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A B S T R A C T

We construct integrable reductions of a soliton hierarchy associated with the special orthogonal
Lie algebra so(3,R). The resulting reduced integrable equations include a nonlinear Schrödinger
type equation and a modified Korteweg–de Vries type equation. There are two kinds of
integrable reductions in our analysis, but they lead to essentially the same scalar integrable
equations. This is a particular phenomenon for soliton equations associated with so(3,R), which
is different from the one for soliton equations associated with sl(2,R).

. Introduction

Soliton equations are a kind of nonlinear partial differential equations, which are generated from zero curvature equations
ssociated with matrix Lie algebras [1]. The trace identity [2] and the variational identity [3] provide basic tools to show the
iouville integrability of soliton equations. Among the well-known hierarchies of soliton equations are the KdV hierarchy, the AKNS
ierarchy and the Kaup–Newell hierarchy [1,4].

Let us consider the special orthogonal Lie algebra g = so(3,R), and its basic representation presented by all 3 × 3 trace-free,
kew-symmetric real matrices, whose basis could be taken as follows:

𝑒1 =
⎡

⎢

⎢

⎣

0 0 −1
0 0 0
1 0 0

⎤

⎥

⎥

⎦

, 𝑒2 =
⎡

⎢

⎢

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎥

⎥

⎦

, 𝑒3 =
⎡

⎢

⎢

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

, (1)

eading to the corresponding structure equations:

[𝑒1, 𝑒2] = 𝑒3, [𝑒2, 𝑒3] = 𝑒1, [𝑒3, 𝑒1] = 𝑒2. (2)

he derived algebra [g, g] = [so(3,R), so(3,R)] is g = so(3,R) itself. This is one of the only two three-dimensional real Lie algebras
ith a three-dimensional derived algebra. The other one is the special linear algebra sl(2,R), which has been frequently used to

onstruct soliton equations [1–4]. It is worth noting that their complexifications, i.e., the two complex Lie algebras, sl(2,C) and
o(3,C), are isomorphic to each other.

We will use the matrix loop algebra in our construction:

g̃ = s̃o(3,R) = {𝑀 ∈ so(3,R) ∣ entries of 𝑀 - Laurent series in 𝜆}, (3)
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where 𝜆 is a spectral parameter. The loop algebra s̃o(3,R) contains matrices of the form 𝜆𝑚1𝑒1+𝜆𝑚2𝑒2+𝜆𝑚3𝑒3 with arbitrary integers
𝑚𝑖, 1 ≤ 𝑖 ≤ 3. This matrix loop algebra lays a foundation for constructing soliton equations [5–7]. Starting from the perturbation-type
loop algebras of s̃o(3,R), we can also construct integrable couplings such as bi-integrable couplings and tri-integrable couplings [8].

In this paper, based on zero curvature equations, we would first like to reformulate a soliton hierarchy associated with so(3,R) [5].
We will then make integrable reductions for the adopted spectral matrix to generate a reduced hierarchy of soliton equations, which
keeps the Liouville integrability of the original hierarchy and so possesses infinitely many commuting symmetries and conservation
laws. Two reduced examples are two scalar integrable equations: a nonlinear Schrödinger type equation

𝑖𝑝𝑡 = −𝑝∗𝑥𝑥 +
1
2
|𝑝|2𝑝 + 1

2
(𝑝∗)3,

nd a modified Korteweg–de Vries type equation

𝑝𝑡 = −𝑝𝑥𝑥𝑥 +
3
2
[𝑝2 + (𝑝∗)2]𝑝𝑥,

where 𝑝∗ denotes the complex conjugate of 𝑝.

2. Reformulation of a soliton hierarchy

2.1. Soliton hierarchy

We would like to reformulate a soliton hierarchy associated with the matrix loop algebra s̃o(3,R) [5]. Let us take a spatial matrix
spectral problem

−𝑖𝜙𝑥 = 𝑈𝜙 = 𝑈 (𝑢, 𝜆)𝜙, (4)

with

𝑈 = 𝑈 (𝑢, 𝜆) = 𝜆𝑒1 + 𝑝𝑒2 + 𝑞𝑒3 =
⎡

⎢

⎢

⎣

0 −𝑞 −𝜆
𝑞 0 −𝑝
𝜆 𝑝 0

⎤

⎥

⎥

⎦

, (5)

where 𝑖 is the unit imaginary number, 𝜆 is a spectral parameter, 𝑢 = (𝑝, 𝑞)𝑇 is a potential and 𝜙 = (𝜙1, 𝜙2, 𝜙3)𝑇 is a column
eigenfunction. The original spectral matrix for a soliton hierarchy in [5] is 𝑈 , but here the adopted spectral matrix is 𝑖𝑈 with
a factor difference 𝑖, which helps us determine integrable reductions successfully.

As normal, we begin with the stationary zero curvature equation

𝑊𝑥 = 𝑖[𝑈,𝑊 ]. (6)

It becomes
⎧

⎪

⎨

⎪

⎩

𝑎𝑥 = 𝑖(𝑝𝑐 − 𝑞𝑏),
𝑏𝑥 = 𝑖(−𝜆𝑐 + 𝑞𝑎),
𝑐𝑥 = 𝑖(𝜆𝑏 − 𝑝𝑎),

(7)

when 𝑊 is taken as

𝑊 = 𝑎𝑒1 + 𝑏𝑒2 + 𝑐𝑒3 =
⎡

⎢

⎢

⎣

0 −𝑐 −𝑎
𝑐 0 −𝑏
𝑎 𝑏 0

⎤

⎥

⎥

⎦

=
∑

𝑚≥0
𝑊0,𝑖𝜆

−𝑚, (8)

with

𝑊0,𝑚 =
⎡

⎢

⎢

⎣

0 −𝑐𝑚 −𝑎𝑚
𝑐𝑚 0 −𝑏𝑚
𝑎𝑚 𝑏𝑚 0

⎤

⎥

⎥

⎦

, 𝑚 ≥ 0. (9)

Upon taking the initial values

𝑎0 = −1, 𝑏0 = 𝑐0 = 0, (10)

the system (7) equivalently gives rise to

⎧

⎪

⎨

⎪

⎩

𝑏𝑚+1 = −𝑖𝑐𝑚,𝑥 + 𝑝𝑎𝑚,
𝑐𝑚+1 = 𝑖𝑏𝑚,𝑥 + 𝑞𝑎𝑚,
𝑎𝑚+1,𝑥 = 𝑖(𝑝𝑐𝑚+1 − 𝑞𝑏𝑚+1),

𝑚 ≥ 0. (11)

We impose the integration conditions
13

𝑎𝑚|𝑢=0 = 0, 𝑚 ≥ 1; and so, 𝑏𝑚|𝑢=0 = 𝑐𝑚|𝑢=0 = 0, 𝑚 ≥ 1.
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This means that we take the constants of integration to be zero, in order to determine the sequence of {𝑎𝑚, 𝑏𝑚, 𝑐𝑚|𝑚 ≥ 1} uniquely.
In this way, the first few sets can be worked out as follows:

𝑏1 = −𝑝, 𝑐1 = −𝑞, 𝑎1 = 0;

𝑏2 = 𝑖𝑞𝑥, 𝑐2 = −𝑖𝑝𝑥, 𝑎2 =
1
2 (𝑝

2 + 𝑞2);

𝑏3 = −𝑝𝑥𝑥 +
1
2 𝑝

3 + 1
2 𝑝𝑞

2,

𝑐3 = −𝑞𝑥𝑥 +
1
2 𝑝

2𝑞 + 1
2 𝑞

3,

𝑎3 = 𝑖(𝑝𝑥𝑞 − 𝑝𝑞𝑥);

𝑏4 = 𝑖(𝑞𝑥𝑥𝑥 −
3
2 𝑝

2𝑞𝑥 −
3
2 𝑞

2𝑞𝑥),

𝑐4 = 𝑖(−𝑝𝑥𝑥𝑥 +
3
2 𝑝

2𝑝𝑥 +
3
2 𝑝𝑥𝑞

2),

𝑎4 = 𝑝𝑝𝑥𝑥 + 𝑞𝑞𝑥𝑥 −
1
2 𝑝

2
𝑥 −

1
2 𝑞

2
𝑥 −

3
8 (𝑝

2 + 𝑞2)2;

𝑏5 = −𝑝𝑥𝑥𝑥𝑥 +
5
2 𝑝

2𝑝𝑥𝑥 +
5
2 𝑝𝑝

2
𝑥 +

3
2 𝑝𝑥𝑥𝑞

2 + 3𝑝𝑥𝑞𝑞𝑥
+𝑝𝑞𝑞𝑥𝑥 −

1
2 𝑝𝑞

2
𝑥 −

3
8 𝑝(𝑝

2 + 𝑞2)2,

𝑐5 = −𝑞𝑥𝑥𝑥𝑥 +
5
2 𝑞

2𝑞𝑥𝑥 +
5
2 𝑞𝑞

2
𝑥 +

3
2 𝑝

2𝑞𝑥𝑥 + 3𝑝𝑝𝑥𝑞𝑥
+𝑝𝑝𝑥𝑥𝑞 −

1
2 𝑝

2
𝑥𝑞 −

3
8 𝑞(𝑝

2 + 𝑞2)2,

𝑎5 = 𝑖(𝑝𝑥𝑥𝑥𝑞 − 𝑝𝑞𝑥𝑥𝑥 − 𝑝𝑥𝑥𝑞𝑥 + 𝑝𝑥𝑞𝑥𝑥
− 3

2 𝑝
2𝑝𝑥𝑞 +

3
2 𝑝𝑞

2𝑞𝑥 +
3
2 𝑝

3𝑞𝑥 −
3
2 𝑝𝑥𝑞

3).

Now we take

𝑉 [𝑚] = (𝜆𝑚𝑊 )+ =
𝑚
∑

𝑖=0
𝑊0,𝑖𝜆

𝑚−𝑖, 𝑚 ≥ 0, (12)

to introduce the temporal matrix spectral problems:

−𝑖𝜙𝑡 = 𝑉 [𝑚]𝜙 = 𝑉 [𝑚](𝑢, 𝜆)𝜙, 𝑚 ≥ 0. (13)

Then, the zero curvature equations

𝑈𝑡 − 𝑉 [𝑚]
𝑥 + 𝑖[𝑈, 𝑉 [𝑚]] = 0, 𝑚 ≥ 0, (14)

generate a hierarchy of soliton equations:

𝑢𝑡 = 𝐾𝑚 = 𝑖
[

−𝑐𝑚+1
𝑏𝑚+1

]

= 𝛷𝑚
[

𝑖𝑞
−𝑖𝑝

]

, 𝑚 ≥ 0, (15)

where the operator 𝛷 can be determined by the recursion relation (11):

𝛷 = 𝑖
[

𝑞𝜕−1𝑝 −𝜕 + 𝑞𝜕−1𝑞
𝜕 − 𝑝𝜕−1𝑝 −𝑝𝜕−1𝑞

]

, 𝜕 = 𝜕
𝜕𝑥

. (16)

2.2. Hamiltonian structure and the Liouville integrability

We apply the trace identity [2] for our spectral matrix 𝑖𝑈 :

𝛿
𝛿𝑢 ∫ tr(𝑊 𝜕𝑈

𝜕𝜆
) 𝑑𝑥 = 𝜆−𝛾 𝜆

𝜕𝜆
𝜆𝛾 tr(𝑊 𝜕𝑈

𝜕𝑢
), (17)

where the constant 𝛾 is determined by

𝛾 = −𝜆
2

𝑑
𝑑𝜆

ln |⟨𝑊 ,𝑊 ⟩|. (18)

Obviously, we see
𝜕𝑈
𝜕𝜆

= 𝑒1,
𝜕𝑈
𝜕𝑝

= 𝑒2,
𝜕𝑈
𝜕𝑞

= 𝑒3,

and so we have

tr(𝑊 𝜕𝑈
𝜕𝜆

) = −2𝑎, tr(𝑊 𝜕𝑈
𝜕𝑝

) = −2𝑏, tr(𝑊 𝜕𝑈
𝜕𝑞

) = −2𝑐.

Then the corresponding trace identity (17) reads

𝛿 𝑎 𝑑𝑥 = 𝜆−𝛾 𝜕 𝜆𝛾
[

𝑏
]

.

14

𝛿𝑢 ∫ 𝜕𝜆 𝑐
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A balance of the coefficients of each power of 𝜆 in this equality yields

𝛿
𝛿𝑢 ∫ 𝑎𝑚+1 𝑑𝑥 = (𝛾 − 𝑚)

[

𝑏𝑚
𝑐𝑚

]

, 𝑚 ≥ 0.

The case of 𝑚 = 1 leads to 𝛾 = 0, and thus, we obtain

𝛿
𝛿𝑢 ∫

(

−
𝑎𝑚+2
𝑚 + 1

)

𝑑𝑥 =
[

𝑏𝑚+1
𝑐𝑚+1

]

, 𝑚 ≥ 0. (19)

Consequently, we obtain a Hamiltonian structure for the soliton hierarchy (15):

𝑢𝑡 = 𝐾𝑚 = 𝑖
[

−𝑐𝑚+1
𝑏𝑚+1

]

= 𝐽
𝛿𝑚
𝛿𝑢

, 𝑚 ≥ 0, (20)

with the Hamiltonian operator

𝐽 =
[

0 −1
1 0

]

, (21)

and the Hamiltonian functionals

𝑚 = ∫
(

−
𝑖𝑎𝑚+2
𝑚 + 1

)

𝑑𝑥, 𝑚 ≥ 0. (22)

hese lead to infinitely many conservation laws of each system in the soliton hierarchy (15), which can often be generated through
ymbolic computation by computer algebra systems (see, e.g., [9]).

To exhibit the Liouville integrability, let us prove that the operator 𝛷 defined by (16) is a hereditary recursion operator for the
soliton hierarchy (15).

First, a direct but lengthy computation can show that the operator 𝛷 is hereditary (see [10] for definition), i.e., it satisfies

𝛷′(𝑢)[𝛷𝐾]𝑆 −𝛷𝛷′(𝑢)[𝐾]𝑆 = 𝛷′(𝑢)[𝛷𝑆]𝐾 −𝛷𝛷′(𝑢)[𝑆]𝐾 (23)

for all vector fields 𝐾 and 𝑆; and that 𝐽 and

𝑀 = 𝛷𝐽 = 𝑖
[

−𝜕 + 𝑞𝜕−1𝑞 −𝑞𝜕−1𝑝
−𝑝𝜕−1𝑞 −𝜕 + 𝑝𝜕−1𝑝

]

, (24)

where 𝐽 is defined by (21), constitute a Hamiltonian pair (see [11] for details), i.e., any linear combination 𝑁 of 𝐽 and 𝑀 satisfies
the Jacobi identity

∫ 𝐾𝑇𝑁 ′(𝑢)[𝑁𝑆]𝑇 𝑑𝑥 + cycle(𝐾,𝑆, 𝑇 ) = 0 (25)

for all vector fields 𝐾, 𝑆 and 𝑇 .
We point out that the hereditary property (23) is equivalent to

𝐿𝛷𝐾𝛷 = 𝛷𝐿𝐾𝛷, (26)

where 𝐾 is an arbitrary vector field and 𝐿𝐾𝛷 is the Lie derivative 𝐿𝐾𝛷:

(𝐿𝐾𝛷)𝑆 = 𝛷[𝐾,𝑆] − [𝐾,𝛷𝑆],

with [⋅, ⋅] being the Lie bracket of vector fields.
Second, note that an autonomous operator 𝛷 = 𝛷(𝑢, 𝑢𝑥,…) is a recursion operator of an evolution equation 𝑢𝑡 = 𝐾 if and only if

the operator 𝛷 needs to satisfy

𝐿𝐾𝛷 = 0. (27)

Obviously, for the operator 𝛷 defined by (16), we have

𝐿𝐾0
𝛷 = 0, 𝐾0 = 𝑖

[

𝑞
−𝑝

]

,

and thus

𝐿𝐾𝑚
𝛷 = 𝐿𝛷𝐾𝑚−1

𝛷 = 𝛷𝐿𝐾𝑚−1
𝛷 = 0, 𝑚 ≥ 1, (28)

where the 𝐾𝑚’s are given by (15). This implies that the operator 𝛷 defined by (16) is a common hereditary recursion operator for
the soliton hierarchy (15).

Now, the soliton hierarchy (15) is bi-Hamiltonian (see, e.g., [11,12]):

𝑢 = 𝐾 = 𝐽
𝛿𝑚 = 𝑀

𝛿𝑚−1 , 𝑚 ≥ 1, (29)
15

𝑡 𝑚 𝛿𝑢 𝛿𝑢
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where 𝐽 ,𝑀 and 𝑚 are defined by (21), (24) and (22) respectively, and so, every member in the hierarchy is Liouville integrable,
i.e., it possesses infinitely many commuting symmetries and conservation laws. In particular, we have the Abelian symmetry algebra:

[𝐾𝑘, 𝐾𝑙] = 𝐾 ′
𝑘(𝑢)[𝐾𝑙] −𝐾 ′

𝑙 (𝑢)[𝐾𝑘] = 0, 𝑘, 𝑙 ≥ 0, (30)

and the Abelian algebras of conserved functionals:

{𝑘,𝑙}𝐽 = ∫
( 𝛿𝑘

𝛿𝑢
)𝑇 𝐽

𝛿𝑙
𝛿𝑢

𝑑𝑥 = 0, 𝑘, 𝑙 ≥ 0, (31)

nd

{𝑘,𝑙}𝑀 = ∫
( 𝛿𝑘

𝛿𝑢
)𝑇𝑀

𝛿𝑙
𝛿𝑢

𝑑𝑥 = 0, 𝑘, 𝑙 ≥ 0. (32)

2.3. Two particular examples

The first two nonlinear integrable systems in the soliton hierarchy (15) are a nonlinear Schrödinger type system

𝑢𝑡 = 𝐾2, (33)

i.e.,

⎧

⎪

⎨

⎪

⎩

𝑝𝑡 = 𝑖(𝑞𝑥𝑥 −
1
2
𝑝2𝑞 − 1

2
𝑞3),

𝑞𝑡 = 𝑖(−𝑝𝑥𝑥 +
1
2
𝑝3 + 1

2
𝑝𝑞2),

(34)

and a modified Korteweg–de Vries type system

𝑢𝑡 = 𝐾3, (35)

i.e.,

⎧

⎪

⎨

⎪

⎩

𝑝𝑡 = −𝑝𝑥𝑥𝑥 +
3
2
𝑝2𝑝𝑥 +

3
2
𝑝𝑥𝑞

2,

𝑞𝑡 = −𝑞𝑥𝑥𝑥 +
3
2
𝑝2𝑞𝑥 +

3
2
𝑞2𝑞𝑥.

(36)

hey possess the following bi-Hamiltonian structures

𝑢𝑡 = 𝐾2 = 𝐽
𝛿2
𝛿𝑢

= 𝑀
𝛿1
𝛿𝑢

, (37)

and

𝑢𝑡 = 𝐾3 = 𝐽
𝛿3
𝛿𝑢

= 𝑀
𝛿2
𝛿𝑢

, (38)

where the Hamiltonian pair {𝐽 ,𝑀} is given by (21) and (24), and the Hamiltonian functionals, 1,2 and 3, are determined by

1 = −1
2 ∫ (𝑝𝑞𝑥 − 𝑝𝑥𝑞) 𝑑𝑥, (39)

2 = − 𝑖
3 ∫ [𝑝𝑝𝑥𝑥 + 𝑞𝑞𝑥𝑥 −

1
2
𝑝2𝑥 −

1
2
𝑞2𝑥 −

3
8
(𝑝2 + 𝑞2)2] 𝑑𝑥, (40)

3 =
1
4 ∫ (𝑝𝑥𝑥𝑥𝑞 − 𝑝𝑞𝑥𝑥𝑥 − 𝑝𝑥𝑥𝑞𝑥 + 𝑝𝑥𝑞𝑥𝑥

− 3
2
𝑝2𝑝𝑥𝑞 +

3
2
𝑝𝑞2𝑞𝑥 +

3
2
𝑝3𝑞𝑥 −

3
2
𝑝𝑥𝑞

3) 𝑑𝑥. (41)

It is worth pointing out that the transformation

𝑝̃(𝑥, 𝑡) = 1
2
(−𝑝 + 𝑖𝑞)(𝑖𝑥, 𝑖𝑡), 𝑞(𝑥, 𝑡) = 1

2
(−𝑝 − 𝑖𝑞)(𝑖𝑥, 𝑖𝑡), (42)

puts the system (34) of NLS equations associated with so(3) into th system of NLS equations associated with sl(2):

𝑝̃𝑡 = −𝑖(𝑝̃𝑥𝑥 + 2𝑝̃2𝑞), 𝑞𝑡 = 𝑖(𝑞𝑥𝑥 + 2𝑝̃𝑞2), (43)

and the system (36) of mKdV equations associated with so(3) into the system of mKdV equations associated with sl(2):

𝑝̃𝑡 = 𝑝̃𝑥𝑥𝑥 + 6𝑝̃𝑞𝑝̃𝑥, 𝑞𝑡 = 𝑞𝑥𝑥𝑥 + 6𝑝̃𝑞𝑞𝑥. (44)

But there is no nontrivial transformation if we consider only real potentials 𝑝, 𝑞, 𝑝̃, 𝑞. This subtle difference is a reflection of the fact
that the two complex Lie algebras, sl(2, C) and so(3, C), are isomorphic, but not so are the two real Lie algebras, sl(2, R) and so(3,
R).
16
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3. Integrable reductions

Let us introduce two specific reductions for the spectral matrix:

(𝑈 (𝜆∗))† = 𝐶𝑈 (𝜆)𝐶−1, 𝐶 =
⎡

⎢

⎢

⎣

0 0 𝛿
0 1 0
𝛿 0 0

⎤

⎥

⎥

⎦

, 𝛿 = ±1, (45)

here † denotes the Hermitian transpose. They lead to the potential reductions

𝑝 = 𝛿𝑞∗, 𝛿 = ±1, (46)

nd thus, the reduced spectral matrices read

𝑈 =

⎡

⎢

⎢

⎢

⎢

⎣

0 −𝛿𝑝∗ −𝜆

𝛿𝑝∗ 0 −𝑝

𝜆 𝑝 0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝛿 = ±1.

nder the above potential reductions, one has

𝑎∗𝑚 = 𝑎𝑚, 𝑏
∗
𝑚 = 𝛿𝑐𝑚, 𝑚 ≥ 1. (47)

This statement can be proved by the mathematical induction, since under the induction assumption for 𝑚 = 𝑙 and the recursion
relation (11), one can compute

𝑏∗𝑙+1 = 𝑖𝑐∗𝑙,𝑥 + 𝑝∗𝑎∗𝑙 = 𝑖𝛿𝑏𝑙,𝑥 + 𝛿𝑞𝑎𝑙 = 𝛿𝑐𝑙+1,
𝑎∗𝑙+1,𝑥 = −𝑖(𝑝∗𝑐∗𝑙+1 − 𝑞∗𝑏∗𝑙+1) = 𝑖(𝑝𝑐𝑙+1 − 𝑞𝑏𝑙+1) = 𝑎𝑙+1,𝑥.

herefore, one obtains

(𝑉 [𝑚](𝜆∗))† = 𝐶𝑉 [𝑚](𝜆)𝐶−1, 𝑚 ≥ 1, (48)

and further

((𝑈𝑡 − 𝑉 [𝑚]
𝑥 + 𝑖[𝑈, 𝑉 [𝑚]])(𝜆∗))† = 𝐶(𝑈𝑡 − 𝑉 [𝑚]

𝑥 + 𝑖[𝑈, 𝑉 [𝑚]])(𝜆)𝐶−1, 𝑚 ≥ 1. (49)

This tells that the potential reductions in (46) are compatible with the zero curvature equations of the soliton hierarchy (15).
Therefore, we have got two reduced soliton hierarchies associated with so(3, R):

𝑝𝑡 = 𝐾𝑚,1|𝑞=𝛿𝑝∗ , 𝑚 ≥ 1, (50)

where 𝐾𝑚 = (𝐾𝑚,1, 𝐾𝑚,2)𝑇 , 𝑚 ≥ 1, are defined by (15). The infinitely many symmetries and conservation laws for the soliton hierarchy
(15) are reduced to infinitely many ones for the above scalar soliton hierarchies in (50).

With 𝛿 = 1, the first two reduced integrable equations read

𝑖𝑝𝑡 = −𝑝∗𝑥𝑥 +
1
2
|𝑝|2𝑝 + 1

2
(𝑝∗)3, (51)

nd

𝑝𝑡 = −𝑝𝑥𝑥𝑥 +
3
2
[𝑝2 + (𝑝∗)2]𝑝𝑥. (52)

The first one is a nonlinear Schrödinger type equation and the second one is a modified Korteweg–de Vries type equation, associated
with Lax pairs from the Lie algebra so(3, R).

Note that there exist even and odd properties with respect to 𝑝 and 𝑞 in the two components of 𝐾𝑚, 𝑚 ≥ 1. Actually, 𝐾2𝑙,1, 𝑙 ≥ 1,
are odd with respect to 𝑞 and even with respect to 𝑝, and 𝐾2𝑙+1,1, 𝑙 ≥ 1, are even with respect to 𝑞 and odd with respect to 𝑝.
Similarly, 𝐾2𝑙,2, 𝑙 ≥ 1, are odd with respect to 𝑝 and even with respect to 𝑞, and 𝐾2𝑙+1,2, 𝑙 ≥ 1, are even with respect to 𝑝 and
dd with respect to 𝑞. Therefore, the case of 𝛿 = −1 does not lead to essentially new scalar integrable equations. For example, the
educed second-order equation with 𝛿 = −1 has just a different sign from the nonlinear Schrödinger type equation (51), and the
educed third-order equation with 𝛿 = −1 is exactly the same as the modified Korteweg–de Vries type equation (52).

This is a new phenomenon for soliton equations associated with so(3,R), which is totally different from the one for soliton
quations associated with sl(2,R).

. Conclusions and remarks

We have reformulated a hierarchy of soliton equations based on zero curvature equations associated with the special orthogonal
ie algebra so(3,R) and presented two integrable reductions for the soliton hierarchy successfully. Two particular examples of the
educed scalar integrable equations are a nonlinear Schrödinger type equation and a modified Korteweg–de Vries type equation.

There are interesting questions for soliton equations associated with the special orthogonal Lie algebras. First, what kind of
17

eneral soliton hierarchies could exist? Some novel structures of soliton equations associated to so(4,R) have been explored [13].
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Second, how can we formulate Riemann–Hilbert problems, based on matrix spectral problems? The above spectral matrix 𝑖𝑈 with
ero potential has three eigenvalues, which brings difficulties in establishing relevant theories. The existing examples belong to the
lass with two eigenvalues.

It is known that soliton equations can be generated from zero curvature equations associated with non-semisimple Lie algebras.
i-integrable couplings and tri-integrable couplings are such examples and exhibit insightful thoughts about general structures of
ulti-component soliton equations [14]. Multi-integrable couplings provide abundant examples of recursion operators in block
atrix form, indeed. There are rich mathematical structures related to integrable couplings [8,14]. Hamiltonian structures could be

urnished for the perturbation equations [15,16] by the variational identity, but not for all integrable couplings. Non-semisimple
atrix Lie algebras may not possess any non-degenerate and ad-invariant bilinear forms required in the variational identities [17,18].

t still remains an open problem how to guarantee the existence of Hamiltonian structures for bi- or tri-integrable couplings, based
n zero curvature equations. Moreover, we do not even know if there exists any Hamiltonian structure for a perturbation type
oupling:

𝑢𝑡 = 𝐾(𝑢), 𝑣𝑡 = 𝐾 ′(𝑢)[𝑣], 𝑤𝑡 = 𝐾 ′(𝑢)[𝑤].
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