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We comment on traveling wave solutions and rational solutions to the 3+1 dimensional
Kadomtsev–Petviashvili (KP) equations: (ut + 6uux + uxxx)x ± 3uyy ± 3uzz = 0. We also show
that both of the 3+1 dimensional KP equations do not possess the three-soliton solution.
This suggests that none of the 3+1 dimensional KP equations should be integrable, and par-
tially explains why they do not pass the Painlevé test. As by-products, the one-soliton and
two-soliton solutions and four classes of specific three-soliton solutions are explicitly
presented.

� 2010 Elsevier B.V. All rights reserved.
The 3+1 dimensional Kadomtsev–Petviashvili (KP) equations read
ðut þ 6uux þ uxxxÞx � 3uyy � 3uzz ¼ 0; ð1Þ
which describe three-dimensional solitons in weakly dispersive media [1], particularly in fluid dynamics and plasma physics
[2,3]. Like the 2 + 1 dimensional KP equations, the 3+1 dimensional KP equations with the negative sign ‘‘�” and the positive
sign ‘‘+” are called the 3+1 dimensional KP-I and KP-II equations, respectively. Several classes of exact traveling wave solu-
tions to the 3+1 dimensional KP-II equation were presented by various authors (see, e.g., [4–6]). Very recently, traveling
wave solutions and rational solutions were discussed and generated in [7,8] for the 3+1 dimensional KP-I equation, based
on the homogeneous balance method and under help of a Riccati equation.

In this note, on one hand, we would like to explain that more general traveling wave and rational solutions, including the
ones presented in [4–8], can be constructed under transformations of dependent and independent variables. Three exact and
explicit solutions to a Riccati equation will help in generating those solutions. This also contributes to identifying and cor-
recting one common error in finding exact solutions to nonlinear wave equations: not using sufficiently general classes of
solutions to ordinary differential equations [9]. On the other hand, using the Hirota bilinear method, we would like to ana-
lyze the existence condition of the three-soliton solution, and present the one-soliton and two-soliton solutions and four
classes of specific three-soliton solutions to both of the 3+1 dimensional KP equations.

It is known that many direct methods are nowadays available for constructing exact traveling wave solutions to nonlinear
differential equations. The Riccati equation
/n ¼ a/2 þ b ða – 0Þ ð2Þ
plays a crucial role in manipulating nonlinear equations to get exact solutions by the homogeneous balance method. This
equation has the following three exact solutions [10]:
. All rights reserved.

th.usf.edu

http://dx.doi.org/10.1016/j.cnsns.2010.10.003
mailto:mawx@cas.usf.edu
mailto:mawx@math.usf.edu
http://dx.doi.org/10.1016/j.cnsns.2010.10.003
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


2664 W.X. Ma / Commun Nonlinear Sci Numer Simulat 16 (2011) 2663–2666
/ ¼ � 1
anþ n0

; n0 ¼ const:; ð3Þ
when b = 0;
/ ¼ �2e
ffiffiffiffiffiffiffiffiffiffi
�ab
p

a
1

n0 expð�2e
ffiffiffiffiffiffiffiffiffiffi
�ab
p

nÞ þ 1
þ e

ffiffiffiffiffiffiffiffiffiffi
�ab
p

a
¼

e
ffiffiffiffiffiffi
�ab
p

a ; for n0 ¼ 0;

�
ffiffiffiffiffiffi
�ab
p

a tanhð
ffiffiffiffiffiffiffiffiffiffi
�ab
p

n� e ln n0
2 Þ; for n0 > 0; ðe ¼ �1Þ

�
ffiffiffiffiffiffi
�ab
p

a cothð
ffiffiffiffiffiffiffiffiffiffi
�ab
p

n� e lnð�n0Þ
2 Þ; for n0 < 0;

8>>>><
>>>>:

ð4Þ
when ab < 0; and
/ ¼
ffiffiffiffiffiffi
ab
p

a
tan

ffiffiffiffiffiffi
ab

p
nþ n0

� �
; n0 ¼ const:; ð5Þ
when ab > 0. These help generate various traveling wave solutions, including periodic traveling wave solutions, in elemen-
tary functions, and the traveling wave solutions obtained in [7,8] corresponds to a sub-case of the solution (4).

It is difficult and even impossible in most cases to determine the solution set of a nonlinear differential equation, and so,
the concept of general solutions is introduced only in the field of linear differential equations. Nonlinear differential equa-
tions possess diverse solutions, indeed [11]. For example, there exist soliton solutions, positon solutions and complexiton
solutions to many integrable equations (see, e.g., [12] for the KdV case). For a generalized differential equation
ðut þ Kðu;ux; . . .ÞÞx þ auyy þ buzz ¼ 0; a; b ¼ consts:;
a kind of traveling wave solutions
u ¼ f kxþ lyþmzþxt � al2 þ bm2

k
t

 !
; ð6Þ
where l and m are arbitrary constants, can be generated [13] from a known traveling wave solution u = f(kx + x t) (k – 0) to
the original differential equation
ut þ Kðu;ux; . . .Þ ¼ 0;
which is assumed to be invariant under the translation of independent variables. The traveling wave solutions presented for
the 3+1 dimensional KP-I equation in [7] and for the 3+1 dimensional KP-II equation in [4–6] are among such a class of exact
solutions. A general practical algorithm for generating traveling wave solutions was given in [14], which unifies many exist-
ing methods such as the tanh-function method, the homogeneous balance method and the exp-function method.

Upon taking the transformation r = x + cz + dt, where c and d are constants, the 3+1 dimensional KP-II equation by (1) can
be reduced to the good Boussinesq equation
ð6uur þ urrrÞr þ ðdþ 3c2Þurr þ 3uyy ¼ 0:
This equation can be transformed into the standard good Boussinesq equation
ðv2Þr þ v rrrr þ vyy ¼ 0; ð7Þ
under a transformation
uðr; yÞ ¼ � dþ 3c2
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A Wronskian formulation to get rational solutions to the standard good Boussinesq equation was given in [15], and it can be
used to present rational solutions to the 3+1 dimensional KP-II equation defined by (1). An interesting open question for us
is: Is there any other rational solution to (7) not in the Wronskian form presented in [15]?

Let us now analyze the existence condition of the three-soliton solution. It is direct to see that under the transformation of
dependent variables
u ¼ 2ðln f Þxx; ð8Þ
the 3+1 dimensional KP equations defined by (1) can be cast into
P�ðDx;Dy;Dz;DtÞf � f ¼ 0; ð9Þ
where Dx, Dy, Dz and Dt are Hirota’s differential operators [16] and two polynomials P± are defined by
P�ðx; y; z; tÞ ¼ x4 þ xt � 3y2 � 3z2: ð10Þ
Those bilinear equations in (9) exactly give
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fxxxxf � 4f xfxxx þ 3f 2
xx þ ffxt � fxft � 3 ffyy � f 2

y þ ffzz � f 2
z

� �
¼ 0;
for which a sufficient condition is
fxxxx þ fxt � 3f yy � 3f zz ¼ 0;

�4f xfxxx þ 3f 2
xx � fxft � 3f 2

y � 3f 2
z ¼ 0:

(
ð11Þ
In attempting to find the three-soliton solution, we always introduce three wave variables:
gi ¼ kixþ liyþmizþxit þ gi;0; 1 6 i 6 3; ð12Þ
where ki, li, mi, xi, 1 6 i 6 3, are constants to be determined, and gi,0, 1 6 i 6 3, are arbitrary constant shifts; and define a set
of prominent constants:
Aij ¼ �
P�ðki � kj; li � lj;mi �mj;xi �xjÞ
P�ðki þ kj; li þ lj;mi þmj;xi þxjÞ

; 1 6 i; j 6 3: ð13Þ
Following Hirota’s bilinear theory [16], we know that under the dispersion relations
k4
i þ kixi � 3l2i � 3m2

i ¼ 0; 1 6 i 6 3; ð14Þ
the 3+1 dimensional KP equations by (1) have the one-soliton and two-soliton solutions:
f ¼ 1þ eeg1 ; f ¼ 1þ eðeg1 þ eg2 Þ þ e2A12eg1þg2 ; ð15Þ
where e is an arbitrary perturbation parameter. Moreover, under (14), the 3+1 dimensional KP equations by (1) have the
three-soliton solution
f ¼ 1þ eðeg1 þ eg2 þ eg3 Þ þ e2ðA12eg1þg2 þ A13eg1þg3 þ A23eg2þg3 Þ þ e3A123eg1þg2þg3 ; ð16Þ
where A123 = A12A13A23 and e is an arbitrary perturbation parameter, if and only if the corresponding three-soliton conditions
[17,18]:
 X
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are satisfied, where �pi ¼ ðki; li;mi;xiÞ;1 6 i 6 3. More general exact solutions than the two-soliton solution can be computed
by adopting an ansatz:
f ¼ 1þ gðg1Þeg2 ;
where g has many choices determined by (11) [19].
The existence of the three-solution solutions usually implies the integrability [20] of the considered equations. Noting

that the even property of the polynomials P±, a direct computation can show that
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where S = {(1,1,1), (1,1,�1), (1,�1,1), (�1,1,1)}. Since the last term cannot equal to zero automatically, the 3+1 dimensional
bilinear KP equations by (9) do not have the three-soliton solution. This is in agreement with that the equations by (9) do not
pass the Painlevé test [21]. For more generalized KP equations, their existence and non-existence cases for localized solitary
waves were classified according to the sign of the transverse dispersion coefficients and to the nonlinearity in [22]. The non-
existence of the three-soliton solution also suggests that none of the 3+1 dimensional KP equations by (1) should be inte-
grable. Nevertheless, the formula in (18) allows us to conclude that under (14), the function f defined by (16) gives rise
to an exact three-wave solution provide that one of the following two conditions holds:

(a) one of three wave numbers ki, 1 6 i 6 3, is zero;
(b) any two of three vectors (k1,k2,k3), (l1, l2, l3) and (m1,m2,m3) are parallel.

The condition (a) presents one class of specific three-wave solutions, due to a cyclic characteristic, and the condition (b) pre-
sents three classes of specific three-wave solutions. The last three classes actually correspond to the three-soliton solutions
of three dimensional reductions of the 3+1 dimensional KP equations.
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To summarize, we have discussed traveling wave solutions, including periodic traveling wave solutions, and rational solu-
tions to both of the 3+1 dimensional KP equations defined by (1), using transformations of independent and dependent vari-
ables and three exact solutions to the Riccati Eq. (2). We have also showed that both of the 3+1 dimensional KP equations by
(1) do not pass the three-soliton solution test. This suggests that none of the 3+1 dimensional KP equations by (1) should be
integrable, and partially explains why they do not possess the Painlevé property. The one-soliton and two-soliton solutions
and four classes of specific three-soliton solutions are presented as by-products.
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