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A B S T R A C T

This paper aims at constructing a six-component integrable hierarchy associated with a matrix
spatial spectral problem with six potentials and three signs. The zero curvature formulation
and the trace identity are used to generate integrable models and their Hamiltonian structures,
respectively. Two expository examples of integrable models of lower orders are six-component
integrable coupled nonlinear Schrödinger (NLS) equations and modified Korteweg–de Vries
(mKdV) equations. The motivation of this study is to explore typical integrable coupled NLS
equations and mKdV equations, and the innovative idea and main advance is to introduce a
specific matrix spectral problem involving three signs to construct integrable coupled equations.

. Introduction

The zero curvature formulation is a powerful and fundamental tool for generating integrable models, and has played a crucial
ole in the development of soliton theory and nonlinear wave phenomena. The key idea behind the zero curvature formulation is
hat the compatibility conditions of matrix spectral problems, producing a hierarchy of nonlinear models, ensure that the associated
ax pairs [1] generate an infinite sequence of conserved quantities, which can be used to show the Liouville integrability of the
ierarchy. The corresponding inverse scattering transform allows for the construction of solutions to Cauchy problems, particularly
olitons [2].

Let us assume that an 𝑛-dimensional potential reads 𝑢 = (𝑢1,… , 𝑢𝑛)𝑇 and 𝜆 denotes the spectral parameter. To construct integrable
odels within the zero curvature formulation, one first needs to take a loop algebra 𝑔̃ to introduce a spatial spectral matrix:

 = (𝑢, 𝜆) = 𝑓0(𝜆) + 𝑢1𝑓1(𝜆) +⋯ + 𝑢𝑛𝑓𝑛(𝜆), (1.1)

here 𝑓1,… , 𝑓𝑛 are linearly independent elements in 𝑔̃ and 𝑓0 is a pseudo-regular element in 𝑔̃:

[Ker ad𝑓0 ,Ker ad𝑓0 ] = 0, Ker ad𝑓0 ⊕ Im ad𝑓0 = 𝑔̃.

his characteristic property guarantees that there exists a Laurent series solution 𝑍 =
∑∞

𝑠=0 𝜆
−𝑠𝑍[𝑠] to the stationary zero curvature

quation:

𝑍𝑥 = 𝑖[, 𝑍] = 𝑖(𝑍 −𝑍). (1.2)
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Then, take the temporal matrix spectral matrices:

 [𝑟] = (𝜆𝑟𝑍)+ + 𝛥𝑟 =
𝑟
∑

𝑠=0
𝜆𝑟−𝑠𝑍[𝑠] + 𝛥𝑟, 𝑟 ≥ 0, (1.3)

here 𝛥𝑟 ∈ 𝑔̃, 𝑟 ≥ 0, to generate an integrable hierarchy through the zero curvature equations:

𝑡𝑟 − [𝑟]
𝑥 + 𝑖[, [𝑟]] = 0, 𝑟 ≥ 0. (1.4)

hese equations are the compatibility conditions of the spatial and temporal matrix spectral problems:

−𝑖𝜙𝑥 = 𝜙, −𝑖𝜙𝑡𝑟 =  [𝑟]𝜙, 𝑟 ≥ 0. (1.5)

heir Hamiltonian structures can be furnished by using the trace identity [3,4] :
𝛿
𝛿𝑢 ∫ tr

(

𝑍 𝜕
𝜕𝜆

)

𝑑𝑥 = 𝜆−𝛾 𝜕
𝜕𝜆

𝜆𝛾 tr
(

𝑍 𝜕
𝜕𝑢

)

, (1.6)

here 𝛿
𝛿𝑢 denotes the variational derivative with respect to 𝑢 and 𝛾 is the constant given by

𝛾 = −𝜆
2

𝜕
𝜕𝜆

ln |tr(𝑍2)|.

Hamiltonian structures ensure the Liouville integrability of the associated zero curvature equations.
Various existing integrable hierarchies are generated through the zero curvature formulation. The adopted loop algebras are

formed from the special linear algebras (see, e.g., [5–13]), and the special orthogonal algebras (see, e.g., [14–18]). Integrable
hierarchies with two components, let us say 𝑝 and 𝑞, are of great importance. The four well-known such integrable hierarchies
are the Ablowitz–Kaup–Newell–Segur hierarchy [5], the Kaup–Newell hierarchy [19], the Wadati–Konno–Ichikawa hierarchy [20]
and the Heisenberg hierarchy [21]. Their associated spatial spectral matrices read

 =
[

𝜆 𝑝
𝑞 −𝜆

]

,  =
[

𝜆2 𝜆𝑝
𝜆𝑞 −𝜆2

]

,  =
[

𝜆 𝜆𝑝
𝜆𝑞 −𝜆

]

,  =
[

𝜆𝑣 𝜆𝑝
𝜆𝑞 −𝜆𝑣

]

, (1.7)

where 𝑝𝑞 + 𝑣2 = 1, respectively. The four counterparts of spatial spectral matrices associated with so (3, R) are

 =
⎡

⎢

⎢

⎣

0 𝑞 −𝜆
𝑞 0 −𝑝
𝜆 𝑝 0

⎤

⎥

⎥

⎦

,  =
⎡

⎢

⎢

⎣

0 −𝜆𝑞 −𝜆2

𝜆𝑞 0 −𝜆𝑝
𝜆2 𝜆𝑝 0

⎤

⎥

⎥

⎦

, (1.8)

and

 =
⎡

⎢

⎢

⎣

0 −𝜆𝑞 −𝜆
𝜆𝑞 0 −𝜆𝑝
𝜆 𝜆𝑝 0

⎤

⎥

⎥

⎦

,  =
⎡

⎢

⎢

⎣

0 −𝜆𝑞 −𝜆𝑣
𝜆𝑞 0 −𝜆𝑝
𝜆𝑣 𝜆𝑝 0

⎤

⎥

⎥

⎦

, (1.9)

where 𝑝2 + 𝑞2 + 𝑣2 = 1, which were introduced and discussed in [22–25], respectively.
This paper aims at constructing a Liouville integrable hierarchy of six-component Hamiltonian equations, through the zero

curvature formulation. The main contribution is to introduce a specific spatial matrix spectral problem with six potentials and
three signs, yielding the integrable hierarchy. The trace identity will be used to furnish Hamiltonian structures for all models of
the hierarchy. Two illustrative examples of lower orders are six-component integrable coupled nonlinear Schrödinger equations
and six-component integrable coupled modified Korteweg–de Vries equations, whose coefficients involve three signs and depend
on numbers of copies of six potentials appearing in the spatial spectral matrix. The final section provides a conclusion and some
concluding remarks.

2. An integrable hierarchy with six potentials and three signs

Let 𝑛1, 𝑛2 and 𝑛3 be three arbitrary natural numbers, and 𝛿𝑗 , 1 ≤ 𝑗 ≤ 3, be three signs, i.e., 𝛿1, 𝛿2, 𝛿3 ∈ {1,−1}.
It is known that hereditary operators can be used to generate integrable hierarchies [26]. In what follows, we will construct

ntegrable models through the zero curvature formulation. To begin with, we introduce a spatial matrix spectral problem of the
orm:

−𝑖𝜙𝑥 = 𝜙 = (𝑢, 𝜆)𝜙,  =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 𝐩1 𝐩2 𝐩3 0

𝐪1 0 0 0 𝛿1𝐩𝑇1
𝐪2 0 0 0 𝛿2𝐩𝑇2
𝐪3 0 0 0 𝛿3𝐩𝑇3
0 𝛿1𝐪𝑇1 𝛿2𝐪𝑇2 𝛿3𝐪𝑇3 −𝜆

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.1)

where 𝜆 is again the spectral parameter, 𝑢 is the potential with six components:
𝑇

293

𝑢 = 𝑢(𝑥, 𝑡) = (𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3) , (2.2)
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𝐩𝑗 = ( 𝑝𝑗 ,… , 𝑝𝑗
⏟⏞⏞⏟⏞⏞⏟

𝑛𝑗

), 𝐪𝑗 = ( 𝑞𝑗 ,… , 𝑞𝑗
⏟⏞⏟⏞⏟

𝑛𝑗

)𝑇 , 1 ≤ 𝑗 ≤ 3. (2.3)

The above spectral problem is different from the matrix Ablowitz–Kaup–Newell–Segur spectral problem and its various meaningful
reductions (see, e.g., [27,28]).

As usual, to construct an associated integrable hierarchy, we first solve the stationary zero curvature Eq. (1.2) among Laurent
series matrices of the form

𝑍 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎 𝐛1 𝐛2 𝐛3 0

𝐜1 0 𝑑1𝐸𝑛1 ,𝑛2 𝑑2𝐸𝑛1 ,𝑛3 𝛿1𝐛𝑇1
𝐜2 −𝛿1𝛿2𝑑1𝐸𝑛2 ,𝑛1 0 𝑑3𝐸𝑛2 ,𝑛3 𝛿2𝐛𝑇2
𝐜3 −𝛿1𝛿3𝑑2𝐸𝑛3 ,𝑛1 −𝛿2𝛿3𝑑3𝐸𝑛3 ,𝑛2 0 𝛿3𝐛𝑇3
0 𝛿1𝐜𝑇1 𝛿2𝐜𝑇2 𝛿3𝐜𝑇3 −𝑎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
∞
∑

𝑠=0
𝜆−𝑠𝑍[𝑠], (2.4)

where

𝐛𝑗 = ( 𝑏𝑗 ,… , 𝑏𝑗
⏟⏞⏟⏞⏟

𝑛𝑗

), 𝐜𝑗 = ( 𝑐𝑗 ,… , 𝑐𝑗
⏟⏞⏟⏞⏟

𝑛𝑗

)𝑇 , 1 ≤ 𝑗 ≤ 3, (2.5)

𝐸𝑛𝑗 ,𝑛𝑘 is an 𝑛𝑗 × 𝑛𝑘 matrix with all entries being one, and we take Laurent expansions

𝑎 =
∞
∑

𝑠=0
𝜆−𝑠𝑎[𝑠], 𝑏𝑗 =

∞
∑

𝑠=0
𝜆−𝑠𝑏[𝑠]𝑗 , 𝑐𝑗 =

∞
∑

𝑠=0
𝜆−𝑠𝑐[𝑠]𝑗 , 𝑑𝑗 =

∞
∑

𝑠=0
𝜆−𝑠𝑑[𝑠]𝑗 , 1 ≤ 𝑗 ≤ 3. (2.6)

Such a form of Laurent series solutions has been determined by a symbolic computation process.
Now, one can directly observe that the corresponding stationary zero curvature equation leads to the initial conditions:

𝑎[0]𝑥 = 0, 𝑏[0]1 = 𝑏[0]2 = 𝑏[0]3 = 𝑐[0]1 = 𝑐[0]2 = 𝑐[0]3 = 0, 𝑑[0]1,𝑥 = 𝑑[0]2,𝑥 = 𝑑[0]3,𝑥 = 0, (2.7)

nd the recursion relations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏[𝑠+1]1 = −𝑖𝑏[𝑠]1,𝑥 + 𝑝1𝑎[𝑠] + 𝛿1𝛿2𝑛2𝑝2𝑑
[𝑠]
1 + 𝛿1𝛿3𝑛3𝑝3𝑑

[𝑠]
2 ,

𝑏[𝑠+1]2 = −𝑖𝑏[𝑠]2,𝑥 + 𝑝2𝑎[𝑠] − 𝑛1𝑝1𝑑
[𝑠]
1 + 𝛿2𝛿3𝑛3𝑝3𝑑

[𝑠]
3 ,

𝑏[𝑠+1]3 = −𝑖𝑏[𝑠]3,𝑥 + 𝑝3𝑎[𝑠] − 𝑛1𝑝1𝑑
[𝑠]
2 − 𝑛2𝑝2𝑑

[𝑠]
3 ,

(2.8)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐[𝑠+1]1 = 𝑖𝑐[𝑠]1,𝑥 + 𝑞1𝑎[𝑠] − 𝑛2𝑞2𝑑
[𝑠]
1 − 𝑛3𝑞3𝑑

[𝑠]
2 ,

𝑐[𝑠+1]2 = 𝑖𝑐[𝑠]2,𝑥 + 𝑞2𝑎[𝑠] + 𝛿1𝛿2𝑛1𝑞1𝑑
[𝑠]
1 − 𝑛3𝑞3𝑑

[𝑠]
3 ,

𝑐[𝑠+1]3 = 𝑖𝑐[𝑠]3,𝑥 + 𝑞3𝑎[𝑠] + 𝛿1𝛿3𝑛1𝑞1𝑑
[𝑠]
2 + 𝛿2𝛿3𝑛2𝑞2𝑑

[𝑠]
3 ,

(2.9)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑[𝑠+1]1,𝑥 = 𝑖(𝑞1𝑏
[𝑠+1]
2 − 𝛿1𝛿2𝑞2𝑏

[𝑠+1]
1 + 𝛿1𝛿2𝑝1𝑐

[𝑠+1]
2 − 𝑝2𝑐

[𝑠+1]
1 ),

𝑑[𝑠+1]2,𝑥 = 𝑖(𝑞1𝑏
[𝑠+1]
3 − 𝛿1𝛿3𝑞3𝑏

[𝑠+1]
1 + 𝛿1𝛿3𝑝1𝑐

[𝑠+1]
3 − 𝑝3𝑐

[𝑠+1]
1 ),

𝑑[𝑠+1]3,𝑥 = 𝑖(𝑞2𝑏
[𝑠+1]
3 − 𝛿2𝛿3𝑞3𝑏

[𝑠+1]
2 + 𝛿2𝛿3𝑝2𝑐

[𝑠+1]
3 − 𝑝3𝑐

[𝑠+1]
2 ),

(2.10)

nd
𝑎[𝑠+1]𝑥 = 𝑖(−𝑛1𝑞1𝑏

[𝑠+1]
1 − 𝑛2𝑞2𝑏

[𝑠+1]
2 − 𝑛3𝑞3𝑏

[𝑠+1]
3 + 𝑛1𝑝1𝑐

[𝑠+1]
1 + 𝑛2𝑝2𝑐

[𝑠+1]
2 + 𝑛3𝑝3𝑐

[𝑠+1]
3 )

= −(𝑛1𝑞1𝑏
[𝑠]
1,𝑥 + 𝑛2𝑞2𝑏

[𝑠]
2,𝑥 + 𝑛3𝑞3𝑏

[𝑠]
3,𝑥 + 𝑛1𝑝1𝑐

[𝑠]
1,𝑥 + 𝑛2𝑝2𝑐

[𝑠]
2,𝑥 + 𝑛3𝑝3𝑐

[𝑠]
3,𝑥),

(2.11)

here 𝑠 ≥ 0. To uniquely determine a Laurent series solution, we fix the initial values,

𝑎[0] = 1, 𝑑[0]1 = 𝑑[0]2 = 𝑑[0]3 = 0, (2.12)

nd take the constants of integration as zero,

𝑎[𝑠]|𝑢=0 = 0, 𝑑[𝑠]1 |𝑢=0 = 𝑑[𝑠]2 |𝑢=0 = 𝑑[𝑠]3 |𝑢=0 = 0, 𝑠 ≥ 1. (2.13)

onsequently, one can work out the first four sets of non-constant coefficients as follows:

⎧

⎪

⎪

⎨

⎪

⎪

𝑏[1]1 = 𝑝1, 𝑏
[1]
2 = 𝑝2, 𝑏

[1]
3 = 𝑝3,

𝑐[1]1 = 𝑞1, 𝑐
[1]
2 = 𝑞2, 𝑐

[1]
3 = 𝑞3,

𝑑[1] = 𝑑[1] = 𝑑[1] = 0, 𝑎[1] = 0;
294
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑏[2]1 = −𝑖𝑝1,𝑥, 𝑏
[2]
2 = −𝑖𝑝2,𝑥, 𝑏

[2]
3 = −𝑖𝑝3,𝑥,

𝑐[2]1 = 𝑖𝑞1,𝑥, 𝑐
[2]
2 = 𝑖𝑞2,𝑥, 𝑐

[2]
3 = 𝑖𝑞3,𝑥,

𝑑[2]1 = −𝛿1𝛿2𝑝1𝑞2 + 𝑝2𝑞1, 𝑑
[2]
2 = −𝛿1𝛿3𝑝1𝑞3 + 𝑝3𝑞1, 𝑑

[2]
3 = −𝛿2𝛿3𝑝2𝑞3 + 𝑝3𝑞2,

𝑎[2] = −𝑛1𝑝1𝑞1 − 𝑛2𝑝2𝑞2 − 𝑛3𝑝3𝑞3;

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏[3]1 = −𝑝1,𝑥𝑥 + (−𝑛1𝑝21 + 𝛿1𝛿2𝑛2𝑝22 + 𝛿1𝛿3𝑛3𝑝23)𝑞1 − 2(𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)𝑝1,

𝑏[3]2 = −𝑝2,𝑥𝑥 + (𝛿1𝛿2𝑛1𝑝21 − 𝑛2𝑝22 + 𝛿2𝛿3𝑛3𝑝23)𝑞2 − 2(𝑛1𝑝1𝑞1 + 𝑛3𝑝3𝑞3)𝑝2,

𝑏[3]3 = −𝑝3,𝑥𝑥 + (𝛿1𝛿3𝑛1𝑝21 + 𝛿2𝛿3𝑛2𝑝22 − 𝑛3𝑝23)𝑞3 − 2(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2)𝑝3,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐[3]1 = −𝑞1,𝑥𝑥 + (−𝑛1𝑞21 + 𝛿1𝛿2𝑛2𝑞22 + 𝛿1𝛿3𝑛3𝑞23 )𝑝1 − 2(𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)𝑞1,

𝑐[3]2 = −𝑞2,𝑥𝑥 + (𝛿1𝛿2𝑛1𝑞21 − 𝑛2𝑞22 + 𝛿2𝛿3𝑛3𝑞23 )𝑝2 − 2(𝑛1𝑝1𝑞1 + 𝑛3𝑝3𝑞3)𝑞2,

𝑐[3]3 = −𝑞3,𝑥𝑥 + (𝛿1𝛿3𝑛1𝑞21 + 𝛿2𝛿3𝑛2𝑞22 − 𝑛3𝑞23 )𝑝3 − 2(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2)𝑞3,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑[3]1 = −𝑖(𝛿1𝛿2𝑝1𝑞2,𝑥 − 𝑝2𝑞1,𝑥 − 𝛿1𝛿2𝑝1,𝑥𝑞2 + 𝑝2,𝑥𝑞1),

𝑑[3]2 = −𝑖(𝛿1𝛿3𝑝1𝑞3,𝑥 − 𝑝3𝑞1,𝑥 − 𝛿1𝛿3𝑝1,𝑥𝑞3 + 𝑝3,𝑥𝑞1),

𝑑[3]3 = −𝑖(𝛿2𝛿3𝑝2𝑞3,𝑥 − 𝑝3𝑞2,𝑥 − 𝛿2𝛿3𝑝2,𝑥𝑞3 + 𝑝3,𝑥𝑞2),

𝑎[3] = −𝑖(𝑛1𝑝1𝑞1,𝑥 − 𝑛1𝑝1,𝑥𝑞1 + 𝑛2𝑝2𝑞2,𝑥 − 𝑛2𝑝2,𝑥𝑞2 + 𝑛3𝑝3𝑞3,𝑥 − 𝑛3𝑝3,𝑥𝑞3);

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑏[4]1 = 𝑖(𝑝1,𝑥𝑥𝑥 + 3𝑛1𝑝1𝑝1,𝑥𝑞1 + 3𝑛2𝑝1𝑝2,𝑥𝑞2 + 3𝑛3𝑝1𝑝3,𝑥𝑞3
−3𝛿1𝛿2𝑛2𝑝2𝑝2,𝑥𝑞1 − 3𝛿1𝛿3𝑛3𝑝3𝑝3,𝑥𝑞1 + 3𝑛2𝑝1,𝑥𝑝2𝑞2 + 3𝑛3𝑝1,𝑥𝑝3𝑞3),

𝑏[4]2 = 𝑖(𝑝2,𝑥𝑥𝑥 + 3𝑛1𝑝1𝑝2,𝑥𝑞1 − 3𝛿1𝛿2𝑛1𝑝1𝑝1,𝑥𝑞2 + 3𝑛1𝑝1,𝑥𝑝2𝑞1
+3𝑛2𝑝2𝑝2,𝑥𝑞2 + 3𝑛3𝑝2𝑝3,𝑥𝑞3 + 3𝑛3𝑝2,𝑥𝑝3𝑞3 − 3𝛿2𝛿3𝑛3𝑝3𝑝3,𝑥𝑞2),

𝑏[4]3 = 𝑖(𝑝3,𝑥𝑥𝑥 + 3𝑛1𝑝1𝑝3,𝑥𝑞1 − 3𝛿1𝛿3𝑛1𝑝1𝑝1,𝑥𝑞3 + 3𝑛1𝑝1,𝑥𝑝3𝑞1
−3𝛿2𝛿3𝑛2𝑝2𝑝2,𝑥𝑞3 + 3𝑛2𝑝2𝑝3,𝑥𝑞2 + 3𝑛2𝑝2,𝑥𝑝3𝑞2 + 3𝑛3𝑝3𝑝3,𝑥𝑞3),

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐[4]1 = −𝑖(𝑞1,𝑥𝑥𝑥 + 3𝑛1𝑝1𝑞1𝑞1,𝑥 − 3𝛿1𝛿2𝑛2𝑝1𝑞2𝑞2,𝑥 − 3𝛿1𝛿3𝑛3𝑝1𝑞3𝑞3,𝑥
+3𝑛2𝑝2𝑞1,𝑥𝑞2 + 3𝑛2𝑝2𝑞1𝑞2,𝑥 + 3𝑛3𝑝3𝑞1,𝑥𝑞3 + 3𝑛3𝑝3𝑞1𝑞3,𝑥),

𝑐[4]2 = −𝑖(𝑞2,𝑥𝑥𝑥 − 3𝛿1𝛿2𝑛1𝑝2𝑞1𝑞1,𝑥 + 3𝑛1𝑝1𝑞1𝑞2,𝑥 + 3𝑛1𝑝1𝑞1,𝑥𝑞2
+3𝑛2𝑝2𝑞2𝑞2,𝑥 − 3𝛿2𝛿3𝑛3𝑝2𝑞3𝑞3,𝑥 + 3𝑛3𝑝3𝑞2𝑞3,𝑥 + 3𝑛3𝑝3𝑞2,𝑥𝑞3),

𝑐[4]3 = −𝑖(𝑞3,𝑥𝑥𝑥 + 3𝑛1𝑝1𝑞1𝑞3,𝑥 + 3𝑛1𝑝1𝑞1,𝑥𝑞3 − 3𝛿1𝛿3𝑛1𝑝3𝑞1𝑞1,𝑥
+3𝑛2𝑝2𝑞2𝑞3,𝑥 + 3𝑛2𝑝2𝑞2,𝑥𝑞3 − 3𝛿2𝛿3𝑛2𝑝3𝑞2𝑞2,𝑥 + 3𝑛3𝑝3𝑞3𝑞3,𝑥),

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑[4]1 = 3(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)(𝛿1𝛿2𝑝1𝑞2 − 𝑝2𝑞1) + 𝛿1𝛿2𝑝1,𝑥𝑥𝑞2 − 𝑝2,𝑥𝑥𝑞1

−𝑝2𝑞1,𝑥𝑥 + 𝛿1𝛿2𝑝1𝑞2,𝑥𝑥 − 𝛿1𝛿2𝑝1,𝑥𝑞2,𝑥 + 𝑝2,𝑥𝑞1,𝑥,

𝑑[4]2 = 3(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)(𝛿1𝛿3𝑝1𝑞3 − 𝑝3𝑞1) + 𝛿1𝛿3𝑝1,𝑥𝑥𝑞3 − 𝑝3,𝑥𝑥𝑞1

−𝑝3𝑞1,𝑥𝑥 + 𝛿1𝛿3𝑝1𝑞3,𝑥𝑥 − 𝛿1𝛿3𝑝1,𝑥𝑞3,𝑥 + 𝑝3,𝑥𝑞1,𝑥,

𝑑[4]3 = 3(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)(𝛿2𝛿3𝑝2𝑞3 − 𝑝3𝑞2) + 𝛿2𝛿3𝑝2,𝑥𝑥𝑞3 − 𝑝3,𝑥𝑥𝑞2

−𝑝3𝑞2,𝑥𝑥 + 𝛿2𝛿3𝑝2𝑞3,𝑥𝑥 − 𝛿2𝛿3𝑝2,𝑥𝑞3,𝑥 + 𝑝3,𝑥𝑞2,𝑥,

𝑎[4] = 3
2 𝑛1(𝑛1𝑞

2
1 − 𝛿1𝛿2𝑛2𝑞22 − 𝛿1𝛿3𝑛3𝑞23 )𝑝

2
1 −

3
2 𝑛2(𝛿1𝛿2𝑛1𝑞

2
1 − 𝑛2𝑞22 + 𝛿2𝛿3𝑛3𝑞23 )𝑝

2
2

− 3
2 𝑛3(𝛿1𝛿3𝑛1𝑞

2
1 + 𝛿2𝛿3𝑛2𝑞22 − 𝑛3𝑞23 )𝑝

2
3 + 6𝑛1𝑝1(𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)𝑞1

+6𝑛2𝑛3𝑝2𝑝3𝑞2𝑞3 + 𝑛1𝑝1𝑞1,𝑥𝑥 + 𝑛1𝑝1,𝑥,𝑥𝑞1 + 𝑛2𝑝2𝑞2,𝑥𝑥 + 𝑛2𝑝2,𝑥𝑥𝑞2
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+𝑛3𝑝3𝑞3,𝑥𝑥 + 𝑛3𝑝3,𝑥𝑥𝑞3 − 𝑛1𝑝1,𝑥𝑞1,𝑥 − 𝑛2𝑝2,𝑥𝑞2,𝑥 − 𝑛3𝑝3,𝑥𝑞3,𝑥.
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All these computations suggest that one can take 𝛥𝑟 = 0, 𝑟 ≥ 0, to introduce the temporal matrix spectral problems:

−𝑖𝜙𝑡𝑟 =  [𝑟]𝜙 =  [𝑟](𝑢, 𝜆)𝜙,  [𝑟] = (𝜆𝑟𝑍)+ =
𝑟
∑

𝑠=0
𝜆𝑠𝑍[𝑟−𝑠], 𝑟 ≥ 0. (2.14)

Being key objects in the zero curvature formulation, these temporal spectral problems pair up with the spatial spectral problem (2.1).
The corresponding compatibility conditions, namely, the zero curvature equations in (1.4), generate a six-component integrable
hierarchy:

𝑢𝑡𝑟 = 𝑋[𝑟] = (𝑖𝑏[𝑟+1]1 , 𝑖𝑏[𝑟+1]2 , 𝑖𝑏[𝑟+1]3 ,−𝑖𝑐[𝑟+1]1 ,−𝑖𝑐[𝑟+1]2 ,−𝑖𝑐[𝑟+1]3 )𝑇 , 𝑟 ≥ 0, (2.15)

or more concretely,

⎧

⎪

⎨

⎪

⎩

𝑝1,𝑡𝑟 = 𝑖𝑏[𝑟+1]1 , 𝑝2,𝑡𝑟 = 𝑖𝑏[𝑟+1]2 , 𝑝3,𝑡𝑟 = 𝑖𝑏[𝑟+1]3 ,

𝑞1,𝑡𝑟 = −𝑖𝑐[𝑟+1]1 , 𝑞2,𝑡𝑟 = −𝑖𝑐[𝑟+1]2 , 𝑞3,𝑡𝑟 = −𝑖𝑐[𝑟+1]3 ,
𝑟 ≥ 0. (2.16)

Base on the previous computations, one can present the first two nonlinear examples in this integrable hierarchy, one of which
is the integrable system of coupled nonlinear Schrödinger equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑝1,𝑡2 = 𝑝1,𝑥𝑥 + (𝑛1𝑝21 − 𝛿1𝛿2𝑛2𝑝22 − 𝛿1𝛿3𝑛3𝑝23)𝑞1 + 2(𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)𝑝1,

𝑖𝑝2,𝑡2 = 𝑝2,𝑥𝑥 − (𝛿1𝛿2𝑛1𝑝21 − 𝑛2𝑝22 + 𝛿2𝛿3𝑛3𝑝23)𝑞2 + 2(𝑛1𝑝1𝑞1 + 𝑛3𝑝3𝑞3)𝑝2,

𝑖𝑝3,𝑡2 = 𝑝3,𝑥𝑥 − (𝛿1𝛿3𝑛1𝑝21 + 𝛿2𝛿3𝑛2𝑝22 − 𝑛3𝑝23)𝑞3 + 2(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2)𝑝3,

(2.17)

nd
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑞1,𝑡2 = −𝑞1,𝑥𝑥 + (−𝑛1𝑞21 + 𝛿1𝛿2𝑛2𝑞22 + 𝛿1𝛿3𝑛3𝑞23 )𝑝1 − 2(𝑛2𝑝2𝑞2 + 𝑛3𝑝3𝑞3)𝑞1,

𝑖𝑞2,𝑡2 = −𝑞2,𝑥𝑥 + (𝛿1𝛿2𝑛1𝑞21 − 𝑛2𝑞22 + 𝛿2𝛿3𝑛3𝑞23 )𝑝2 − 2(𝑛1𝑝1𝑞1 + 𝑛3𝑝3𝑞3)𝑞2,

𝑖𝑞3,𝑡2 = −𝑞3,𝑥𝑥 + (𝛿1𝛿3𝑛1𝑞21 + 𝛿2𝛿3𝑛2𝑞22 − 𝑛3𝑞23 )𝑝3 − 2(𝑛1𝑝1𝑞1 + 𝑛2𝑝2𝑞2)𝑞3;

(2.18)

and the other, the integrable system of coupled modified Korteweg–de Vries equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝1,𝑡3 = −𝑝1,𝑥𝑥𝑥 − 3𝑛1𝑝1𝑝1,𝑥𝑞1 − 3𝑛2𝑝1𝑝2,𝑥𝑞2 − 3𝑛3𝑝1𝑝3,𝑥𝑞3
+3𝛿1𝛿2𝑛2𝑝2𝑝2,𝑥𝑞1 + 3𝛿1𝛿3𝑛3𝑝3𝑝3,𝑥𝑞1 − 3𝑛2𝑝1,𝑥𝑝2𝑞2 − 3𝑛3𝑝1,𝑥𝑝3𝑞3,

𝑝2,𝑡3 = −𝑝2,𝑥𝑥𝑥 − 3𝑛1𝑝1𝑝2,𝑥𝑞1 + 3𝛿1𝛿2𝑛1𝑝1𝑝1,𝑥𝑞2 − 3𝑛1𝑝1,𝑥𝑝2𝑞1
−3𝑛2𝑝2𝑝2,𝑥𝑞2 − 3𝑛3𝑝2𝑝3,𝑥𝑞3 − 3𝑛3𝑝2,𝑥𝑝3𝑞3 + 3𝛿2𝛿3𝑛3𝑝3𝑝3,𝑥𝑞2,

𝑝3,𝑡3 = −𝑝3,𝑥𝑥𝑥 − 3𝑛1𝑝1𝑝3,𝑥𝑞1 + 3𝛿1𝛿3𝑛1𝑝1𝑝1,𝑥𝑞3 − 3𝑛1𝑝1,𝑥𝑝3𝑞1
+3𝛿2𝛿3𝑛2𝑝2𝑝2,𝑥𝑞3 − 3𝑛2𝑝2𝑝3,𝑥𝑞2 − 3𝑛2𝑝2,𝑥𝑝3𝑞2 − 3𝑛3𝑝3𝑝3,𝑥𝑞3,

(2.19)

and
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑞1,𝑡3 = −𝑞1,𝑥𝑥𝑥 − 3𝑛1𝑝1𝑞1𝑞1,𝑥 + 3𝛿1𝛿2𝑛2𝑝1𝑞2𝑞2,𝑥 + 3𝛿1𝛿3𝑛3𝑝1𝑞3𝑞3,𝑥
−3𝑛2𝑝2𝑞1,𝑥𝑞2 − 3𝑛2𝑝2𝑞1𝑞2,𝑥 − 3𝑛3𝑝3𝑞1,𝑥𝑞3 − 3𝑛3𝑝3𝑞1𝑞3,𝑥,

𝑞2,𝑡3 = −𝑞2,𝑥𝑥𝑥 + 3𝛿1𝛿2𝑛1𝑝2𝑞1𝑞1,𝑥 − 3𝑛1𝑝1𝑞1𝑞2,𝑥 − 3𝑛1𝑝1𝑞1,𝑥𝑞2
−3𝑛2𝑝2𝑞2𝑞2,𝑥 + 3𝛿2𝛿3𝑛3𝑝2𝑞3𝑞3,𝑥 − 3𝑛3𝑝3𝑞2𝑞3,𝑥 − 3𝑛3𝑝3𝑞2,𝑥𝑞3,

𝑞3,𝑡3 = −𝑞3,𝑥𝑥𝑥 − 3𝑛1𝑝1𝑞1𝑞3,𝑥 − 3𝑛1𝑝1𝑞1,𝑥𝑞3 + 3𝛿1𝛿3𝑛1𝑝3𝑞1𝑞1,𝑥
−3𝑛2𝑝2𝑞2𝑞3,𝑥 − 3𝑛2𝑝2𝑞2,𝑥𝑞3 + 3𝛿2𝛿3𝑛2𝑝3𝑞2𝑞2,𝑥 − 3𝑛3𝑝3𝑞3𝑞3,𝑥.

(2.20)

The coefficients in these two integrable models depend on three integer numbers: 𝑛1, 𝑛2, 𝑛3, and involve three signs: 𝛿1, 𝛿2, 𝛿3. Taking
different values of 𝑛1, 𝑛2, 𝑛3 and positive or negative signs of 𝛿1, 𝛿2, 𝛿3 leads to abundant integrable systems of coupled focusing or
defocusing type nonlinear Schrödinger equations and modified Korteweg–de Vries equations with six potentials (see also, [29,30]).

3. Hamiltonian structures

To establish Hamiltonian structures [31] for the integrable hierarchy (2.16), we apply the trace identity (1.6) to the matrix
spatial spectral problem (2.1). Following the solution 𝑍 given by (2.4), one can work out

tr
(

𝑍 𝜕
𝜕𝜆

)

= 2𝑎, tr
(

𝑍 𝜕
𝜕𝑢

)

= 2(𝑛1𝑐1, 𝑛2𝑐2, 𝑛3𝑐3, 𝑛1𝑏1, 𝑛2𝑏2, 𝑛3𝑏3)𝑇 , (3.1)

and subsequently, it follows from the trace identity that

𝛿 𝑎 𝑑𝑥 = 𝜆−𝛾 𝜕 𝜆𝛾−𝑠(𝑛1𝑐1, 𝑛2𝑐2, 𝑛3𝑐3, 𝑛1𝑏1, 𝑛2𝑏2, 𝑛3𝑏3)𝑇 , (3.2)
296

𝛿𝑢 ∫ 𝜕𝜆



Chinese Journal of Physics 86 (2023) 292–299W.-X. Ma

w

w
f

w

o
s

or precisely,

𝛿
𝛿𝑢 ∫ 𝜆−𝑠−1𝑎[𝑠+1] 𝑑𝑥 = 𝜆−𝛾 𝜕

𝜕𝜆
𝜆𝛾−𝑠(𝑛1𝑐

[𝑠]
1 , 𝑛2𝑐

[𝑠]
2 , 𝑛3𝑐

[𝑠]
3 , 𝑛1𝑏

[𝑠]
1 , 𝑛2𝑏

[𝑠]
2 , 𝑛3𝑏

[𝑠]
3 )𝑇 , 𝑠 ≥ 0. (3.3)

A check with 𝑠 = 2 leads to 𝛾 = 0, and consequently, one arrives at
𝛿
𝛿𝑢

[𝑠] = (𝑛1𝑐
[𝑠+1]
1 , 𝑛2𝑐

[𝑠+1]
2 , 𝑛3𝑐

[𝑠+1]
3 , 𝑛1𝑏

[𝑠+1]
1 , 𝑛2𝑏

[𝑠+1]
2 , 𝑛3𝑏

[𝑠+1]
3 )𝑇 , 𝑠 ≥ 0, (3.4)

here based on (3.2), the Hamiltonian functionals are given by

[𝑠] = −∫
𝑎[𝑠+2]

𝑠 + 1
𝑑𝑥, 𝑠 ≥ 0. (3.5)

This allows us to present Hamiltonian structures for the hierarchy (2.16):

𝑢𝑡𝑟 = 𝑋[𝑟] = 𝐽 𝛿[𝑟]

𝛿𝑢
, 𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

1
𝑛1
𝑖 0 0

0 1
𝑛2
𝑖 0

0 0 1
𝑛3
𝑖

− 1
𝑛1
𝑖 0 0

0 − 1
𝑛2
𝑖 0

0 0 − 1
𝑛3
𝑖

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑟 ≥ 0, (3.6)

here 𝐽 is Hamiltonian and the functionals [𝑟] are determined by (3.5). These Hamiltonian structures exhibit a relation 𝑆 = 𝐽 𝛿
𝛿𝑢

rom a conserved functional  to a symmetry 𝑆. The vector fields satisfy a characteristic property

[[𝑋[𝑠1], 𝑋[𝑠2]]] = 𝑋[𝑠1]′(𝑢)[𝑋[𝑠2]] −𝑋[𝑠2]′(𝑢)[𝑋[𝑠1]] = 0, 𝑠1, 𝑠2 ≥ 0, (3.7)

hich comes from a Lax operator algebra:

[[ [𝑠1], [𝑠2]]] =  [𝑠1]′(𝑢)[𝑋[𝑠2]] − [𝑠2]′(𝑢)[𝑋[𝑠1]] + [ [𝑠1], [𝑠2]] = 0, 𝑠1, 𝑠2 ≥ 0, (3.8)

r an algebraic structure associated with the isospectral zero curvature equations (see [32] for details). Further, following a recursion
tructure of the hierarchy, one can show that the conserved functionals also commute under the corresponding Poisson bracket:

{[𝑠1],[𝑠2]}𝐽 = ∫
( 𝛿[𝑠1]

𝛿𝑢
)𝑇 𝐽 𝛿[𝑠2]

𝛿𝑢
𝑑𝑥 = 0, 𝑠1, 𝑠2 ≥ 0. (3.9)

Finally, by combining 𝐽 with a recursion operator 𝛷 [26], determined by 𝑋[𝑠+1] = 𝛷𝑋[𝑠], bi-Hamiltonian structures [31] with a
Hamiltonian pair of 𝐽 and 𝑀 = 𝛷𝐽 can be presented for the integrable hierarchy (2.16). This ensures the Liouville integrability of
every model in the hierarchy (2.16).

4. Concluding remarks

A Liouville integrable hierarchy of Hamiltonian equations with six components and three signs has been generated from a specific
matrix spectral problem of arbitrary order within the zero curvature formulation. A crucial step is to determine an appropriate
Laurent series solution to the corresponding stationary zero curvature equation. The resulting integrable models possess Hamiltonian
structures furnished by the trace identity, which show the Liouville integrability of the hierarchy, together with its recursion
structure.

It would be of great importance to explore structures of solitons to the resulting integrable systems. The Riemann–Hilbert tech-
nique [33], the Zakharov–Shabat dressing method [34], the Darboux transformation [35,36] and the determinant approach [37,38]
could be particularly helpful. Taking wave number reductions of solitons can yield other types of important solutions, such as kink,
lump, rogue and breather wave solutions (see, e.g., [39–44]).

We also remark that our matrix spectral problem could be generalized further by taking conjugate copies of potentials and/or
involving more potentials. Generalized matrix spectral problems could lead to more general coupled integrable models (see, e.g., [45–
48]), including integrable couplings (see, e.g., [17,49,50]). Local and nonlocal reduced integrable systems can be generated by
conducting group reductions of matrix spectral problems (see, e.g., [28,51–53], respectively).

The study of integrable models is an exciting and rapidly evolving field of research, and has the potential to shed light on a wide
range of physical phenomena, particularly in nonlinear optics and shallow water waves. There is still much to be learned about
these fascinating mathematical systems. The techniques used to study their mathematical structures and solitons continue to be an
active area of research for many years to come.
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