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a b s t r a c t

A generating scheme for conservation laws of discrete integrable equations, arising as
discrete zero curvature equations, is presented from pairs of associated matrix spectral
problems. An illustrative application to the Volterra lattice equation is made through a
pair of 2 × 2 matrix spectral problems. The general theory is not limited to 2×2 matrix
spectral problems but for arbitrary-order matrix spectral problems.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

It is an important topic in soliton theory to search for conservation laws for nonlinear integrable differential or
differential–difference equations. Conservation laws in physics state that particular measurable properties of physical
systems do not change as the systems evolve over time. Noether’s theorem tells that conservation laws are associated
with symmetries for Lagrangian equations [1]. When an equation is not Lagrangian, its conservation laws come from pairs
of symmetries and adjoint symmetries [2,3]. Mathematically speaking, conservation laws are helpful in solving nonlinear
equations. With the help of conservation laws, we can decrease orders or numbers of differential and differential–
difference equations, and particularly, we can often reduce partial differential equations to ordinary differential equations
and ordinary differential equations to algebraic equations. Conservation laws play a crucial role in treating equations of
mathematical physics, indeed [4].

It is known that integrable equations are generated from zero curvature equations, whose Liouville integrability could
be explored usually through applying the trace identities [5,6], or more generally, the variational identities [7,8]. Zero
curvature equations are compatibility conditions of pairs of matrix spectral problems, whose Cauchy problems can be
solved by the inverse scattering transform [9,10]. The pairs of spectral problems are called Lax pairs [11], and 2 × 2
matrix Lax pairs have been used to construct conservation laws (see, e.g., [12–15]).

We shall focus on integrable lattice equations within the discrete zero curvature formulation [6,8]. If f be a lattice
function or matrix, its shift with E and reverse shift with E−1 are given by

(Ef )(n) = f (n + 1), (E−1f )(n) = f (n − 1), n ∈ Z, (1.1)
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and a general shift or reverse shift is simply denoted by

f (k)(n) = (Ekf )(n) = f (n + k), n, k ∈ Z. (1.2)

A lattice equation

ut = K (u, u(1), u(−1), . . .), u = u(n, t), (1.3)

is said to possess a Lax pair, U and V , which are two square matrices, if it can be expressed as a discrete zero curvature
equation (see, e.g., [6,8])

Ut = (EV )U − UV . (1.4)

This is the compatibility condition of a pair of matrix spectral problems, often also referred as a Lax pair:

Eφ = U(u, λ)φ (1.5)

and

φt = V (u, u(1), u(−1), . . . ; λ)φ, (1.6)

where λ is a spectral parameter, φ is an eigenfunction, and U is called a spectral matrix and V , a Lax operator or matrix. In
the setting up of the Lax theory, the key is a spatial matrix spectral problem. Generally, zero curvature equations resulting
from matrix spectral problems can carry high nonlinearity, but they often possess Abelian Lax operator algebras [16] and
conserved densities constructed from the discrete trace identity [6] or discrete variational identity [8].

In this paper, we would like to formulate a general scheme to generate conservation laws of discrete integrable
equations from arbitrary-order matrix spectral problems. Such a scheme is more direct than many other methods for
constructing conservation laws. To shed light on the general scheme, an illustrative application to the Volterra lattice
equation will be made, based on a pair of 2 × 2 matrix spectral problems. A few concluding remarks will be given in the
last section.

2. General scheme for conservation laws

We would like to formulate a general scheme for constructing conservation laws from pairs of arbitrary-order matrix
spectral problems. Let us begin with a pair of matrix spectral problems:

Eφ = U(u, λ)φ (2.1)

and

φt = V (u, u(1), u(−1), λ)φ, (2.2)

where u = u(n, t) and

φ = (φ1, . . . , φr )T , U = (Uij)r×r , V = (Vij)r×r , (2.3)

r being an arbitrary natural number. A discrete integrable equation is generated from the discrete zero curvature equation

Ut = (EV )U − UV . (2.4)

Introduce the ratios of eigenfunctions:

ψij =
φi

φj
, 1 ≤ i, j ≤ r, (2.5)

and then we have a set of quadratic equations for the ratios to satisfy:

(
r∑

k=1

Ujkψkj)Eψij = (
r∑

k=1

Uikψki)ψij, 1 ≤ i, j ≤ r. (2.6)

In the continuous case, such quadratic equations are replaced with Riccati type differential equations. If we further define
the Laurent expansions for the ratios of eigenfunctions as follows:

ψij = λα
∑
k≥0

θij,kλ
−k, 1 ≤ i, j ≤ r, (2.7)

where α is a constant depending on U , then substituting them into the quadratic equations in (2.6) leads to a system of
recursion relations for determining θij,k, 1 ≤ i ̸= j ≤ r, k ≥ 0.
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Now, based on the pair of matrix spectral problems (2.1) and (2.2), we can compute that

(ln
Eφi

φi
)t = [(E − 1) lnφi]t = (E − 1)

φi,t

φi

= (E − 1)
∑r

k=1 Vikφk

φi
= (E − 1)

r∑
k=1

Vikψki, 1 ≤ i ≤ r,

and

(ln
Eφi

φi
)t = (ln

∑r
k=1 Uikφk

φi
)t = (ln

r∑
k=1

Uikψki)t , 1 ≤ i ≤ r.

Therefore, upon defining

Xi =

r∑
k=1

Vikψki, Ti = ln
r∑

k=1

Uikψki, 1 ≤ i ≤ r, (2.8)

we have the following r generating formulas for conservation laws:

(Ti)t = (E − 1)Xi, 1 ≤ i ≤ r. (2.9)

Plugging the Laurent expansions of Ti and Xi in terms of λ,

Ti = λβ
∑
k≥0

Ti,kλ−k, Xi = λβ
∑
k≥0

Xi,kλ
−k, 1 ≤ i ≤ r, (2.10)

where β is a constant depending on U and V , and comparing the coefficients of the same powers of λ generate infinitely
many conservation laws

(Ti,k)t = (E − 1)Xi,k, k ≥ 0, 1 ≤ i ≤ r, (2.11)

for the zero curvature equation (2.4). Here the conserved densities Ti,k and the conserved fluxes Xi,k are all functions of
θi′j′,k′ , 1 ≤ i′ ̸= j′ ≤ r, k′

≥ 0. Note that in general, for each 1 ≤ i ≤ r , lnφi has no Laurent expansion of λ, and so Ti,k,
k ≥ 0, are nontrivial, i.e., are not of form (E − 1)Si,k, k ≥ 0, where the Si,k’s are differential–difference functions.

Next, let us show that two sequences of conservation laws with different integers 1 ≤ i, j ≤ r will be equivalent to
each other, i.e., the differences of the conserved densities Ti,k − Tj,k, k ≥ 0, are of form (E − 1)Sij,k, k ≥ 0, where the Sij,k’s
are differential–difference functions.

This could be proved as follows. First, note that we have

(E − 1) lnψij = ln Eψij − lnψij

= ln
Eψij

ψij
= ln

∑r
k=1 Uikψki∑r
k=1 Ujkψkj

, 1 ≤ i ̸= j ≤ r,

where we have used the quadratic equations in (2.6). It then follows that

Ti − Tj = (E − 1) lnψij, 1 ≤ i ̸= j ≤ r. (2.12)

Therefore, Ti is equivalent to Tj for 1 ≤ i ̸= j ≤ r .
To conclude, we only need to consider one generating formula with 1 ≤ i ≤ r to compute nontrivial conservation

laws, while dealing with practical problems.

3. Application to the Volterra lattice equation

3.1. Lax pair

Let us consider the Volterra lattice equation [17]:

ut = u(u(−1)
− u(1)), (3.1)

where u = u(n, t). This Volterra equation has important applications in mathematical ecology [17]. We begin with a
spatial 2 × 2 matrix discrete spectral problem:

Eφ = Uφ, U = U(u, λ) =

[
λ λu

1 0

]
, φ =

[
φ1

φ2

]
, (3.2)
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where u is the potential and λ is the spectral parameter. This is a scalar multiple of the spectral problem in [16]. It is easy
to check (or see, e.g., [16]) that the Volterra lattice equation (3.1) can be expressed as the compatibility condition of the
spatial matrix discrete spectral problem (3.2) and the temporal matrix spectral problem

φt = Vφ, V = V (u, λ) =

⎡⎢⎢⎣
1
2
λ− u λu

1 −
1
2
λ− u(−1)

⎤⎥⎥⎦ . (3.3)

Associated with the Lax pair in (3.2) and (3.3), a Darboux transformation has been presented for the Volterra lattice
equation (3.1) in [18].

3.2. Conservation laws

For the Volterra lattice equation, we have a quadratic equation

(λ+ λuψ21)Eψ21 = 1, ψ21 =
φ2

φ1
. (3.4)

Expand ψ21 as

ψ21 =

∑
k≥1

θkλ
−k, (3.5)

and then from (3.4), we have

θ1 = 1, θk = −u(−1)
k−1∑
j=1

θ
(−1)
j θk−j, k ≥ 2. (3.6)

This particularly tells⎧⎪⎨⎪⎩
θ2 = −u(−1),

θ3 = u(−1)(u(−1)
+ u(−2)),

θ4 = −u(−1)
[(u(−1))2 + 2u(−1)u(−2)

+ (u(−2))2 + u(−2)u(−3)
].

(3.7)

Now, on one hand, we have
T1,t = [ln(U11 + U12ψ21)]t = [ln(λ+ λuψ21)]t

= [ln(1 + uψ21)]t = [ln(1 +

∑
k≥1

uθkλ−k)]t

=

{∑
k≥1

[ k∑
j=1

(−1)j−1

j
uj

∑
i1+···+ij=k, i1,...,ij≥1

θi1 · · · θij

]
λ−k

}
t
.

In the above computation, we have used

ln(1 + x) =

∑
k≥1

(−1)k−1

k
xk,

which holds for small values of x: |x| < 1.
On the other hand, we have

(E − 1)X1 = (E − 1)(V11 + V12ψ21)

= (E − 1)(
1
2
λ− u + λuψ21)

= (E − 1)(
∑
k≥1

uθk+1λ
−k).

Therefore, we obtain infinitely many conservation laws

(T1,k)t = (E − 1)X1,k, k ≥ 1, (3.8)

where

T1,k =

k∑
j=1

(−1)j−1

j
uj

∑
i1+···+ij=k, i1,...,ij≥1

θi1 · · · θij , X1,k = uθk+1, k ≥ 1. (3.9)
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The first three conservation laws above can be worked out as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T1,1 = uθ1 = u, X1,1 = uθ2 = −uu(−1)
;

T1,2 = uθ2 −
1
2
(uθ1)2 = −uu(−1)

−
1
2
u2, X1,2 = uθ3 = uu(−1)(u(−1)

+ u(−2));

T1,3 = uθ3 − (uθ1)(uθ2) +
1
3
(uθ1)3 = uu(−1)(u(−1)

+ u(−2)) + u2u(−1)
+

1
3
u3,

X1,3 = uθ4 = −uu(−1)
[(u(−1))2 + 2u(−1)u(−2)

+ (u(−2))2 + u(−2)u(−3)
].

(3.10)

3.3. Equivalence

In the subsequent analysis, we explicitly explore that T1 and T2 are equivalent. That is to say, the other generating
formula

(lnψ12)t = (E − 1)(ψ12 −
1
2
λ− u(−1)) (3.11)

leads to equivalent conservation laws.
To prepare, let us set

1∑
k≥1 θkλ

−k =

∑
k≥0

ηkλ
−k+1,

and this generates

η0 = 1, ηk = −

k+1∑
j=2

θjηk−j+1, k ≥ 1, (3.12)

the first three of which are

η1 = −θ2, η2 = θ22 − θ3, η3 = −θ32 + 2θ2θ3 − θ4. (3.13)

On one hand, we have

T2 − T1 = ln
Eψ21

ψ21
= ln

∑
k≥1 θ

(1)
k λ−k∑

k≥1 θkλ
−k

= ln
∑
k≥1

θ
(1)
k λ−k

∑
l≥0

ηlλ
−l+1

= ln(1 +

∑
k≥1

ξkλ
−k)

=

∑
k≥1

[ k∑
j=1

(−1)j−1

j

∑
i1+···+ij=k, i1,...,ij≥1

ξi1 · · · ξij

]
λ−k,

where

ξk =

k+1∑
j=1

θ
(1)
j ηk−j+1, k ≥ 1, (3.14)

which engenders{
ξ1 = θ

(1)
1 η1 + θ

(1)
2 η0 = −θ2 + θ

(1)
2 ,

ξ2 = θ
(1)
3 η0 + θ

(1)
2 η1 + θ

(1)
1 η2 = θ

(1)
3 − θ2θ

(1)
2 + θ22 − θ3.

(3.15)

On the other hand, we have
X2 − X1 = [V21(ψ21)−1

+ V22] − (V11 + V12ψ21)

= (ψ21)−1
−

1
2
λ− u(−1)

− (
1
2
λ− u) − λuψ21

= (ψ21)−1
− λ− u(−1)

+ u − λuψ21

= λ
∑
k≥0

ηkλ
−k

− λ− u(−1)
+ u − λu

∑
k≥1

θkλ
−k

=

∑
k≥1

(ηk+1 − uθk+1)λ−k.
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It follows now that the corresponding trivial conservation laws read

(T21,k)t = (E − 1)X21,k, k ≥ 1, (3.16)

where the conserved densities and the conserved fluxes are given by

T21,k =

k∑
j=1

(−1)j−1

j

∑
i1+···+ij=k, i1,...,ij≥1

ξi1 · · · ξij , X21,k = ηk+1 − uθk+1, k ≥ 1. (3.17)

Let us now observe the equivalence between T1 and T2, or the trivialness of the conservation laws in (3.16), precisely:

T2 − T1 = (E − 1) lnψ21

= (E − 1) ln(1 +

∑
k≥1

θk+1λ
−k)

= (E − 1)
[∑
k≥1

( k∑
j=1

(−1)j−1

j

∑
i1+···+ij=k, i1,...,ij≥1

θi1+1 · · · θij+1

)
λ−k

]
.

This exactly tells us the required equivalence:

T2,k − T1,k = T21,k = (E − 1)S21,k, k ≥ 1, (3.18)

where

S21,k =

k∑
j=1

(−1)j−1

j

∑
i1+···+ij=k, i1,...,ij≥1

θi1+1 · · · θij+1, k ≥ 1, (3.19)

the first two of which are

S21,1 = θ2 = −u(−1), S21,2 = θ3 −
1
2
θ22 =

1
2
(u(−1))2 + u(−1)u(−2). (3.20)

Indeed, we can see clearly that the first two pairs of conservation laws in (3.16) behave trivially:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T21,1 = ξ1 = −θ2 + θ
(1)
2 = u(−1)

− u = (E − 1)S21,1,

T21,2 = ξ2 −
1
2
ξ 21 = θ

(1)
3 − θ3 +

1
2
θ22 −

1
2
(θ (1)2 )2

=
1
2
(u + u(−1))2 − u(−1)(u(−1)

+ u(−2)) = (E − 1)S21,2,

(3.21)

and ⎧⎪⎪⎨⎪⎪⎩
X21,1 = η2 − uθ2 = θ22 − θ3 − uθ2 = u(−1)(u − u(−2)) = (S21,1)t ,

X21,2 = η3 − uθ3 = −θ4 − θ32 + 2θ2θ3 − uθ3

= u(−1)u(−2)(u(−2)
+ u(−3)) − uu(−1)(u(−1)

+ u(−2)) = (S21,2)t .

(3.22)

4. Concluding remarks

We have formulated a general scheme for conservation laws, based on Lax pairs of discrete integrable equations.
The success is to use the Laurent expansions of the ratios of eigenfunctions of matrix spectral problems. An illustrative
application has been made for the Volterra lattice equation through a pair of 2 × 2 matrix spectral problems. By irreducible
representations of matrix Lie algebras, we can present different matrix spectral problems for the same zero curvature
equation [19], and thus, more conservation laws. The generating scheme can also be generalized to compute conservation
laws in the case of multiple discrete variables.

It is worth noting that there are recent studies on lump solutions to continuous integrable equations, particularly
in (2+1)-dimensions and in (3+1)-dimensions (see, e.g., [20–26]). There are even more general solutions—interaction
solutions between lumps and other kinds of exact solutions (see, e.g., [27–30] for lump–kink interaction solutions
and [31–33] for lump–soliton interaction solutions). This is a characterization of complete integrability, and from such
interaction solutions, symmetries and conserved quantities could be derived as well.

It will also be definitely interesting and important to construct soliton and interaction solutions and study their patterns
for integrable lattice equations. More importantly, we need to identify nonlinear lattice equations that admit infinitely
many conservation laws and possess soliton and interaction solutions. All such studies will enrich the existing theories of
soliton solutions and dromion-type solutions, through different approaches, including the Hirota perturbation technique,
symmetry reductions, symmetry constraints and the Riemann–Hilbert technique (see, e.g., [34–46]).
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