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1. Introduction

Soliton equations including soliton equations with self-consistent sources [1,2], source soliton equations [3] and con-
strained soliton equations [4–7] arise in many fields of applied science such as nonlinear optics, hydrodynamics, solid state
physics, and plasma physics, mechanics and mathematical physics. Among the extended KP and mKP hierarchies are the KdV
equation, the KP equation, the NLS equation, the Boussinesq equation and the Davey–Stewartson equation with self-consis-
tent sources as examples. There are different approaches to solve those nonlinear systems of soliton equations [2,8–10] and
Darboux transformations yield complexiton solutions besides soliton and positon solutions [11]. Non-Lie symmetries ex-
pressed in terms of squared eigenfunctions play a key role in separating, constraining or extending soliton equations within
the Lax formulation (see, e.g., [12,13]). There are also various other generalized KP hierarchies, for example, the ones gener-
ated by proper combinations of the additional symmetry generators [14], from the nonlocal �@-problem for the wave function
[15], by introducing fractional-order pseudo-differential operators [16], and by including a set of evolution equations in the
Moyal deformation parameters [17].

An extended KP hierarchy and an extended q-deformed KP hierarchy were presented recently by using the dressing oper-
ator and its corresponding wave function [18,19]. The dressing technique (see, e.g., [20]) was used to solve the extended KP
hierarchy and the extended mKP hierarchy. Sato’s theory (see, e.g., [21]) was also extended to construct Wronskian solutions
of the extended KP and mKP flows [22]. Those results generalize integrable theories of the KP and q-deformed KP equations
with self-consistent sources and the constrained KP and q-deformed KP equations.

All extended KP flows can commute with the KP flows [18]. With this in mind, a natural question is whether the extended
KP flows themselves can be commutative or not. Any study on such a problem will help establish a s-function theory, impor-
tant in soliton mathematics, for an extended integrable hierarchy. In this paper, we will discuss this question and answer the
. All rights reserved.
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question by constructing the compatibility equations of the extended KP flows. The resulting compatibility equations have
Lax presentations with Lax pairs involving two extended operators. We will illustrate the compatibility equations by two
particular examples. The compatibility equations of the k-constrained extended KP hierarchy will also be analyzed, together
with two examples in this reduced case. Conclusions and a more general question are given in the last section.
2. Compatibility equations

2.1. The extended KP flows

Let us recall the construction of the extended KP hierarchy by the technique of pseudo-differential operators [18]. We
start with the algebra g of pseudo-differential operators
P ¼
X1
i¼�n

ai@
�i; n 2 Z; ð2:1Þ
where @ ¼ @
@x and ai, i P �n, are differential functions of x. A pseudo-differential operator is the analogous Laurent series ob-

tained by admitting negative powers of @. We treat @�1 as the inverse of @ and so @�1@ = @@�1 = 1. We will use the general
Leibniz rule
@mf ¼ f@m þ
X1
i¼1

Ci
mf ðiÞ@m�i; Ci

m ¼
mðm� 1Þ � � � ðm� iþ 1Þ

i!
; m 2 Z; ð2:2Þ
where f(i) = @if, i P 0. For P 2 g in (2.1), its adjoint pseudo-differential operator P* is defined by
P� ¼
X1
i¼�n

ð�1Þi@�iai; ð2:3Þ
and its decomposition is taken as
P ¼ Pþ þ P�; Pþ ¼ PP0 ¼
X0

i¼�n

ai@
�i; P� ¼ P<0 ¼

X1
i¼1

ai@
�i; ð2:4Þ
which leads to an r-matrix structure on the algebra g [23].
It is well-known that associated with the pseudo-differential operator L:
L ¼ @ þ u@�1 þ v@�2 þw@�3 þ u4@
�4 þ � � � ; ð2:5Þ
the KP hierarchy is determined by
Ltn ¼ ½Bn; L�; n P 1; ð2:6Þ
where the differential operators Bn’s are given by
Bn ¼ ðLnÞþ ¼ ðL
nÞP0; n P 1: ð2:7Þ
In the above expression of L, we assumed that u = u1, v = u2 and w = u3 for convenience. Now a direct computation tells us
B2 ¼ @2 þ 2u;

B3 ¼ @3 þ 3u@ þ 3ðux þ vÞ;
B4 ¼ @4 þ 4u@2 þ 2ð3ux þ 2vÞ@ þ 2ð2uxx þ 3u2 þ 3vx þ 2wÞ:
The readers may refer to Sato’s theory for exact solutions to the KP equations by the so-called s-function [21].
For k P 1, let a set of N pairs of new functions, qi and ri, 1 6 i 6 N, be determined by
qi;sk
¼ Bkqi; ri;sk

¼ �B�kri; 1 6 i 6 N; ð2:8Þ
where P* is defined by (2.3). If the functions qi’s and ri’s also satisfy
Lqi ¼ kiqi; L�ri ¼ kiri; 1 6 i 6 N;
then they are eigenfunctions and adjoint eigenfunctions of the spectral problems:
L/ ¼ k/; /sk
¼ Bk/;
and
L�/ ¼ k/; /sk
¼ �B�k/;
each of which yields the Lax equation Lsk
¼ ½Bk; L�.
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Now, the pseudo-differential operators
eBk ¼ Bk þ
XN

i¼1

qi@
�1ri; k P 1; ð2:9Þ
lead to the so-called extended KP hierarchy
Lsk
¼ ½eBk; L�; k P 1: ð2:10Þ
This hierarchy is compatible with the KP flows in (2.6) and examples of the extended KP flows are given in [18].
We remark that the processes of constructing the extended flows and the constrained flows look very similar. In practice,

the extended flows Lsk
¼ ½eBk; L�; k P 1, are generated from a standard pseudo-differential spectral operator L ¼

Pð@Þ þ
P1

i¼1ui@
�i and non-standard Lax operators eBk ¼ L

k
m

� �
þ
þ
PN

i¼1qi@
�1ri, but the constrained flows Ltn ¼ ½Bn; L�; n P 1,

are generated from a non-standard pseudo-differential spectral operator L ¼ Pð@Þ þ
PN

i¼1qi@
�1ri and standard Lax operators

Bn ¼ L
n
m

� �
þ
; where P is a polynomial of order m. Therefore, the resulting extended flows and constrained flows have different

characters.

2.2. The compatibility equations

The question for us here is whether a pair of two extended KP flows in (2.10) commute with each other or not. In what
follows, we will discuss the commutativity problem of the extended KP hierarchy (2.10), to see what the compatibility equa-
tions will be.

To analyze the commutativity problem, we will use a basic formula:
Bn; q@
�1r

� �
� ¼ ðBnqÞ@�1r � q@�1ðB�nrÞ; ð2:11Þ
where the differential operator Bn is defined by (2.7) and P� = P<0 is defined as in (2.4). Actually the formula (2.11) works for
all differential operators (not only for Bn). This feature provides insight into the role of the pseudo-differential operator q@�1r.
We provide an answer to the commutativity question as follows.

Theorem 2.1. Let the Lax operator Bk and the extended Lax operator eBk be defined by (2.7) and (2.9). Then for k, l P 1, under the
conditions
qi;sk
¼ Bkqi; ri;sk

¼ �B�kri; 1 6 i 6 N; ð2:12Þ
and
qi;sl
¼ Blqi; ri;sl

¼ �B�l ri; 1 6 i 6 N; ð2:13Þ
the sk-flow by Lsk
¼ ½eBk; L� and the sl-flow by Lsl

¼ ½eBl; L� in the extended KP hierarchy (2.10) commute if and only if the following
differential relation
Bk;sl
� Bl;sk

þ ½Bk;Bl� þ Bk;
XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri;Bl

" #
þ

¼ 0 ð2:14Þ
holds.
Proof. Obviously, the pseudo-differential zero curvature equation
eBk;sl
� eBl;sk

þ eBk; eBl

h i
¼ 0 ð2:15Þ
implies that
eBk;sl
� eBl;sk

þ ½eBk; eBl�; L
h i

¼ 0:
This tells that Lsk ;sl
¼ Lsl ;sk

, and thus, the two Lax equations
Lsk
¼ ½eBk; L�; Lsl

¼ ½eBl; L�; ð2:16Þ
are compatible with each other and the corresponding flows commute.
In what follows, we are going to verify that the zero curvature (2.15) is necessary to guarantee the commutativity of the

sk-flow and the sl-flow in the hierarchy (2.10). For brevity, we only focus on the case of N = 1, and rewrite q1 and r1 as q and r,
respectively. Based on the Lax equations in (2.16), and noting that
½q@�1r; Ln
��þ ¼ 0;
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we can compute that
eBk;sl
¼ Bk;sl

þ ðq@�1rÞsl
¼ Bl þ q@�1r; Lk
h i

þ
þ ðq@�1rÞsl

¼ ½Bl; L
k�þ þ ½q@

�1r; Lk�þ þ qsl
@�1r þ q@�1rsl

¼ ½Bl; L
k�þ þ ½q@

�1r;Bk�þ þ ðBlqÞ@�1r � q@�1ðB�l rÞ; ð2:17Þ

and similarly, we have
eBl;sk

¼ ½Bk; L
l�þ þ ½q@

�1r;Bl�þ þ ðBkqÞ@�1r � q@�1ðB�krÞ: ð2:18Þ
Moreover, on one hand, we have
½Bk;Bl� ¼ Lk � Lk
�; L

l � Ll
�

h i
þ
¼ �½Lk

�; L
l�þ � ½L

k; Ll
��þ ¼ ½Bk; L

l�þ � ½L
k;Bl�þ; ð2:19Þ
and on the other hand, we have
½Bk; q@
�1r� ¼ ½Bk; q@

�1r�þ þ ½Bk; q@
�1r�� ¼ ½Bk; q@

�1r�þ þ ðBkqÞ@�1r � q@�1ðB�krÞ; ð2:20Þ
and similarly,
½q@�1r;Bl� ¼ ½q@�1r;Bl�þ � ðBlqÞ@�1r þ q@�1ðB�l rÞ; ð2:21Þ
where (2.11) was used.
Now since
½eBk; eBl� ¼ ½Bk;Bl� þ ½Bk; q@
�1r� þ ½q@�1r;Bl�;
we can see from (2.17)–(2.21) that the zero curvature Eq. (2.15) holds.
Finally based on the formula (2.11), the introduction of qi and ri, 1 6 i 6 N, by (2.12) and (2.13) allows us conclude that the

zero curvature Eq. (2.15) is equivalent to the differential relation (2.14). This completes the proof of the theorem. h

The compatibility equation of the sk-flow and the sl-flow is so given by
Bk þ
XN

i¼1

qi@
�1ri

 !
sl

� Bk þ
XN

i¼1

qi@
�1ri

 !
sk

þ Bk þ
XN

i¼1

qi@
�1ri;Bl þ

XN

i¼1

qi@
�1ri

" #
¼ 0; ð2:22aÞ

qi;sk
¼ Bkqi; ri;sk

¼ �B�kri; 1 6 i 6 N; ð2:22bÞ
qi;sl
¼ Blqi; ri;sl

¼ �B�l ri; 1 6 i 6 N; ð2:22cÞ

where k, l, N P 1. Under (2.22b) and (2.22c), (2.22a) has the Lax representation:
wsk
¼ Bk þ

XN

i¼1

qi@
�1ri

 !
w; wsl

¼ Bl þ
XN

i¼1

qi@
�1ri

 !
w: ð2:23Þ
We want to point out that (2.22a), equivalently, (2.14), is a differential operator equation. It generalizes the triple L–A–B rep-
resentation of integrable equations, which has nice algebraic structures [24].

In order to compute examples of the compatibility equations of the extended KP hierarchy, we list some useful expres-
sions in the following proposition.

Proposition 2.1. The following equalities hold:
½a@2; q@�1r�þ ¼ 2aðqrÞx þ axqr;

½a@3; q@�1r�þ ¼ ½3aðqrÞx þ axqr�@ þ 3aðqxrÞx � axxqr � 2axqrx;

½a@4; q@�1r�þ ¼ ½4aðqrÞx þ axqr�@2 þ 6aðqrÞxx � 4aðqrxÞx � axxqr � 2axqrx

� �
@ þ 4aðqrÞxxx � 6aðqrxÞxx þ 4aðqrxxÞx þ axxxqr

þ 3axxqrx þ 3axqrxx;

½B2;B3� ¼ 3ðuxx þ 2vxÞ@ þ uxxx � 6uux þ 3vxx;

½B2;B4� ¼ 4ðuxx þ 2vxÞ@2 þ 2ðuxxx þ 4uux þ 8vxx þ 4wxÞ@ þ 2ðuxxxx þ 2uuxx � 4uxv þ 3vxxx þ 2wxxÞ;

where P+ = PP0 is defined as in (2.4).

The proof of this proposition just needs some direct calculation, and the proposition itself shows the non-symmetric feature
of the eigenfunctions qi’s and the adjoint eigenfunctions ri’s. Now the following two examples of the compatibility equation
(2.22) of the extended KP hierarchy can easily be presented.

Example 2.1. Let us first take k = 2 and l = 3, and set y = s2 and t = s3. Then the compatibility equation (2.22) becomes
B2;t � B3;y þ ½B2;B3� þ B2;
XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri;B3

" #
þ

¼ 0; ð2:24aÞ
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qi;y ¼ B2qi; ri;y ¼ �B�2ri; 1 6 i 6 N; ð2:24bÞ
qi;t ¼ B3qi; ri;t ¼ �B�3ri; 1 6 i 6 N: ð2:24cÞ
On the basis of Proposition (2.1), the nonlinear system above reads
uy � uxx � 2vx þ
XN

i¼1

ðqiriÞx ¼ 0; ð2:25aÞ

2ut � 3ðux þ vÞy þ uxxx � 6uux þ 3vxx þ
XN

i¼1

½2ðqiriÞx � 3ðqi;xriÞx� ¼ 0; ð2:25bÞ

qi;y ¼ qi;xx þ 2uqi; ri;y ¼ �ri;xx � 2uri; 1 6 i 6 N; ð2:25cÞ
qi;t ¼ qi;xxx þ 3uqi;x þ 3ðux þ vÞqi; ri;t ¼ ri;xxx þ 3uri;x � 3vri; 1 6 i 6 N: ð2:25dÞ
Under (2.25c) and (2.25d), this (2+1)-dimensional nonlinear system has the Lax representation:
wy ¼ @2 þ 2uþ
XN

i¼1

qi@
�1ri

 !
w;

wt ¼ @3 þ 3u@ þ 3ðux þ vÞ þ
XN

i¼1

qi@
�1ri

" #
w:
Example 2.2. Let us second take k = 2 and l = 4, and set y = s2 and t = s4. Then the compatibility equation (2.22) becomes
B2;t � B4;y þ ½B2;B4� þ B2;
XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri;B4

" #
þ

¼ 0; ð2:26aÞ

qi;y ¼ B2qi; ri;y ¼ �B�2ri; 1 6 i 6 N; ð2:26bÞ
qi;t ¼ B4qi; ri;t ¼ �B�4ri; 1 6 i 6 N: ð2:26cÞ
On the basis of Proposition (2.1), the nonlinear system above reads
uy � uxx � 2vx þ
XN

i¼1

ðqiriÞx ¼ 0; ð2:27aÞ

� ð3ux þ 2vÞy þ uxxx þ 4uux þ 8vxx þ 4wx �
XN

i¼1

½3ðqiriÞxx � 2ðqiri;xÞx� ¼ 0; ð2:27bÞ

ut � ð2uxx þ 3vx þ 2wÞy þ uxxxx þ 2uuxx � 4uxv þ 3vxxx þ 2wxx

þ
XN

i¼1

ðqiriÞx � 2ðqiriÞxxx þ 3ðqiri;xÞxx � 2ðqiri;xxÞx � 4uðqiriÞx � 2uxqiri
� �

¼ 0; ð2:27cÞ

qi;y ¼ qi;xx þ 2uqi; ri;y ¼ �ri;xx � 2uri; 1 6 i 6 N; ð2:27dÞ

qi;t ¼ qi;xxxx þ 4uqi;xx þ 2ð3ux þ 2vÞqi;x þ 2ð2uxx þ 3u2 þ 3vx þ 2wÞqi; 1 6 i 6 N; ð2:27eÞ

ri;t ¼ �ri;xxxx � 4uri;xx � 2ðux � 2vÞri;x � 2ðuxx þ 3u2 þ vx þ 2wÞri; 1 6 i 6 N: ð2:27fÞ

Under (2.27d), (2.27e) and (2.27f), this (2+1)-dimensional nonlinear system has the Lax representation:
wt ¼ @2 þ 2uþ
XN

i¼1

qi@
�1ri

 !
w;

wy ¼ @4 þ 4u@2 þ 2ð3ux þ 2vÞ@ þ 2ð2uxx þ 3u2 þ 3vx þ 2wÞ þ
XN

i¼1

qi@
�1ri

" #
w:
2.3. The k-constraint

Let us now consider the k-constraint
Lk ¼ eBk ¼ Bk þ
XN

i¼1

qi@
�1ri; ð2:28Þ
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which presents a holonomic constraint when k = 1 and a non-holonomic constraint when k P 2. We require that the eigen-
functions and adjoint eigenfunctions satisfy
Bkqi ¼ kk;iqi; B�kri ¼ kk;iri; 1 6 i 6 N; ð2:29Þ
where kk,i, 1 6 i 6 N, are constants, to avoid using the evolution law of the qi’s and ri’s with respect to sk. Then on the sub-
manifold determined by the k-constraint (2.28), we can have
ðLkÞsl
¼ ½eBl; L

k�;

Bk;sl
¼ ðLk

sl
Þþ ¼ ½eBl; L

k�þ;

XN

i¼1

qi@
�1ri

 !
sl

¼
XN

i¼1

qi;sl
@�1ri þ qi@

�1ri;sl

� �
¼
XN

i¼1

ðBlqiÞ@�1ri � qi@
�1ðB�l riÞ

� �
¼ Bl;

XN

i¼1

qi@
�1ri

" #
�

¼ eBl;
XN

i¼1

qi@
�1ri

" #
�

¼ ½eBl; L
k � Bk�� ¼ ½eBl; L

k�� � ½eBl;Bk�� ¼ ½eBl; L
k��;
where (2.11) was used for the first time, because we have
½eBl;Bk�� ¼
XN

i¼1

qi@
�1ri; Bk

" #
�

¼
XN

i¼1

qi@
�1ðB�kriÞ � ðBkqiÞ@�1ri

� �
¼
XN

i¼1

qi@
�1ðkk;iriÞ � ðkk;iqiÞ@�1ri

� �
¼ 0;
where (2.11) was used for the second time. It then follows that
ðLkÞsl
¼ Bk;sl

þ
XN

i¼1

qi@
�1ri

 !
sl

:

Therefore, the sub-manifold determined by the k-constraint (2.28) is invariant under the sl-flow.
We constrain the sl-flow on this sub-manifold, and so, we have Lsk

¼ ½eBk; L� ¼ ½Lk; L� ¼ 0 and further Bl;sk
¼ ðLl

sk
Þþ ¼ 0. It is

now direct to show that under
Bkqi ¼ kk;iqi; B�kri ¼ kk;iri; 1 6 i 6 N;

qi;sl
¼ Blqi; ri;sl

¼ �B�l ri; 1 6 i 6 N;
the pseudo-differential zero curvature Eq. (2.14) becomes
Bk;sl
þ ½Bk;Bl� þ Bk;

XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri;Bl

" #
þ

¼ 0: ð2:30Þ
Therefore, the compatibility equation under the k-constraint reads
Bk;sl
þ ½Bk;Bl� þ Bk;

XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri;Bl

" #
þ

¼ 0; ð2:31aÞ

Bkqi ¼ kk;iqi; B�kri ¼ kk;iri; 1 6 i 6 N; ð2:31bÞ
qi;sl
¼ Blqi; ri;sl

¼ �B�l ri; 1 6 i 6 N: ð2:31cÞ
This is the k-constrained hierarchy of the compatibility equations with self-consistent sources. With (2.31b) and (2.31c), it
has the Lax representation:
Bk þ
XN

i¼1

qi@
�1ri

 !
w ¼ lw; wsl

¼ Bl þ
XN

i¼1

qi@
�1ri

 !
w; ð2:32Þ
where l is a spectral parameter.

Example 2.3. Similarly, let us first take k = 2 and l = 3, and set y = s2 and t = s3. Then the compatibility equation (2.31)
becomes
B2;t þ ½B2;B3� þ B2;
XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri;B3

" #
þ

¼ 0; ð2:33aÞ

B2qi ¼ k2;iqi; B�2ri ¼ k2;iri; 1 6 i 6 N; ð2:33bÞ
qi;t ¼ B3qi; ri;t ¼ �B�3ri; 1 6 i 6 N: ð2:33cÞ



728 W.X. Ma / Commun Nonlinear Sci Numer Simulat 16 (2011) 722–730
On the basis of Proposition (2.1), the nonlinear system above reads
uxx þ 2vx �
XN

i¼1

ðqiriÞx ¼ 0; ð2:34aÞ

2ut þ uxxx � 6uux þ 3vxx þ
XN

i¼1

2ðqiriÞx � 3ðqi;xriÞx
� �

¼ 0; ð2:34bÞ

qi;xx þ 2uqi ¼ k2;iqi; ri;xx þ 2uri ¼ k2;iri; 1 6 i 6 N; ð2:34cÞ
qi;t ¼ qi;xxx þ 3uqi;x þ 3ðux þ vÞqi; ri;t ¼ ri;xxx þ 3uri;x � 3vri; 1 6 i 6 N: ð2:34dÞ
Under (2.34c) and (2.34d), this (2+1)-dimensional nonlinear system has the Lax representation:
@2 þ 2uþ
XN

i¼1

qi@
�1ri

 !
w ¼ lw;

wt ¼ @3 þ 3u@ þ 3ðux þ vÞ þ
XN

i¼1

qi@
�1ri

" #
w:
Example 2.4. Similarly, let us second take k = 4 and l = 2, and set y = s4 and t = s2. Now the compatibility equation (2.31)
becomes
� B2;y þ ½B4;B2� þ B4;
XN

i¼1

qi@
�1ri

" #
þ

þ
XN

i¼1

qi@
�1ri; B2

" #
þ

¼ 0; ð2:35aÞ

B4qi ¼ k4;iqi; B�4ri ¼ k4;iri; 1 6 i 6 N; ð2:35bÞ
qi;t ¼ B2qi; ri;t ¼ �B�2ri; 1 6 i 6 N: ð2:35cÞ
On the basis of Proposition (2.1), the nonlinear system above reads
uxx þ 2vx �
XN

i¼1

ðqiriÞx ¼ 0; ð2:36aÞ

uxxx þ 4uux þ 8vxx þ 4wx �
XN

i¼1

3ðqiriÞxx � 2ðqiri;xÞx
� �

¼ 0; ð2:36bÞ

uy þ uxxxx þ 2uuxx � 4uxv þ 3vxxx þ 2wxx þ
XN

i¼1

ðqiriÞx � 2ðqiriÞxxx þ 3ðqiri;xÞxx � 2ðqiri;xxÞx � 4uðqiriÞx � 2uxqiri
� �

¼ 0;

ð2:36cÞ

qi;xxxx þ 4uqi;xx þ 2ð3ux þ 2vÞqi;x þ 2 2uxx þ 3u2 þ 3vx þ 2w
� �

qi ¼ k4;iqi; 1 6 i 6 N; ð2:36dÞ

ri;xxxx þ 4uri;xx þ 2ðux � 2vÞri;x þ 2 uxx þ 3u2 þ vx þ 2w
� �

ri ¼ k4;iri; 1 6 i 6 N; ð2:36eÞ

qi;t ¼ qi;xx þ 2uqi; ri;t ¼ �ri;xx � 2uri; 1 6 i 6 N: ð2:36fÞ
Under (2.36d), (2.36e) and (2.36f), this (2+1)-dimensional nonlinear system has the Lax representation:
@4 þ 4u@2 þ 2ð3ux þ 2vÞ@ þ 2ð2uxx þ 3u2 þ 3vx þ 2wÞ þ
XN

i¼1

qi@
�1ri

" #
w ¼ lw;

wt ¼ @2 þ 2uþ
XN

i¼1

qi@
�1ri

 !
w:
3. Conclusions and remarks

We considered the commutativity problem of the extended KP flows and constructed the compatibility equation of two
extended KP flows. The k-constraint problem was discussed and the resulting hierarchy of the compatibility equations
reduces to the compatibility equations between the extended KP hierarchy and the k-constrained KP hierarchy. A few par-
ticular examples in each of two cases were computed. Since the (2+1)-dimensional KP hierarchy can be reduced to (1+1)-
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dimensional soliton hierarchies, many (1+1)-dimensional compatibility equations of extended soliton hierarchies could be
generated.

Theorem 2.1 exposes that unlike the constrained KP flows, the extended KP flows don’t commute automatically, since the
differential relation (2.14) brings new conditions – the compatibility equations. The presented examples show us that those
compatibility equations could be complicated nonlinear partial differential equations. It is still open to us how to solve the
compatibility equations analytically.

There should also exist complexiton solutions, besides solitons and postions, to the compatibility equation hierarchy. In-
verse scattering technique [9] and Darboux transformation method [10] could be helpful in solving the compatibility equa-
tion hierarchy. Soliton type solutions could be expressed through the Wronskian formulation [22,25,26], and big solution
subspaces of the compatibility equation hierarchy might be constructed.

We remark that there are analogous commutativity problems for the extended Harry Dym hierarchy and the extended
non-commutative KP hierarchy, discussed in [27] and [28] respectively. A more general commutativity problem is as follows.
Assume that a pair of extended Lax operators is defined by
eBk ¼ Bk þ
XN

i¼1

qi@
�1ri; eBl ¼ Bl þ

XM

j¼1

aj@
�1bj;
where M and N are natural numbers, and two sets of eigenfunctions and adjoint eigenfunctions are required to satisfy
qi;sl
¼ Blqi; ri;sl

¼ �B�l ri; 1 6 i 6 N;
and
aj;sk
¼ Bkaj; bj;sk

¼ �B�kbj; 1 6 j 6 M:
To guarantee the commutativity of the sk-flow and the sl-flow defined by
Lsk
¼ ½eBk; L�; Lsl

¼ ½eBl; L�;
we need to compute a more general pseudo-differential zero curvature equation
eBk;sl
� eBl;sk

þ ½eBk; eBl� ¼ 0:
Based on the formula (2.11), this equation is equivalent to
Bk;sl
� Bl;sk

þ ½Bk;Bl� þ Bk;
XM

j¼1

aj@
�1bj

" #
þ

þ
XN

i¼1

qi@
�1ri;Bl

" #
þ

¼ 0;
and
XN

i¼1

qi@
�1ri;

XM

j¼1

aj@
�1bj

" #
¼ 0:
The corresponding compatibility equations will be much more general than the ones of the extended KP hierarchy (2.22).
However, the last equation above generates infinitely many differential constraints on the eigenfunctions and adjoint eigen-
functions: qi and ri, 1 6 i 6 N, and aj and bj, 1 6 j 6M. It is interesting how to satisfy these constraints generally to guarantee
the commutativity of the sk-flow and the sl-flow. One possibility was given in this paper: M = N, qi = ai, ri = bi, 1 6 i 6 N; and
another possibility is to take one set of zero eigenfunctions and adjoint eigenfunctions: qi = ri = 0, 1 6 i 6 N, or aj = bj = 0,
1 6 j 6M, which gives the extended KP flows [18]. How about the general case?
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