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1. Introduction

Zero curvature equations play an crucial role in studying integrable equations in soliton theory [1-3]. It is an essential
step to formulate appropriate matrix spectral problems. Let us consider a g-dimensional potential: u = (uy, ..., uq)T and
assume that A is the spectral parameter. The starting point is to use loop algebras to determine spectral matrices of the
form:

U=U(u, A) =eg(r) + ujei(A) + - - - + ugeq(), (1.1)
where ey, ..., eq are linear independent and e is a pseudo-regular element in a loop algebra g:
Kerade, ® Imad,, = g, and Kerad,, is commutative.
This property ensures that there is a Laurent series solution W = Zizo AW, to the stationary zero curvature equation:
W, =i[U, W]. (1.2)
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Then, an integrable hierarchy can be presented through zero curvature equations:

U — V" i, vl =0, r> o0, (1.3)
which are the compatibility conditions between the spatial and temporal matrix spectral problems:

ipx = Ugp, igy = V", r > 0. (1.4)
Hamiltonian structures of the resulting integrable equations could be worked out [4,5] by applying the trace identity:

%/tr(w%}) dx =177 %Mtr(w%), (1.5)

where 5% denotes the variational derivative with respect to u and y is the constant:

A0 9
y = ¥ In |tr((W*)|.

Many integrable hierarchies are generated in this way, based on the special linear algebras (see, e.g., [2,6-10]), and
the special orthogonal algebras (see, e.g., [11-13]). Usually, bi-Hamiltonian structures can be furnished, which show the
Liouville integrability of the associated zero curvature equations [14]. There are many integrable hierarchies with two
components, p and q, and four such well-known integrable hierarchies are associated with the following spectral matrices:

AD 2 Ap A Ap AT Ap
o= el el BB 2]

where pq + r?> = 1. The corresponding integrable hierarchies are the Ablowitz-Kaup-Newell-Segur hierarchy [2], the
Kaup-Newell hierarchy [15], the Wadati-Konno-Ichikawa hierarchy [16] and the Heisenberg hierarchy [17], respectively.

This paper aims to construct integrable hierarchies of four-component equations within the zero curvature formulation.
Motivated by recent studies on group reductions of matrix spectral problems (see, e.g., [13,18]), we take a special kind
of reduced spatial spectral matrices in the construction process. By applying the trace identity, we furnish Hamiltonian
structures for the resulting integrable hierarchies. Two illustrative examples are four-component nonlinear Schrédinger
type equations and four-component modified Korteweg-de Vries type equations. The final section provides a conclusion,
together with some concluding remarks.

2. An integrable Hamiltonian hierarchy with four components

Within the zero curvature formulation, let us consider a matrix spectral problem of the form:
—A P1 D2 D2

D1

g 0 0 0 0 p

. _ _ _ a2 0 0 0 0 D2
_1¢x - U¢ - U(uv )»)(157 U= Q2 0 0 0 0 P2 ) (21)

a1 0 0 0 0 D1

0 1 @2 2 ¢1 2

where u is the four-dimensional potential

u=u(x,t)=(p1,p2, 1. 42)"- (2.2)

This spectral problem cannot be reduced from the matrix Ablowitz-Kaup-Newell-Segur spectral problem (see, e.g., [18]).
In order to construct an associated integrable hierarchy, we first solve the stationary zero curvature equation (1.2) by
searching for a Laurent series solution:

—a b] b2 b2 b] 0
C1 0 d d 0 b1

_ C —d 0 0 —d bz _ —sya7[s]
W= 2 240 0 —d b |=2AWE (2.3)
cc 0 d d 0 b 520
0 Cq C; C Cq a
with
B [s] [s] [s] [s] T
—alst it pSt B Bl 0
o S (Y (L [ B 8
1 _ sl _ sl pls)
wh_| © ds 0 o d¥ bl 24

gl —d¥ 0 0 —ds b
o0 a g o BV

[s] [s] [s] [s] [s]
0 G G G G a'
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Obviously, the corresponding stationary zero curvature equation yields the initial conditions:

a% =0, B = bl = 0 =% =g, g% =0, (2.5)
and the recursion relation:
B = i) + pra — 2p,d!,

(2.6)
by = ib5), + pyal! + 2pydt),
C£s+1] — —ic [s] !+ q1a% + 2q,d", (2.7)
C£s+ll [s] !+ q2a" — 2q,d", '

and

d£s+1] _ i(qlb[ZSH] b[s+1] +p1 C[s+1] P2 C£s+1]),

a)[{s+]] = i(2q; b[s+1] + 24 b[s+1] —2pic [s+1] —2p, C[s+1]) (2.8)
= —2(q:b} + q2b5), + prct) + pzcﬂ)

where s > 0. We take the initial values,

ad =1, d% =, (2.9)
and choose the constant of integration as zero,

a¥yo =0, d¥),o=0, s> 1. (2.10)
Then, we can work out

B =y, B = py, (M =gy, T = g5, aV =0, dV =0

b = ipyy, B =ipyy, I = —igiy, ' = —igyy,
a? = —2p1qy — 2p2qa. d* = pigy — paqu;

b = —p1w — 20%q1 — 4p1p2g2 + 20304,

b = —py  + 2202 — 4p1p2q1 — 20302,

[3] = —(q1xx — 2p1Q1 + 2p1Q2 — 4p2q14z,

[3] = —Qoxx — 410102 + 22G% — 2D2G3,
0[3] = 2i(p1q1.x — P1x41 + DP2G2.x — P2.x92),

dB = —i(p1gax — P2G1x — P1.xG2 + P2x1);

and
b[14] = —i(P1,xxx + 6P1P1,xq1 + 6P1P2,xq2 — 6P2P2,xq1 + 6P1.xP242),
b = —i(p3.x + 6P1D2.441 — 6P1P1.4G2 + 6P1.xP2G1 + 6P2P2x02),
i = i(q1.0 + 6P101G1.x — 6P1G2G2.x + 6P201G2.x + 6P2G1.xG2),
“” = i(q2.0x + 6P1G1G2.x + 6P1G1.4G2 — 6D2G1G1.x + 6P202G2.),

a[‘” = 6p1q; — 6piq5 + 24p1p2q192 — 6P3q; + 6p5q5

+2p1q91.xx + 2P1,xxq1 + 2D2G2.5x + 2P2.xxG2 — 2DP1,xq1.x — 2P2.x92.x5
d¥ = —6(p1q1 + P202)(P192 — P2q1) — P12 + P2xn

+P2q1.xx — P192.xx T P1.x92.x — D2.xq1.x-
At this moment, we can see that the temporal matrix spectral problems:

—igy = VI = VI, )g, VIT=w), Z,\SW” r >0, (2.11)
s=0

are the other parts of Lax pairs of matrix spectral problems in the zero curvature formulation. The compatibility conditions
of the spatial and temporal matrix spectral problems in (2.1) and (2.11) are the zero curvature equations in (1.3). Those
equations generate a four-component integrable hierarchy:

u, = KM = @+ ipl el el > o (2.12)
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or more concretely,

o [r+1 o [r+1 . [r+1 . [r+1
prg =Y poy = ibY gy = =i gy = —icd Y, r > 0. (2.13)

The first two nonlinear examples in this integrable hierarchy are the nonlinear Schrédinger type equations

P16, = P1xx + 20701 + 4p1P2q2 — 2p301,
ip2.t, = Paxe — 2P3q2 + 4P1D2q1 + 2P52, 2.14)
iq16, = —q1 0 — 2P1G3 + 2p145 — 4P201G2, '
iq2.t, = —Qoxx — 4019102 + 2205 — 2D205,

and the modified Korteweg-de Vries type equations
P15 = P1xw + 6P1P1,xG1 + 6P1P2,xG2 — 6P2P2,xq1 + 6P1,xP202,
P2,t5 = P2, + 6P1P2,xq1 — 6P1P1,xG2 + 6P1,xP2G1 + 6P2pP2,xG2, (2.15)
d1.t; = —q1.xx — 6P191G1.x + 6P192G2.x — 6D2G192.x — 6P2G1.x92,
G2.t; = —Q2.xxx — 6P19192.x — 6P1q1.xG2 + 6P2G191.x — 6P2G2G2 x-

They add to the class of integrable nonlinear Schrodinger equations and modified Korteweg-de Vries equations.
3. Hamiltonian structures

To establish Hamiltonian structures for the integrable hierarchy (2.13), we apply the trace identity (1.5) to the matrix
spectral problem (2.1). Noting that the solution W is given by (2.3), we can directly compute

ou ou
tr(W —) = 2a, tr(W—) = 4(cy, ¢3, by, by)T,
(ax) (Bu) (c1, €2, by, by)
and hence, we have

8 ad
& [t g onr Lars) Y sz 0

su
Upon considering the case with s = 2, we know y = 0, and therefore, we obtain
SHEY 8
= @/H[s] dx — Z(C%H—]J’ C£s+lj, b[]s+lj, bgs#—lJ)T, s>0, (3.1)
where the Hamiltonian functionals are given by
alst+21
H = — / dx, s> 0. (3.2)
s+1
This allows us to establish the Hamiltonian structures for the integrable hierarchy (2.13):
o 3i 0
S 0 1
u, =K =]——. ] = 2 _|.r=o, (3.3)
Su ~Ti o
2 0
‘l .
0 —5i

where J is a Hamiltonian operator and the Hamiltonian functionals %™ are defined by (3.2). These Hamiltonian structures
show a relation S = J % from a conserved functional H to a symmetry S. The commuting characteristic of those
symmetries:

[Ks,, Ks, I = K (WK, 1 — K, (W)[Ks; 1 =0, s1,52 > 0, (3.4)
is guaranteed by exploring a Lax operator algebra:
IIV[SH7 V[Szl]] — V[Sﬂ/(u)[K[Sz]] _ V[Szlf(u)[K[Sll] + [V[SI], Vlszl] =0, 51,5 >0, (3.5)

which is a consequence of the isospectral zero curvature equations (see [19] for details). It further follows from the
Hamiltonian structures that the conserved functionals also commute under the corresponding Poisson bracket:

SHI syl
{Hs;, He Jy = /( 5 )] 5 dx =0, 51,52 > 0. (3.6)

By combining | with a recursion operator [20], generated from K; determined by (2.6), (2.7) and (2.8), bi-Hamiltonian
structures [14] can also be established for the integrable equations in the hierarchy (2.13).
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4. Generalized integrable hierarchies

Let n > 1 be an arbitrary natural number. If we take a generalization of the matrix spectral problem (2.1):

M =X p1 P2 - P2 D1 0
a1 D1
qz D2
ipy =Ug¢, U= : 0 : , (4.1)
a2 D2
q1 D1
L 0 q1 q2 e q2 q1 A J(n+4)x(n+4)
and a Laurent series solution
M —a b1 b2 cee bz b] 0 7
C1 0 d s d 0 b]
C —d 0 s 0 —d b2
W=l =D _Amwe,
Cy —d 0 s 0 —d b2 520
C1 0 d s d 0 b]
L 0O a a - @ a & |
with WU being defined by
— a[s] b[]s] b[zs] . b[zs] b[]s] 0 —_
e A B
[s] [s]
czS —d 0 ... 0 —d¥ b;
whl = : : : : : ,
C%SJ —ds' o0 ... 0 —g¥ bESJ
o a0 bV
[s] [s] [s] [s] _Als]
0 o G G g @ e (naa)

to the stationary zero curvature equation (1.2), then we have

b1x = i(p1a — npad — Ab1),
by x = i(p2a + 2p1d — Aby),
C1x = —i(q1a + ngad — Acq),
Cox = —i(q2a — 2q1d — Acp),
dy = i(q1b2 — q2b1 + p1cy — pac1),
ay = i(2q1b1 + nqaby — 2pic1 — npaca)
= —(2q1b1x + ngaby x + 2p1€1x + nP2C2x),

and
i/adx:)\_yi)\y(Zq ncy, 2by, nby)"
Su oA ’ ’ ’ ’

Therefore, we obtain the Hamiltonian structures of those associated integrable equations:

_ _ faalr 1] [r41] . [r+1]  [r1NT 5'?"[[”
utr - I<r - (lbl ’lbz ’ _lC] ’ _lCZ ) _‘] (Su ’ r 2 0, (42)
where
‘l.
0 51 0
0 1 rl alr+21
= - n , H = — . T Z 0 43
! —3i 0 0 /r+1 (4.3)
0 —i
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If we take the initial values in (2.9) and zero constants of integration, then we can work out the first two nonlinear
examples in those generalized hierarchies, which are the nonlinear Schrodinger type equations

iP1.t, = Prax + 2D3q1 + 2np1P2q2 — NP34s,
iP2.t; = P2x — 2P342 + 4p1P2q1 + NP302, (44)
iq1.t, = —q1.0 — 2P1G7 + NP1G5 — 2nP2G1 a2, '
iq2.0, = —Q2.0 — 4D10192 + 2P2G5 — NP2q3.

and the modified Korteweg-de Vries type equations
P1e; = P1axx + 6P1P1.4q1 + 3nP1P2.xq2 — 3nP2P2.xq1 + 3nP1.xP2G2,
D2,t; = DP2,xxx + 6D1P2,xq1 — 6P1D1,xq2 + 6P1.xP2G1 + 3nP2pP2.xq2, (45)
q1.t; = —q1xx — 6P141G1,x + 3MP1G2G2.x — 31P2G1G2,x — 3NP2q1.492,
G2,t; = —q2.xxx — 6P191G2,x — 6P1q1.xG2 + 6P2G191,x — 3NP2G2q2 -

where n is an arbitrary natural number.
5. Concluding remarks

A few integrable hierarchies of Hamiltonian equations with four components have been presented from a kind of
special matrix spectral problems within the zero curvature formulation. One crucial step is to compute a Laurent series
solution to the corresponding stationary zero curvature equations. The resulting integrable equations possess Hamiltonian
structures, established by an application of the trace identity to the underlying matrix spectral problems.

The considered matrix spectral problems could be generalized further by taking more copies of p; as did for p, (see,
e.g., [21]). Of course, we can also involve more dependent variables in matrix spectral problems to generate bigger systems
of integrable equations.

It should be interesting to explore structures of soliton solutions to the resulting integrable equations by solution
approaches in soliton theory, such as the Riemann-Hilbert technique [22], the Zakharov-Shabat dressing method [23],
the Darboux transformation [24,25] and the determinant approach [26]. If we start from the infinite-dimensional algebra
gl(o0), then we can have soliton solutions presented by a t-function theory. There are many other types of interesting
solutions (see, e.g., [27-31]), which can be computed by taking wave number reductions of soliton solutions. Upon
conducting nonlocal group reductions for matrix spectral problems, nonlocal reduced integrable equations can also be
presented (see, e.g., [32-35]). It needs a further investigation how to formulate soliton solutions to the resulting integrable
equations and their associated nonlocal reduced integrable equations.
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