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involving two extended Lax operators. The resulting theory shows that the extended KP
hierarchy is a natural generalization of the KP flows, but does not commute unlike the con-
strained KP hierarchy. A few particular examples are computed, along with their Lax pairs.
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1. Introduction

Soliton equations including soliton equations with self-consistent sources [1,2], source soliton equations [3] and con-
strained soliton equations [4-7] arise in many fields of applied science such as nonlinear optics, hydrodynamics, solid state
physics, and plasma physics, mechanics and mathematical physics. Among the extended KP and mKP hierarchies are the KdV
equation, the KP equation, the NLS equation, the Boussinesq equation and the Davey-Stewartson equation with self-consis-
tent sources as examples. There are different approaches to solve those nonlinear systems of soliton equations [2,8-10] and
Darboux transformations yield complexiton solutions besides soliton and positon solutions [11]. Non-Lie symmetries ex-
pressed in terms of squared eigenfunctions play a key role in separating, constraining or extending soliton equations within
the Lax formulation (see, e.g., [12,13]). There are also various other generalized KP hierarchies, for example, the ones gener-
ated by proper combinations of the additional symmetry generators [14], from the nonlocal d-problem for the wave function
[15], by introducing fractional-order pseudo-differential operators [16], and by including a set of evolution equations in the
Moyal deformation parameters [17].

An extended KP hierarchy and an extended g-deformed KP hierarchy were presented recently by using the dressing oper-
ator and its corresponding wave function [18,19]. The dressing technique (see, e.g., [20]) was used to solve the extended KP
hierarchy and the extended mKP hierarchy. Sato’s theory (see, e.g., [21]) was also extended to construct Wronskian solutions
of the extended KP and mKP flows [22]. Those results generalize integrable theories of the KP and g-deformed KP equations
with self-consistent sources and the constrained KP and g-deformed KP equations.

All extended KP flows can commute with the KP flows [18]. With this in mind, a natural question is whether the extended
KP flows themselves can be commutative or not. Any study on such a problem will help establish a t-function theory, impor-
tant in soliton mathematics, for an extended integrable hierarchy. In this paper, we will discuss this question and answer the
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question by constructing the compatibility equations of the extended KP flows. The resulting compatibility equations have
Lax presentations with Lax pairs involving two extended operators. We will illustrate the compatibility equations by two
particular examples. The compatibility equations of the k-constrained extended KP hierarchy will also be analyzed, together
with two examples in this reduced case. Conclusions and a more general question are given in the last section.

2. Compatibility equations
2.1. The extended KP flows

Let us recall the construction of the extended KP hierarchy by the technique of pseudo-differential operators [18]. We
start with the algebra g of pseudo-differential operators

P=> a0’ nez, 2.1
i=—n
where 9 = 2 and a;, i > —n, are differential functions of x. A pseudo-differential operator is the analogous Laurent series ob-
tained by admitting negative powers of 9. We treat 9~' as the inverse of @ and so 9~'9=99~! = 1. We will use the general
Leibniz rule
N i) amei i o mm—-1)---(m—-i+1
"f =fo" +ZC’mf(”8"H, C,= ( ) - ( * ), mez, (2.2)

!
i=1 v

where f = §f, i > 0. For P € g in (2.1), its adjoint pseudo-differential operator P* is defined by

o0

P =>"(-1)0"a; (2.3)

i=—n
and its decomposition is taken as
0 00
P=P +P., P =Py =) ad', P.=Po=>» ad", (2.4)
i=—n i=1

which leads to an r-matrix structure on the algebra g [23].
It is well-known that associated with the pseudo-differential operator L:

L=0+ud" + 00 +wd> +uwd* + -, (2.5)
the KP hierarchy is determined by

L, = By, L], n>1, (2.6)
where the differential operators B,,’s are given by

By= (L"), = (", n=>1 (2.7)
In the above expression of L, we assumed that u = uy, v=1u, and w = us for convenience. Now a direct computation tells us

B, =& +2u,

Bs = & +3ud +3(uy + v),

By = 8" + 4ud® + 2(3uy + 20)0 + 22y + 3% + 30, + 2w).

The readers may refer to Sato’s theory for exact solutions to the KP equations by the so-called t-function [21].
For k > 1, let a set of N pairs of new functions, q; and r;, 1 <i < N, be determined by

iz, =Bii, Tiz, = —-Biri, 1<i<N, (2.8)
where P* is defined by (2.3). If the functions g;'s and r;'s also satisfy

Lg; = %q;, L'ri=/r, 1<i<N,
then they are eigenfunctions and adjoint eigenfunctions of the spectral problems:

Lp =129, ¢y =B,
and

L'¢=ip, ¢ =-Bo,

each of which yields the Lax equation L;, = [By,L].
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Now, the pseudo-differential operators

N
B =Bi+> qo'n, k=>1, (2.9)

i-1
lead to the so-called extended KP hierarchy
L, = [Bi,Ll, k=1 (2.10)

This hierarchy is compatible with the KP flows in (2.6) and examples of the extended KP flows are given in [18].
We remark that the processes of constructing the extended flows and the constrained flows look very similar. In practice,

the extended flows L, = [E,C,L], k > 1, are generated from a standard pseudo-differential spectral operator L=
P(9) + >°,w;0~" and non-standard Lax operators B = (L%)+ +>°N,q:07'r;, but the constrained flows L, = [By, L], n > 1,
are generated from a non-standard pseudo-differential spectral operator L = P(9) + Zf’:]qia’lri and standard Lax operators
B, = (L%) K where P is a polynomial of order m. Therefore, the resulting extended flows and constrained flows have different

characters.
2.2. The compatibility equations

The question for us here is whether a pair of two extended KP flows in (2.10) commute with each other or not. In what
follows, we will discuss the commutativity problem of the extended KP hierarchy (2.10), to see what the compatibility equa-
tions will be.

To analyze the commutativity problem, we will use a basic formula:

[Bn,q07'r]_ = (Baq)d~'r — q0 ' (Byr), (2.11)

where the differential operator B, is defined by (2.7) and P_ = Py is defined as in (2.4). Actually the formula (2.11) works for
all differential operators (not only for By). This feature provides insight into the role of the pseudo-differential operator qo~'r.
We provide an answer to the commutativity question as follows.

Theorem 2.1. Let the Lax operator B and the extended Lax operator By, be defined by (2.7) and (2.9). Then for k, | > 1, under the
conditions

Giz, = Be@i,  Tigy = —Biri, 1<I<N, (2.12)
and

Qiz, =BiG;, Tiz, =-Biri, 1<i<N, (2.13)
the ty-flow by L., = [Bx, L] and the t;~flow by L, = [B1,L] in the extended KP hierarchy (2.10) commute if and only if the following

differential relation

N
B, — Bit, + [Bi, Bi] + | By, Z q0'r;

i=1

N
+ ZQia]ri7Bl:| =0 (2.14)
L L= .

holds.

Proof. Obviously, the pseudo-differential zero curvature equation

Bio — Bi, + [Bi B =0 (2.15)
implies that

[Bes, — Big, + [Bi Bl L] = 0.
This tells that L, ., = L;,,, and thus, the two Lax equations

Ly, = (B L], Ly =By, (2.16)

are compatible with each other and the corresponding flows commute.

In what follows, we are going to verify that the zero curvature (2.15) is necessary to guarantee the commutativity of the
T-flow and the t;-flow in the hierarchy (2.10). For brevity, we only focus on the case of N = 1, and rewrite q; and r; as g and r,
respectively. Based on the Lax equations in (2.16), and noting that

[qo'r,L"], =0,
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we can compute that

Bi: = Big +(q07'r), = |Bi+qo ', L*| +(q07'r), = B, LY, +[q0'r,1", +q.0 't +q07 ',
1 + 1 1

= Bi,L'], + (g0 "1, B, + (Bg)d 't — g0 (Bir), (2.17)
and similarly, we have
Bir, = [Bi.L'], +[q07'r.B], + (Beq)d 't — g0 (Byr). (2.18)

Moreover, on one hand, we have
[Bi, Bl] = [L" L LEL =[50, — L5 1), = By, L], — [, B)],, (2.19)
and on the other hand, we have
[Bt,q0 '] = [Bi,q0"'1], + [Bi, g0 '1]_ = [Bi,q0'1], + (Beq)d ' — g0 (By1), (2.20)
and similarly,
[497'r.B) = [q9”'7.B), — (Big)o T+ g0 (Bir), @21)

where (2.11) was used.
Now since

[Bx, Bi] = [B, Bi] + [Bx,qd " 'r] + [q9 ', By),
we can see from (2.17)-(2.21) that the zero curvature Eq. (2.15) holds.
Finally based on the formula (2.11), the introduction of g; and r;, 1 <i < N, by (2.12) and (2.13) allows us conclude that the
zero curvature Eq. (2.15) is equivalent to the differential relation (2.14). This completes the proof of the theorem. O
The compatibility equation of the t,-flow and the t,-flow is so given by

N N N N
(Bk + qfalﬂ> - (Bk +> qfr?)lrf) +|Be+ > qo B+ g 'ri| =0, (2.22a)
i=1 7 i=1 T i=1 i=1
Qiz, =BG, Tig, = —Biri, 1 <IN, (2.22b)
9z, =BGy, 1z, =-Biri, 1<i<N, (2.22¢)

where k, I, N > 1. Under (2.22b) and (2.22c), (2.22a) has the Lax representation:
N N
Yo = <Bk +y qx'f?]ﬂ) v, Y, = (BI +y Qialri) 2 (2.23)
i1 i=1
We want to point out that (2.22a), equivalently, (2.14), is a differential operator equation. It generalizes the triple L-A-B rep-
resentation of integrable equations, which has nice algebraic structures [24].

In order to compute examples of the compatibility equations of the extended KP hierarchy, we list some useful expres-
sions in the following proposition.

Proposition 2.1. The following equalities hold:
[ad®,q07'r], = 2a(qr), + aqr,
[ad®,q0 '], = [3a(qr), + 0:qr]d + 3a(qy), — Gudr — 20x4r,

[aa“, qo! r, = [4a(qr), + axqr]a2 + [Ga(qr)xx —4a(qry), — auqr — 2axqrx]8 +4a(qr),, — 6a(qry) +4a(qry ), + Guaqr
+ 30 qry + 3axqTyy,

[By, B3] = 3(Uxx + 20x)0 + Unux — BUL + 30y,

[B2,B4] = 4(u + 21/x)82 + 2(Unxx + AUty + 8Upy + 4Wy) O + 2 (Usux + 2Ulyy — AUy U + 3 Vsex + 2Wix ),
where P, =P- is defined as in (2.4).

The proof of this proposition just needs some direct calculation, and the proposition itself shows the non-symmetric feature
of the eigenfunctions g;'s and the adjoint eigenfunctions r;’s. Now the following two examples of the compatibility equation
(2.22) of the extended KP hierarchy can easily be presented.

Example 2.1. Let us first take k=2 and [ = 3, and set y = 7, and t = 3. Then the compatibility equation (2.22) becomes

N N
By,> qio'ri > qo'n, Bs} =0, (2.24a)
i-1 N

i=1

By — B3y + [Ba, B3] + +

+
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i

1

N, (2.24b)
N. (2.24¢)

qi‘y = BZqi7 Tiy = —B§Ti7

1 <
Qi = Bsq;, r1ie=-B3r;, 1 <

<
<

On the basis of Proposition (2.1), the nonlinear system above reads

N
Uy — Uy — 205 + Z(qiri)x =0, (2.25a)
i=1
N
2ur — 3(Ux + V), + Uyee — BUL + 3V + Z[Z(q,r,»)x —3(qixri),) =0, (2.25b)
i=1
Qiy = Qi +2Uq;,  Tiy = —Tixe — 2Ur;, 1<i<N, (2.25¢)
Qit = Qi +3UGix +3(Ux + V)G, Tie = Tix + 33U — 30m3, 1IN, (2.25d)

Under (2.25c¢) and (2.25d), this (2+1)-dimensional nonlinear system has the Lax representation:

N
v, = <82 +2u+y q,-alr,) v,

i=1

Y=

N
O +3u0+3(u+ v) + Y q,ﬁln} ¥

i=1

Example 2.2. Let us second take k=2 and [ =4, and set y = 75 and t = 74. Then the compatibility equation (2.22) becomes

N N
Byt — Bay + [Ba, Ba] + [Bz, dgo | + (> q,-alri,B4} =0, (2.26a)
i=1 ¥ i=1 +
iy =B2q;, Tiy =—Byri, 1<i<N, (2.26b)
Gic = Bagi, Tie=—Byri, 1<i<N. (2.26¢)

On the basis of Proposition (2.1), the nonlinear system above reads

N
Uy — U — 205+ Y _(qiT), =0, (2.27a)
i=1
N
— (B + 20),, + U + AUl + 8V + AWy — > _[B(qiT1)5 — 2(qiTin),) = O, (2.27b)

i=1

U — (2Up + 30y +2w)y + Uyxax + 2Uly — AUy ¥ + 3 Vpyx + 2Wiy

N
+ D [(@iTi)x = 200171 0+ 3(GiTix) 0 — (@il — 4U(GiT1) — 2Uxqyi] = O, (2.27¢)
i=1
Qiy = Qixe +2Uq;, Tiy = —Tixx —2ur;, 1<Ii<N, (2.27d)
Qit = Qixxx +AUGj 00 + 23Uy + 20)q; 5 + 22U + 3u + 30, + 2w)q;, 1<i<N, (2.27e)
Tig = —Tixox — QUi — 2(Ux — 20)Fix — 2(Unx + 3UP + v+ 2w)r;, 1<i<N. (2.27f)

Under (2.27d), (2.27e) and (2.27f), this (2+1)-dimensional nonlinear system has the Lax representation:

N
Y, = <02 +2u+) qi81r,-> v,

i=1

N
0" +4ud” + 23Uy + 20)0 + 22U + 3U7 + 30 +2W) + > g0 13| Y.

i=1

by =

2.3. The k-constraint

Let us now consider the k-constraint

- N
L“=Bi=Bc+> qo'n, (2.28)

i=1
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which presents a holonomic constraint when k = 1 and a non-holonomic constraint when k > 2. We require that the eigen-
functions and adjoint eigenfunctions satisfy

Bg; = Axi€i, Byri=kiri, 1 <i<N, (2.29)

where /;; 1 <i< N, are constants, to avoid using the evolution law of the g;’s and r;’s with respect to 7. Then on the sub-
manifold determined by the k-constraint (2.28), we can have

Lk)rl = [E(, Lk]’
Bie = (L%), = B, 1.,

N N N N
(Z q,»alri) = Z <q1‘,1,3717‘i + qiailri.11> Z (Big;)0 'ri — q;0 ' (Bj1)] {B, Z q0” r,} [B,, Zqialr,}
i=1 7 i=1 i=1 p B

= [B,L* —BJ_=[B,L"_—[B.B_=[B.L"_,

where (2.11) was used for the first time, because we have

N N N N
[Bi,By]_ = {Z qialri:Bk:| => (@0 (Bri) — (Buq)d 1] = > (07 (ail) — (iq)d 1] = O,
i1

_ i=1 i=1

where (2.11) was used for the second time. It then follows that

(L), =Bz, + (Zqia r,>.
T

Therefore, the sub-manifold determined by the k-constraint (2.28) is invariant under the 7,-flow.

We constrain the 7-flow on this sub-manifold, and so, we have L, = [Ek, I = [Lk, L] = 0 and further B, = (L’Tk)+ =0.1Itis
now direct to show that under
Biq; = /xi€i, Bpri=xiti, 1<i<N,
Giz, = Bigi, iy =B, 1<i<N,
the pseudo-differential zero curvature Eq. (2.14) becomes
- : . -
Bio + [Bi, Bl + [Bi, » g0 'ri| + > 0 'ri,B| =0. (2.30)
L i=1 14 Li=1 14
Therefore, the compatibility equation under the k-constraint reads
. : - _
Bio + [Bi, Bl + (Bi, Y qi0"'ri| + > o 'ri,B| =0, (2.31a)
L i=1 J4 Li=1 J+
qui = /lk‘iq,, B,*(T,‘ = )vk‘ir,‘, 1<ig N, (2311))
Gz, =BiG;, Ti;=-Bri, 1<i<N. (2.31¢)

This is the k-constrained hierarchy of the compatibility equations with self-consistent sources. With (2.31b) and (2.31c¢), it
has the Lax representation:

N N
(Bk +y° qfalri) V=, Y = (Bz +y qialr,) v, (2.32)
i=1 i=1

where u is a spectral parameter.

Example 2.3. Similarly, let us first take k=2 and [=3, and set y =1, and t=13. Then the compatibility equation (2.31)
becomes

N
By,» qd '

N
+ Zqi81ri,83} =0, (2.33a)
i=1 + = +

B2gi = 42iG;,  Byri=Jaimi, 1<i<N, (2.33b)
Qe =Bsqi, rie=-B3ri, 1<i< (2.33¢)

Byt + B2, B3] +

=z
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On the basis of Proposition (2.1), the nonlinear system above reads

N
Uge+20x — Y _(qiTi), =0, (2.34a)
i=1
Zut + Uxxx — 6uux + 32/xx + Z qlrl - B(Qi,xri)x} = 07 (234b)
i=1
Qixx +2UQq; = 22iq;, Tixx +2Uri= o3, 1 <i<N, (2.34c¢)
Qiy = Qixxx + 3Uqix + 3(Ux + V)qG;,  Tig = T + 3UTix — 3013, 1< i<N. (2.34d)

Under (2.34c) and (2.34d), this (2+1)-dimensional nonlinear system has the Lax representation:

N
(82 +2u+y qﬁ%) V=,

i=1

Y=

N
O +3u0+3(ux+ v) + Yy q,ﬁ]h} 2

i=1

Example 2.4. Similarly, let us second take k=4 and [ =2, and set y = 74 and t = 7,. Now the compatibility equation (2.31)
becomes

N N
— By +[Ba, By] + [347 > qo'n| + Z q07'ri, 32} =0, (2.35a)
i=1 + i +
Baq; = /4iq;, Byri=l4iti, 1<Ii<N, (2.35b)
Gie = B2q;, Tie=-Byri;, 1<i<N. (2.35¢)

On the basis of Proposition (2.1), the nonlinear system above reads

N
Uge+20x — Y _(qiTi), =0, (2.36a)
i=1
N
Unr + AUilly + 8V + AWy — Y~ [3(GiTi) — 2(qiix), ] =0, (2.36b)

i=1

N
Uy + Uy + 2Ulby — AUV + 3 Vs + 2War + Y [(iT1)5 = 2(GiT1) e + 3(AiTin) e — 2(GiTia) — AU(GiT1),, — 21,Gi7] =0,
i=1

(2.36¢)
Qi T AUGi e + 23Ux + 20)q; + 22U + 302 + 30 + 2W)q; = Z45q;, 1 <IN, (2.36d)
Tisox -+ AT + 2(Uyx — 20)Tix + 2 (U + 3U% + U + 2W) 15 = Jgiti, 1 <P <N, (2.36e)
Qi¢ = Qixx +2Uq;,  Tig = —Tixe—2ur;, 1<Ii<N. (2.36f)

Under (2.36d), (2.36e) and (2.36f), this (2+1)-dimensional nonlinear system has the Lax representation:

N
0"+ 4ud” + 2(3uy + 20)0 + 221ty + 3U* + 30+ 2W) + Y g0 1|y =

i=1

N
Y = <82 +2u+y qia‘lri> V.

i=1

3. Conclusions and remarks

We considered the commutativity problem of the extended KP flows and constructed the compatibility equation of two
extended KP flows. The k-constraint problem was discussed and the resulting hierarchy of the compatibility equations
reduces to the compatibility equations between the extended KP hierarchy and the k-constrained KP hierarchy. A few par-
ticular examples in each of two cases were computed. Since the (2+1)-dimensional KP hierarchy can be reduced to (1+1)-
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dimensional soliton hierarchies, many (1+1)-dimensional compatibility equations of extended soliton hierarchies could be
generated.

Theorem 2.1 exposes that unlike the constrained KP flows, the extended KP flows don’t commute automatically, since the
differential relation (2.14) brings new conditions - the compatibility equations. The presented examples show us that those
compatibility equations could be complicated nonlinear partial differential equations. It is still open to us how to solve the
compatibility equations analytically.

There should also exist complexiton solutions, besides solitons and postions, to the compatibility equation hierarchy. In-
verse scattering technique [9] and Darboux transformation method [10] could be helpful in solving the compatibility equa-
tion hierarchy. Soliton type solutions could be expressed through the Wronskian formulation [22,25,26], and big solution
subspaces of the compatibility equation hierarchy might be constructed.

We remark that there are analogous commutativity problems for the extended Harry Dym hierarchy and the extended
non-commutative KP hierarchy, discussed in [27] and [28] respectively. A more general commutativity problem is as follows.
Assume that a pair of extended Lax operators is defined by

B =B+ i q0'r, Bi=B+ i %0 B,
i=1 Jj=1
where M and N are natural numbers, and two sets of eigenfunctions and adjoint eigenfunctions are required to satisfy
Qir, = BiGi, Tir, =B, 1<i<N,
and
O, = Betj,  Bjr, = —Bifs, 1<j<M.
To guarantee the commutativity of the 7,-flow and the 7,-flow defined by
er = [§l<7”7 er = [EleL
we need to compute a more general pseudo-differential zero curvature equation
Byr, — Byio, + [Bi, B = 0.

Based on the formula (2.11), this equation is equivalent to

N
+ [Z qia]riaBI:| =0,
i1 .

M
Bir, — Biz, + [Bi, Bl + |:BI<-, Z 40" B;
=

+

and

N M
> g0, Y oc,-c’)‘ﬁj} =0.
i1 =

The corresponding compatibility equations will be much more general than the ones of the extended KP hierarchy (2.22).
However, the last equation above generates infinitely many differential constraints on the eigenfunctions and adjoint eigen-
functions: g;and r;, 1 <i< N, and o; and f8;, 1 <j < M. It is interesting how to satisfy these constraints generally to guarantee
the commutativity of the 7,-flow and the 7,-flow. One possibility was given in this paper: M=N, g;=o;, 1;= i, 1 <i < N; and
another possibility is to take one set of zero eigenfunctions and adjoint eigenfunctions: q;=1;=0, 1 <i<N, or a;=f;=0,
1 <j < M, which gives the extended KP flows [18]. How about the general case?
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