2p2,xq1 + 3np1,xp2q2,
p2,t3 = p2,xxx + 6p1p2,xq1 − 6p1p1,xq2 + 6p1,xp2q1 + 3np2p2,xq2,
q1,t3 = −q1,xxx − 6p1q1q1,x + 3np1q2q2,x − 3np2q1q2,x − 3np2q1,xq2,
q2,t3 = −q2,xxx − 6p1q1q2,x − 6p1q1,xq2 + 6p2q1q1,x − 3np2q2q2,x.

(4.5)

here n is an arbitrary natural number.

. Concluding remarks

A few integrable hierarchies of Hamiltonian equations with four components have been presented from a kind of
pecial matrix spectral problems within the zero curvature formulation. One crucial step is to compute a Laurent series
olution to the corresponding stationary zero curvature equations. The resulting integrable equations possess Hamiltonian
tructures, established by an application of the trace identity to the underlying matrix spectral problems.
The considered matrix spectral problems could be generalized further by taking more copies of p1 as did for p2 (see,

.g., [21]). Of course, we can also involve more dependent variables in matrix spectral problems to generate bigger systems
f integrable equations.
It should be interesting to explore structures of soliton solutions to the resulting integrable equations by solution

pproaches in soliton theory, such as the Riemann–Hilbert technique [22], the Zakharov–Shabat dressing method [23],
he Darboux transformation [24,25] and the determinant approach [26]. If we start from the infinite-dimensional algebra
l(∞), then we can have soliton solutions presented by a τ -function theory. There are many other types of interesting
olutions (see, e.g., [27–31]), which can be computed by taking wave number reductions of soliton solutions. Upon
onducting nonlocal group reductions for matrix spectral problems, nonlocal reduced integrable equations can also be
resented (see, e.g., [32–35]). It needs a further investigation how to formulate soliton solutions to the resulting integrable
quations and their associated nonlocal reduced integrable equations.
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