Chinese Journal of Physics 86 (2023) 292-299

Contents lists available at ScienceDirect

Chinese Journal of
Physics
FEAA 2L

Chinese Journal of Physics

journal homepage: www.elsevier.com/locate/cjph

Check for

Novel Liouville integrable Hamiltonian models with six components =
and three signs
Wen-Xiu Ma "

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA

Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

ARTICLE INFO ABSTRACT

MSC: This paper aims at constructing a six-component integrable hierarchy associated with a matrix
37K15 spatial spectral problem with six potentials and three signs. The zero curvature formulation
35Q55 and the trace identity are used to generate integrable models and their Hamiltonian structures,
37K40 respectively. Two expository examples of integrable models of lower orders are six-component
Keywords: integrable coupled nonlinear Schrédinger (NLS) equations and modified Korteweg-de Vries
Matrix spectral problem (mKdV) equations. The motivation of this study is to explore typical integrable coupled NLS

Zero curvature equation
Integrable hierarchy NLS equations
mKdV equations

equations and mKdV equations, and the innovative idea and main advance is to introduce a
specific matrix spectral problem involving three signs to construct integrable coupled equations.

1. Introduction

The zero curvature formulation is a powerful and fundamental tool for generating integrable models, and has played a crucial
role in the development of soliton theory and nonlinear wave phenomena. The key idea behind the zero curvature formulation is
that the compatibility conditions of matrix spectral problems, producing a hierarchy of nonlinear models, ensure that the associated
Lax pairs [1] generate an infinite sequence of conserved quantities, which can be used to show the Liouville integrability of the
hierarchy. The corresponding inverse scattering transform allows for the construction of solutions to Cauchy problems, particularly
solitons [2].

Let us assume that an n-dimensional potential reads u = (uy, ..., u,)” and A denotes the spectral parameter. To construct integrable
models within the zero curvature formulation, one first needs to take a loop algebra g to introduce a spatial spectral matrix:

M= M(u, 2) = fo(A) +uy f1(A) + - +u, f,(4), 1.1)
where f|, ..., f, are linearly independent elements in g and f| is a pseudo-regular element in §:
[Ker adfO,Ker adfo] =0, Ker adfo @ Im adf0 =g.

This characteristic property guarantees that there exists a Laurent series solution Z = 3> | A™*Z Is] to the stationary zero curvature
equation:

Z,=iM,Z]=iMZ - ZM). (1.2)
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Then, take the temporal matrix spectral matrices:

r
N =W Z), +4,= Y ¥ 72 + 4, r20, ¢
s=0

where 4, € g, r >0, to generate an integrable hierarchy through the zero curvature equations:

M, = NI +ilM, N1 =0, r>0. a4
These equations are the compatibility conditions of the spatial and temporal matrix spectral problems:

—i, = Mg, —i, = N¢, r>0. (1.5)
Their Hamiltonian structures can be furnished by using the trace identity [3,4] :

4 oM —, 0 oM

— [ tr(Z—=—)dx=A7"—VNtr(Z— 1.6

5u/r( o7 ) X =4 (230, .6)

where :—u denotes the variational derivative with respect to u and y is the constant given by

A0 2
==33 In |tr(Z7)].
Hamiltonian structures ensure the Liouville integrability of the associated zero curvature equations.

Various existing integrable hierarchies are generated through the zero curvature formulation. The adopted loop algebras are
formed from the special linear algebras (see, e.g., [5-13]), and the special orthogonal algebras (see, e.g., [14-18]). Integrable
hierarchies with two components, let us say p and g, are of great importance. The four well-known such integrable hierarchies
are the Ablowitz—-Kaup—-Newell-Segur hierarchy [5], the Kaup—Newell hierarchy [19], the Wadati-Konno-Ichikawa hierarchy [20]
and the Heisenberg hierarchy [21]. Their associated spatial spectral matrices read

A op A2 Ap A Ap v Ap
= = = M= , 1.7
M [q —A]’M [lq e M Aqg -2 M Aqg -t .7
where pq + v = 1, respectively. The four counterparts of spatial spectral matrices associated with so (3, R) are
[0 ¢ -4 0 —Ag -A%
M=| q 0 —-p |, M=| Aq 0 —Ap |, (1.8)
| 4 p O A2 Ap 0
and
[ 0 -2¢ -4 0 -i¢ -
M=| Aq 0 —Ap |, M=| Aq 0 —ip |, (1.9
| 2 a0 w o ap 0

where p? + g% + v* = 1, which were introduced and discussed in [22-25], respectively.

This paper aims at constructing a Liouville integrable hierarchy of six-component Hamiltonian equations, through the zero
curvature formulation. The main contribution is to introduce a specific spatial matrix spectral problem with six potentials and
three signs, yielding the integrable hierarchy. The trace identity will be used to furnish Hamiltonian structures for all models of
the hierarchy. Two illustrative examples of lower orders are six-component integrable coupled nonlinear Schrédinger equations
and six-component integrable coupled modified Korteweg—de Vries equations, whose coefficients involve three signs and depend
on numbers of copies of six potentials appearing in the spatial spectral matrix. The final section provides a conclusion and some
concluding remarks.

2. An integrable hierarchy with six potentials and three signs

Let ny,n, and n3 be three arbitrary natural numbers, and §;, 1 < j < 3, be three signs, i.e., 6,,8,,6; € {1,-1}.

It is known that hereditary operators can be used to generate integrable hierarchies [26]. In what follows, we will construct
integrable models through the zero curvature formulation. To begin with, we introduce a spatial matrix spectral problem of the
form:

A P P2 P3 0
q O 0 0 &p]
—ip, = Mep=Mu,Np, M=| qu 0 0 0 6p; | 2.1
@ 0 0 0 &p;
| 0 5i4] &4 S -4

where 4 is again the spectral parameter, u is the potential with six components:
w=u(x, 1) = (py, s 3,415 92:43)" » 2.2)
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and
P =(pjprsp;)s @ =(gj...,q)", 1</ <3, (2.3)
N—— N——

nj j

The above spectral problem is different from the matrix Ablowitz—Kaup—-Newell-Segur spectral problem and its various meaningful
reductions (see, e.g., [27,28]).

As usual, to construct an associated integrable hierarchy, we first solve the stationary zero curvature Eq. (1.2) among Laurent
series matrices of the form

a b, b, b, 0
c 0 diEy dyE, .y Sib] -
Z=| ¢ =66,d,E,, 0 d3E,,,,  &b] (=) a7 ZV, (2.4
¢;  —8183dyE,,,  —6,63d5E,, 0 ;b7
| 0 el 8¢ 85¢l -a |
where
by = (b b)), €= (¢jnney), 1<) <3, (2.5)
—— ——
nj nj
E, . is an n; X n, matrix with all entries being one, and we take Laurent expansions
_ —s _[s] _ —szls] _ —s [s] _ —s gls] .
a—zola,bj—zall bj,cj_zéa cj,dj_zéz a", 1<j<3. (2.6)
s= S= S= §=l

Such a form of Laurent series solutions has been determined by a symbolic computation process.
Now, one can directly observe that the corresponding stationary zero curvature equation leads to the initial conditions:

d% =0, B = = B = M = [N = =0, 4" =al =4l =0, 27
and the recursion relations:
Y = —ibl) 4 pial*l + 8,8,m0pyd}") + 6, 83m3p3d),
b[ZS“] = b[ . L+ palsl — nlpld + 5253n3pgd[s], 2.8)

bg”” = —ibgfl + pyalsl — n1p1d£51 — nypyd®,

FH] [ﬂ+ﬁdg_%%¢ _m%wq
1 s
£Y+ 1= E}( + gyal! + 6162n1q1d£5] - n3q3dm, (2.9)
EH] [ ] L+ qall +5 63n1q1d[’ + ﬁzagnzqzd[ 1,
d s+l _ l( b 6162q2b[15+l] + 5152plcgs+l] _pZCESJrl])»
n_. 1 1 s+1 s+1
d;f: V= i(q 00" = 51650500 4 5,63p, L — pycltt, (2.10)
n_. 1 1 1 1
dy: = :(qzb[;* - 5253113b§+ T+ 52531725§Jr ! —173C£SJr N,
and
a1 = i(—nlq]bm'1J —nzqzbm' ' nyg, bl Sy nipy cl Sy nyp, c[ 4 nsps c[YJr )
[s] (5] [s] [s) [s] [s] 211
= —(nlqlb + nzqzb + ngng Fmpiey, +mpycy  +n3pscy 2
where s > 0. To uniquely determlne a Laurent series solutlon, we fix the 1n1t1a1 values,
a1 =1, a9 = = g <o, (212)
and take the constants of integration as zero,
aMeg =0, d¥p=dl, o =dM,cg=0. s> L. (2.13)

Consequently, one can work out the first four sets of non-constant coefficients as follows:

1 1 1
B =p,, o =py, o' = ps,

[ [

1
”_ql,

[ _ i
dl - d2

1
]_172,

— gl
_d3

1
_]_43,

=0, adlll = 0;
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2 . 2 ) 2 .
b& 1 —ipy x» blzj =—ipy > b:[;J =-ip3y,

2, 2. 2.
C% 1= 19y x> Céj =14 x» C; = 193 x»
d? =-5,5 d? =55 d? = -5,5

| = 70102P19 T P2q1, @y = —0103p1q3 + P3qy, A3 = —0203P243 + P3dp,
2]

al?l = —np1q — Na2P2qx — N3P343;

3

b% T=—p o+ (=m P} + 818,103 + 6163n3p3)a) — 2(mypady + 13p3a3)py»
3

blz T=—pp o+ (818311 p} = nyp3 + 8283n3p3)ay — 2(n1 P14y + 13P303)P2

3
b[3 = —P3xx t (5,53n]p% + 5253’1217% - n3p§)q3 —2(nyp1qy + nyp2a2)p3,

3
C{ V= g+ (=n1 G} + 818,103 + 8153n343)py — 2(nypa s + 1334341
3
P C£ I = —4) xx + (51 62"1"12 - nzqg + 5253"3%%)1’2 - 2(nlplql + n3p3q3)q2,

3
c§ = —3xx T (5153"1412 + 5253"2‘15 - n3q§)p3 = 2(nyp141 + M2D242)4s,

3 .
d) = —i(8,6,p142 . — P2d1 x — 6152P1 <2 + P21

3 )
dL = —i(6103P193 x — P341,x — 6163P) x43 *+ P3.x41)

3 )
dé I = —i(6263P293 x — P392,x — 6203P2 <43 + P3 x42);

a®l = —i(n117141,x =P xdy T MPrGy x — MyP) Gy + N3P3qG3  — ”31’3,,&13)2
and
4 _ .
B = i(py o + 301121 <01 + 30201020 + 3N3D1 D3 03
—=36102nyP2P3 41 — 3616313P3P3 xq1 + 312D P2ds + 313D xP343)

4a_ .
b[2 = i(Pyxxx T 3M1P1P2xq1 — 3610211 P1P1 <Gz + 311 D1 < P21
+3n302P3 <G + 3n3P2P3 543 + 313D D3G5 — 3626313P3P3 < 40)s

4 .
b[3] = i(P3 xxx T 3MD1P3xq1 — 3610301 P1 Py <43 + 301Dy P34
=3656313P2P5 <q3 + 31yP2P3 < @p + 3n2p P3Gy + 3n3P3P3 < 03),

4 .
C{ 1= —i(q) xxx + 301019191 x — 36162MP1 0242 — 3616313P1 4303«
+3n30241 <92 + 32929192 + 3n3P341<43 + 3n3P34193 5>

4 )
C£ = —i(@y xxx — 361621124191« + 311 D191 92 5 + 311 P14 592
+3nyP24242 « — 362631324343 x + 3n3P34243 x + 313P32 < 43),

4 )
M = —igy v +3mP1 91051+ 3MP1 9105 — 3616311 P30141

+3n2020245 x + 3n2D202 <G5 — 362632030202 x + 313P34343 1)
drﬂ =3(np1q; + nyprdy + n3p33)(616,P192 — P241) + 6102P1 xxd2 — P2xx 4l
P21 xx T 01620140 xx — 6162D1 x4, x + P2 xq1 x
d£4] =3(np1q; + nyPrqs + n3p3G3)(6163P143 — P341) + 6163P1 < G3 — P3 x4
—P341xx T 01630143 xx — 6163P1 x43.x + P3.xq1 x»
d?] =3(n1p1q; + nyprqy + n3p3q3)(6263P293 — P3d2) + 620302 <43 — P3xx D2

—P3492 xx + 5253p2q3,xx - 5253p2,xq3,x + P3x492 x>

al¥ = %”1(”1412 — 81621243 — 8153mq2)pt — %"2(5152”14% — nyq3 + 6,631302)p’
—%"3(5153"1412 + 52537'251% - "34%)17% +6n,p;(nyp2qy + n3p343)4,
+6ny13p3 30243 + M1 P14 xx + M1PLxxdL T 12P282 xx F M2P2xx 2
HN3P3G3 xx T 13D3,xx43 — NP1 x91x — M2P2x92,x — M3P3 x43,x+
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All these computations suggest that one can take 4, =0, r > 0, to introduce the temporal matrix spectral problems:

.
=iy, = N = NV, o, NV = 2), =Y 22, r>0. (2.14)
s=0
Being key objects in the zero curvature formulation, these temporal spectral problems pair up with the spatial spectral problem (2.1).
The corresponding compatibility conditions, namely, the zero curvature equations in (1.4), generate a six-component integrable
hierarchy:

5

U, = xr = (ib[lH'l],ib[zH],ib[{H],—icErH] —icg’“],—icg’“])r, r>0, (2.15)

or more concretely,

[+l L [r+1 . 1
Py, = lbllr J’ Py, = ’bg J’ b3y, = ‘b[3r+ J,
[r+1] [r+1] [r+1] (2.16)
ialr -l I
qy,, = —ic > Gog, = iy T, g3y = —icy

r r

>
»

Base on the previous computations, one can present the first two nonlinear examples in this integrable hierarchy, one of which
is the integrable system of coupled nonlinear Schrodinger equations:
iDLy, = Piax + (1P} = 8186,mp) — 818313034y + 2(nypyds + 13p343)P1 s
1 P2, = Pax — (818311 p] — myp) + 628313p3)dn + 2(n 14y + 13p3d3)Pa, (2.17)
iP34, = D3y — (818311} + 8,83mp) — n3p3)ds + 2(ny Py 4y + n3prd)pss
and
i), = =1 xx + (=114} + 816,105 + 8, 531303)py — 2(nap2ay + 13P383)d) 5
1424, = =G xx + (851530107 = My + 8353n305)py — 2(ny P14y + n3p343)0a, (2.18)
i43,, = =3 xx + (51830147 + 85831005 — n303)p3 — 2(n1 P14y + 12P242)435
and the other, the integrable system of coupled modified Korteweg-de Vries equations:

Pli; = ~Plaxx — 3M1P1P1x41 — 3mD1P2 <G — 3N3P1P3 <43
+36162nyP2P2 <1 +38163n3P3P3 541 — 3n2P1 xP292 — 3N3P1 P3G,

P2ty = ~P2xxx — 3MP1P2x41 + 3616201 P1P1 G2 — 3N1P1 P21 (2.19)
=3ny0yP <G> — 3n3D2P3 x93 — 3n3D3 xP3q3 + 362631333 < Gas

P34y = ~P3xxx — 3MP1P3 141 + 36183011 P1 <G5 — 3n1P1 (P34
+36263n3P2P2 xq3 — 312P2P3 542 — 312Dy P3G2 — 3N3P3P3 <435

and

G11y = —q1xxx — 3MP19141,x +36162M2D1 G207« +3616313P1433 «
=3mp2q1 92 — 3M2P24192 x — 313P341 x93 — 3N3P34143

@Dy = ~xxx 361620020191« — 301 P11%2x — 311P191 <D (2.20)
—3mpy020s x + 3626313024393 — 313D34243  — 3N3P34) 143

DBy = ~DBxxx — 3n1p149193,x — 3n1P191.x43 + 3616311 P3q191 «
—=3nypy8243 x = 3M2P2G2 x93 + 3620312P30242 x — 313P30343 -

The coefficients in these two integrable models depend on three integer numbers: n,, n,, n3, and involve three signs: §,, 5,, 63. Taking
different values of n,n,, n; and positive or negative signs of 8, 6,, 6; leads to abundant integrable systems of coupled focusing or
defocusing type nonlinear Schrédinger equations and modified Korteweg—de Vries equations with six potentials (see also, [29,30]).

3. Hamiltonian structures

To establish Hamiltonian structures [31] for the integrable hierarchy (2.16), we apply the trace identity (1.6) to the matrix
spatial spectral problem (2.1). Following the solution Z given by (2.4), one can work out
tr(Z%) =2a, tr(Zaaﬂ) = 2(nycy, nycy, nycs, ny by, naby, nyby)T 3.1
u
and subsequently, it follows from the trace identity that

:—u/adx = /1_7%ﬂ_s(mcl,"zcz’"303,"1b1,"2b2,"3b3)Ts (3.2)
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or precisely,
4

s —y 0
o A5 lalst  gx = Vaﬂ "(nlcES],nzcgs],n3c£s],nlb[ls],nzbgs],@bgs])r, s>0. (3.3)
A check with s =2 leads to y = 0, and consequently, one arrives at
;—MH[SJ = (el g Uy b g BT s > 0, (3.4)
where based on (3.2), the Hamiltonian functionals are given by
als+21
HB = —/ 4% 520 (3.5)
N
This allows us to present Hamiltonian structures for the hierarchy (2.16):
[ Li o o |
n
0 0 ~i 0
n
1
[r] 0 0 —i
— vyl = oH — n3
u, =X = L J = T , 120, (3.6)
ou ! 0 0
0 -1 0
ny
0o -Li
L n3 .

where J is Hamiltonian and the functionals #!"! are determined by (3.5). These Hamiltonian structures exhibit a relation S = J %
from a conserved functional H to a symmetry .S. The vector fields satisfy a characteristic property

Xt x21) = XEV @x el - xRl x I =0, 5.5, 2 0, 37
which comes from a Lax operator algebra:
TN N B2 = N @ x B2l - VRV 4 (VB N B2D = 0,505, 2 0, (3.8)

or an algebraic structure associated with the isospectral zero curvature equations (see [32] for details). Further, following a recursion
structure of the hierarchy, one can show that the conserved functionals also commute under the corresponding Poisson bracket:

SHI (1 sHIs2]
{H[Sll,H[Szl},:/( » )T s =0, 51,520, (3.9

Finally, by combining J with a recursion operator @ [26], determined by X[*!] = @ X!s], bi-Hamiltonian structures [31] with a
Hamiltonian pair of J and M = &J can be presented for the integrable hierarchy (2.16). This ensures the Liouville integrability of
every model in the hierarchy (2.16).

4. Concluding remarks

A Liouville integrable hierarchy of Hamiltonian equations with six components and three signs has been generated from a specific
matrix spectral problem of arbitrary order within the zero curvature formulation. A crucial step is to determine an appropriate
Laurent series solution to the corresponding stationary zero curvature equation. The resulting integrable models possess Hamiltonian
structures furnished by the trace identity, which show the Liouville integrability of the hierarchy, together with its recursion
structure.

It would be of great importance to explore structures of solitons to the resulting integrable systems. The Riemann-Hilbert tech-
nique [33], the Zakharov-Shabat dressing method [34], the Darboux transformation [35,36] and the determinant approach [37,38]
could be particularly helpful. Taking wave number reductions of solitons can yield other types of important solutions, such as kink,
lump, rogue and breather wave solutions (see, e.g., [39-44]).

We also remark that our matrix spectral problem could be generalized further by taking conjugate copies of potentials and/or
involving more potentials. Generalized matrix spectral problems could lead to more general coupled integrable models (see, e.g., [45—
48]), including integrable couplings (see, e.g., [17,49,50]). Local and nonlocal reduced integrable systems can be generated by
conducting group reductions of matrix spectral problems (see, e.g., [28,51-53], respectively).

The study of integrable models is an exciting and rapidly evolving field of research, and has the potential to shed light on a wide
range of physical phenomena, particularly in nonlinear optics and shallow water waves. There is still much to be learned about
these fascinating mathematical systems. The techniques used to study their mathematical structures and solitons continue to be an
active area of research for many years to come.
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