Chinese Journal of Physics 80 (2022) 12-18

Contents lists available at ScienceDirect

Chinese Journal of
Physics
FEAA 2L

Chinese Journal of Physics

journal homepage: www.elsevier.com/locate/cjph

Check for

Integrable reductions of a soliton hierarchy associated with so(3,R) [
Wen-Xiu Ma *

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA

School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

ARTICLE INFO ABSTRACT

MSC: We construct integrable reductions of a soliton hierarchy associated with the special orthogonal
37K05 Lie algebra so(3, R). The resulting reduced integrable equations include a nonlinear Schrédinger
37K10 type equation and a modified Korteweg-de Vries type equation. There are two kinds of
35Q53 integrable reductions in our analysis, but they lead to essentially the same scalar integrable
Keywords: equations. This is a particular phenomenon for soliton equations associated with so(3, R), which
Zero curvature equation is different from the one for soliton equations associated with sl(2, R).

Liouville integrability
Integrable reduction

1. Introduction

Soliton equations are a kind of nonlinear partial differential equations, which are generated from zero curvature equations
associated with matrix Lie algebras [1]. The trace identity [2] and the variational identity [3] provide basic tools to show the
Liouville integrability of soliton equations. Among the well-known hierarchies of soliton equations are the KdV hierarchy, the AKNS
hierarchy and the Kaup-Newell hierarchy [1,4].

Let us consider the special orthogonal Lie algebra g = so(3,R), and its basic representation presented by all 3 x 3 trace-free,
skew-symmetric real matrices, whose basis could be taken as follows:

0 0 -1 00 0 0 -1 0
=10 0 0], e,=|0 0 =-1|,e5=|1 0 o0, 6})
1 0 0 01 0 0 0 0

leading to the corresponding structure equations:
[er, ex] = e3, [ey,e3] = e, [e3,€;] = ;. (2)

The derived algebra [g, g] = [s0(3,R),so(3,R)] is g = so(3,R) itself. This is one of the only two three-dimensional real Lie algebras
with a three-dimensional derived algebra. The other one is the special linear algebra sl(2, R), which has been frequently used to
construct soliton equations [1-4]. It is worth noting that their complexifications, i.e., the two complex Lie algebras, sl(2,C) and
so(3,C), are isomorphic to each other.

We will use the matrix loop algebra in our construction:

§=50(3,R) = {M € s0(3,R) | entries of M - Laurent series in A}, 3)
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where 4 is a spectral parameter. The loop algebra s0(3, R) contains matrices of the form A™1e; + 1™ e, + A™3 e; with arbitrary integers
m;, 1 <i < 3. This matrix loop algebra lays a foundation for constructing soliton equations [5-7]. Starting from the perturbation-type
loop algebras of s0(3,R), we can also construct integrable couplings such as bi-integrable couplings and tri-integrable couplings [8].

In this paper, based on zero curvature equations, we would first like to reformulate a soliton hierarchy associated with so(3, R) [5].
We will then make integrable reductions for the adopted spectral matrix to generate a reduced hierarchy of soliton equations, which
keeps the Liouville integrability of the original hierarchy and so possesses infinitely many commuting symmetries and conservation
laws. Two reduced examples are two scalar integrable equations: a nonlinear Schrédinger type equation

. * 1 1 .
i = =P + PP+ S,
and a modified Korteweg—de Vries type equation

3 3
Pt = —Pxxx t §[P2 + (P )2]17):7

where p* denotes the complex conjugate of p.
2. Reformulation of a soliton hierarchy
2.1. Soliton hierarchy

We would like to reformulate a soliton hierarchy associated with the matrix loop algebra $0(3,R) [5]. Let us take a spatial matrix
spectral problem

—i¢p, =U¢d =Uu, )P, (4
with
0 —-qg -4
U=Uu,A)=4e;+pey+qge3={q 0 —pf, (5)
A p 0

where i is the unit imaginary number, 4 is a spectral parameter, u = (p,q)" is a potential and ¢ = (¢, ¢, $3)7 is a column
eigenfunction. The original spectral matrix for a soliton hierarchy in [5] is U, but here the adopted spectral matrix is iU with
a factor difference i, which helps us determine integrable reductions successfully.

As normal, we begin with the stationary zero curvature equation

W, =ilU, W]. (6)
It becomes
a, = i(pc — gb),
b, = i(—4c + qa), 7)
¢, = i(Ab — pa),

when W is taken as

0 — =-a
W =ae| +bey+ces=|c 0 -b|= z Wi, ®
a b 0 m20
with
0 -c, -a,
Wom=|cw 0 —b,|, m20. ©)
a b 0

Upon taking the initial values
ag=-1, by=¢cy =0, (10)
the system (7) equivalently gives rise to

bm+1 = _icm,x +pam7
Cmy1 = by +qay,, m 2> 0. 1

Al x = i(pcm+1 - qu+1)’
We impose the integration conditions

apyl—0 =0, m>1; and so, b, |,—o = c,l,—0 =0, m > 1.
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This means that we take the constants of integration to be zero, in order to determine the sequence of {a,,, b, c,| m > 1} uniquely.

In this way, the first few sets can be worked out as follows:
by =-p, c;=—q, a;=0;
b, =i =i =12+ 4%
2 =iqy, € = —ipy, ay = 5(p" +4°);
1 1
b3 = Py T §P3 + zpqz’
1 1
€3 = —qxx T §p2q + 5037
a3 =i(pxq — pqy);
. 3 3
by = i(Gexx = 59705 = 50°0)-
. 3 3
¢4 = i(=Pyyx + 57D + 5207,
1 1 3
A4 = PPy + 4y — 5P — 545 — 300 + a7
5 5 3
bS = “Pxxxx + Epszx + Epp,zc + prxq2 + 3pxqqx
1 3
+P44ys — 5P0% = 3PP + )%,
5 5 3
€5 = —Gxxxx t quqxx + quz + Epqux + 3PPy
1 3
+PPcd — 3P34 — 40P + 47,
as = i(pxqu ~ PAxxx ~ Pxx4x t Px4xx
3 3 3 3
~53P7Ped + 50474 + 500, — 5P.4).
Now we take
m
yim = omw), = Z Wy, A", m >0,
i=0
to introduce the temporal matrix spectral problems:
—igp = V" = VI, ), m > 0.
Then, the zero curvature equations
U =V 4ilu,vi™ =0, m>0,
generate a hierarchy of soliton equations:
w=kn=i5m | =om | ] mo
m+1 —ip
where the operator @ can be determined by the recursion relation (11):

-1 _ -1
o=i| 9P T4l 5_ 0
d—po—'p —po~'q ox

2.2. Hamiltonian structure and the Liouville integrability

We apply the trace identity [2] for our spectral matrix iU:
5 L i}
5 /tr(W ) )dx =4 0/11 tr(W o ),
where the constant y is determined by
Ad
=—=—1IIn|(W,W)|.
r=-57lK N

Obviously, we see

aU oU oU
=€, S =6, — =
2 dap adq

and so we have
w2 = 220, eow Yy = 2, v ) = —2c.
dA ap dq
Then the corresponding trace identity (17) reads
i/adx:/l_yiﬂ b .
ou d4 c

14

(12)

13)

(14)

(15)

16)

@a7)
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A balance of the coefficients of each power of 1 in this equality yields

4 b

5/“»&1 dx =y —m) [c:] , m>0.
The case of m = 1 leads to y = 0, and thus, we obtain

S (L2 y gy = [bmﬂ] . m>0, 19)

Cm+1

Consequently, we obtain a Hamiltonian structure for the soliton hierarchy (15):

— 6H,
u,=Km=i[ Cm+1] =JZm om0, (20)
bm+1 ou
with the Hamiltonian operator
0 -1
J = 21
[1 . ] , 1)
and the Hamiltonian functionals
ia,, o
M, = /(—mLJ:l) dx, m>0. (22)

These lead to infinitely many conservation laws of each system in the soliton hierarchy (15), which can often be generated through
symbolic computation by computer algebra systems (see, e.g., [9]).

To exhibit the Liouville integrability, let us prove that the operator @ defined by (16) is a hereditary recursion operator for the
soliton hierarchy (15).

First, a direct but lengthy computation can show that the operator @ is hereditary (see [10] for definition), i.e., it satisfies

@' (W)[PK]S — D' (W)[K]S = &' (W)[®S1K — @D’ (w)[S1K (23)
for all vector fields K and S; and that J and

—0+4q0 g —qo~'p

. 24
-po~'q  —0+po'p 24

M=IDJ=i[

where J is defined by (21), constitute a Hamiltonian pair (see [11] for details), i.e., any linear combination N of J and M satisfies
the Jacobi identity

/ KT N'(W)[N S1T dx + cycle(K, S, T) =0 (25)

for all vector fields K, .S and T.
We point out that the hereditary property (23) is equivalent to

Lox® = DLy®, (26)
where K is an arbitrary vector field and L@ is the Lie derivative Ly ®:
(Lg®)S = D[K,S] - [K,DS],

with [+, -] being the Lie bracket of vector fields.
Second, note that an autonomous operator @ = @(u,u,, ...) is a recursion operator of an evolution equation u, = K if and only if
the operator @ needs to satisfy

L@ =0. (27)

Obviously, for the operator @ defined by (16), we have
.1 4q
Ly ®@=0, Ky=i s
and thus

Ly @=Ly ®=®Lg d=0 m>1, (28)

where the K,,’s are given by (15). This implies that the operator @ defined by (16) is a common hereditary recursion operator for
the soliton hierarchy (15).
Now, the soliton hierarchy (15) is bi-Hamiltonian (see, e.g., [11,12]):

5H 5M
u=K,=J 5um=M5—';_l,m21,

(29
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where J, M and H,, are defined by (21), (24) and (22) respectively, and so, every member in the hierarchy is Liouville integrable,
i.e., it possesses infinitely many commuting symmetries and conservation laws. In particular, we have the Abelian symmetry algebra:

[Ky, K] = K, K] — K] @)[K;] =0, k120, (30)
and the Abelian algebras of conserved functionals:
oM, .1 OH,
= —E) g —Ldx= >
(H,, H,}, /( = ) J s dx=0, k120, (31
and
SH, .7 &H,
= — Y M—dx= >0. 2
(M, Hy )y /( 5. ) M——dx=0, k120 (32)

2.3. Two particular examples

The first two nonlinear integrable systems in the soliton hierarchy (15) are a nonlinear Schrodinger type system
u, =K, (33)

ie.,

. 1 1
P =i(qe — =074 - 5(13),

2
=i(— +l 3+l 2) (34)
qa = Pxx 21’ 21’!1 s
and a modified Korteweg—de Vries type system
u, = Kj, (35)
ie.,
3 3.2
Pt = —Pxxx t EP Pyt prq >
3 3 (36)
G = ~Guox + 3P0+ 500
They possess the following bi-Hamiltonian structures
5H, 5H,
=K, =J—==M—, 37
. 2 ou ou (37)
and
5H, 5H,
=Ky=J—=M—=, 38
“ 3 ou ou (38)
where the Hamiltonian pair {J, M} is given by (21) and (24), and the Hamiltonian functionals, H,, H, and H;, are determined by
1
H, = ) /(pqx - pq)dx, (39)
Hy =2 [1opos +aq0 - 202 = 22 = 302 + P1ax (40)
2= 3 Pxx T 99xx sz qu 3 p q 5

1
H3 = Z /(pxqu = Pxxx — Pxx9x T Pxxx

3 3 3 3
= 3PP+ S04+ 5070 = Spaa) dx. (41)

It is worth pointing out that the transformation
PX0) = 2(—p+ I, in, G060 = 3(=p = ig)ix, D), (42)
puts the system (34) of NLS equations associated with so(3) into th system of NLS equations associated with sl(2):
By = =i +25°D). @ = (G + 250, (43)
and the system (36) of mKdV equations associated with so(3) into the system of mKdV equations associated with s1(2):
Bt = Prxx + 6BGPys G = Gxx + 65 (44)
But there is no nontrivial transformation if we consider only real potentials p, g, p, §. This subtle difference is a reflection of the fact

that the two complex Lie algebras, sl(2, C) and so(3, C), are isomorphic, but not so are the two real Lie algebras, sl(2, R) and so(3,
R).
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3. Integrable reductions

Let us introduce two specific reductions for the spectral matrix:

0 0 6
wxy =cumc, c={o0 1 0|, §==+1, (45)
5§ 0 0

where { denotes the Hermitian transpose. They lead to the potential reductions
p=48q", 6 ==+I, (46)

and thus, the reduced spectral matrices read

Under the above potential reductions, one has

ay = a,, b, =éc,, m>1. (47)

This statement can be proved by the mathematical induction, since under the induction assumption for m = I and the recursion
relation (11), one can compute

b, =ic/ +ptaj = iéb +6qa; = 6c;yy,

ay,, = =it — by, ) = ilpey — aby) = apy
Therefore, one obtains

@yt =cvimme, m> 1, (48)
and further

(U, = vI" +iu, vyt = e, - v i, vitp@meT!, m> 1. (49)

This tells that the potential reductions in (46) are compatible with the zero curvature equations of the soliton hierarchy (15).
Therefore, we have got two reduced soliton hierarchies associated with so(3, R):

P =Ky ilg=sper m2 1, (50)

where K, = (K,, . K,,,)T, m > 1, are defined by (15). The infinitely many symmetries and conservation laws for the soliton hierarchy
(15) are reduced to infinitely many ones for the above scalar soliton hierarchies in (50).
With 6 = 1, the first two reduced integrable equations read

. . 1 1
ip,=—pt + Elplzp+ 5(12*)3, (51)
and
3
P = —Prxx + 5[172 +(p")*1py (52)

The first one is a nonlinear Schrédinger type equation and the second one is a modified Korteweg—de Vries type equation, associated
with Lax pairs from the Lie algebra so(3, R).

Note that there exist even and odd properties with respect to p and ¢ in the two components of K,,, m > 1. Actually, K, |, [ > 1,
are odd with respect to ¢ and even with respect to p, and K, ., [ > 1, are even with respect to ¢ and odd with respect to p.
Similarly, K ,, [ > 1, are odd with respect to p and even with respect to ¢, and K, ;,, ! > 1, are even with respect to p and
odd with respect to ¢. Therefore, the case of 6 = —1 does not lead to essentially new scalar integrable equations. For example, the
reduced second-order equation with § = —1 has just a different sign from the nonlinear Schrodinger type equation (51), and the
reduced third-order equation with 6 = —1 is exactly the same as the modified Korteweg—-de Vries type equation (52).

This is a new phenomenon for soliton equations associated with so(3,R), which is totally different from the one for soliton
equations associated with sl(2, R).

4. Conclusions and remarks

We have reformulated a hierarchy of soliton equations based on zero curvature equations associated with the special orthogonal
Lie algebra so(3,R) and presented two integrable reductions for the soliton hierarchy successfully. Two particular examples of the
reduced scalar integrable equations are a nonlinear Schrodinger type equation and a modified Korteweg—de Vries type equation.

There are interesting questions for soliton equations associated with the special orthogonal Lie algebras. First, what kind of
general soliton hierarchies could exist? Some novel structures of soliton equations associated to so(4, R) have been explored [13].
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Second, how can we formulate Riemann-Hilbert problems, based on matrix spectral problems? The above spectral matrix iU with
zero potential has three eigenvalues, which brings difficulties in establishing relevant theories. The existing examples belong to the
class with two eigenvalues.

It is known that soliton equations can be generated from zero curvature equations associated with non-semisimple Lie algebras.
Bi-integrable couplings and tri-integrable couplings are such examples and exhibit insightful thoughts about general structures of
multi-component soliton equations [14]. Multi-integrable couplings provide abundant examples of recursion operators in block
matrix form, indeed. There are rich mathematical structures related to integrable couplings [8,14]. Hamiltonian structures could be
furnished for the perturbation equations [15,16] by the variational identity, but not for all integrable couplings. Non-semisimple
matrix Lie algebras may not possess any non-degenerate and ad-invariant bilinear forms required in the variational identities [17,18].
It still remains an open problem how to guarantee the existence of Hamiltonian structures for bi- or tri-integrable couplings, based
on zero curvature equations. Moreover, we do not even know if there exists any Hamiltonian structure for a perturbation type
coupling:

u, = K@), v, = K'W|v], w, = K'W[w].
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