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A first-degree isospectral problem with three potentials is considered following Tu’s ap-
proach. A new corresponding hierarchy of Lax integrable evolution equations is generated
and a reduction hierarchy is discussed in detail. It is shown that both these hierarchies of
equations possess Hamiltonian structures and are Liouville integrable.

§1. INTRODUCTION

In the theory of finite dimensional Hamiltonian systems, Liouville’s theorem(!l shows that an
N-dimensional Hamiltonian system over some region Q@ C R2V

OH oH .
P“——gq—i- ’ q:t‘-'a_pT ’ "-1)21""N (1'1)

is completely integrable, i.e. integrable by quadratures, so long as there exist N independent
integrals of motion in involution over the region . However, in the case of infinite dimensional
systems, i.e., generalized Hamiltonian equations, we do not have such elegant geometrical theory
yet. What is more, we have not yet exposed satisfactorily the nature of complete integrability
for infinite dimensional systems. In this paper we adopt two kinds of special definitions on
integrability: Lax integrability and Liouville integrability. A nonlinear evolution equation is
called Lax integrable if it admits a zero curvature representation and Liouville integrability will
be introduced in the following after giving some basic notation.

Let u = u(z,t) = (ui(z,t), us(z,t), - ,u4(2,t))T, z,t € R, be a ¢g-dimensional function -

vector belonging to the g-tuple Schwartz space over R for any fixed . We denote by A the
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linear space of smooth functions F(z,u™) = F[u] and consider two functions F and G to be
equivalent if FF — G = dH = dH/dz holds for some H € .A. The equivalent class which F
belongs to is denoted by F = | Fdx. Each equivalent class F = [ Fde is called a funcrional
and its variational derivative is defined by

§F _§F _ 6F 6F 5F .r .
7w Ga i E) (122)

where
M Z(- a(:) , =y, i=1,2, . (1.2b)

Because 6_66 0 for all G € A, the above definition (1.2a) is clear and unambiguous.

Definition 1.10%] A generalized Hamiltonian equation with the Hamiltonian operator J =
J(z,u) and the Hamiltonian function H = H(z,u)

Uy = J% where u= u(z,t) = (ur(z, ), ug(2,t), -, ug(z,1))7 (1.3)

is called Liouville integrable if there exists a sequence of conserved densities { F,, }5, satisfying
the following conditions

(1) {Fp, Fa} = f( )TJtsts—F"-dz—ofor0<m n<oo;

(2) {dFa}S%, constltute a set of linearly independent 1-forms, where

oF, 0F,
Oz ot

dF, = (J)

for 0<n<x
(]) =
Z

Tul3-3] proposed an algebraic scheme for generating hierarchies of Liouville integrable gen-
eralized Hamiltonian equations from a series of zero curvature representations of the following
isospectral problem

:=U¢=U(u,A)¢

forn>=-k , keZ 14

PRt S € (4

which is the form extended in Ref. [6]. Many hierarchies of soliton equations are indeed derived
through this approach (for example, see References [7-13]). _

In this paper, by means of Tu’s method mentioned above, we consider the following isospectral
problem

a1 A+ g T
ag as A+ s

¢;-=U¢=U(U,A)¢=[ ]¢5 , O.'1¢C!2 ' a3¢0, (15)

where a1, az, a3 are constants and u = (g, s)T. In Section 2 we regularly solve the coadjoint
representation equation V; = [U, V] of (1.5) and tersely derive a sort of special hierarchies of Lax
integrable evolution equations. In Section 3, we take out a hierarchy of generalized Hamiltonian
equations from among those Lax integrable equations and show Liouville integrability of the
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hierarchy. Finally in Section 4. we carefully discuss a kind of reduction of the isospectral
problem (1.53) and also show Liouville integrability of the corresponding reduction hierarchy.

§2. SPECIAL LAX INTEGRABLE EVOLUTION EQUATIONS

We rewrite the matrix U in (1.5) as

U =(a1A+q)h1 + (A + 8)ha+re +azf

=(a1Ah; + azAhy + a3 f) + ghy + shy +re (2.1)
where
S P R F R i A
for which we have
[hy,e] = —[ha,e] = e, [hy, f] = —[ho, fl = £, [e, £] = by = ha . (22)
< hy, >=<.h2,hv_> >=<e f>=1. (2.3)

Here and in the following we denote the Killing-Cartan form by < y,z >= tr(yz).
We first solve the coadjoint representation equation V; = [U, V] of (2.1). We assume that V
has the following form

V=[a -ba]=ah+bc+0f , h=hy—nhs. (24)

It is easy to show that V; = [U, V] is equivalent to
az = rc — asb,
by = adb+ (g — s)b — 2ra, (2.5)

¢z = —aAe — (g — s)c + 2aza,
where o = oy — 3. Substituting _
a=) aad™", b= 5A7", c=) ek
n>0 n>0 n>0
into (2.5), we obtain

bp=co=0,a9=n=const. # 0,

Anz = TCp — azbn,

bz = abuyp1 + (g — 5)bn — 2rdn, nz20, (2:6)
Cng = —0Cny1 — (g — 8)cn + 203an,

in which we have made that 7 # 0 in order to get nonzero vectors (bn,cn,an). In particular,

one can recursively deduce the first three vectors (b, ¢, an)

by =207 pr, ¢, = 20" lazn, a1 = 0; (2.7a)
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by = 207 n(r, ~ (¢ = 8)r], ca = =20 %a3n(qg — s) . a» = =20 Yagnr: (2.7b}
by = 20—3’7[7‘53: +2(q = $)ry + (g —s)r + "(92 + 32) = 2gs + ;)37’)7'] :

e3 = 20 %agn{(qy — s.) + (¢ + 57) = 2¢s + aar)]. (2.7¢)
a3 = 2a 2agn[=r; + 2(q¢ - s)r]. ‘

Based on (detV'}; = 0, we can determine recursively from (2.6) that the a, , b, , ¢, are all local.

Now we turn to derive new Lax integrable evolution equations. For convenience sake, we will

always write ¢’ = g(p) if g =g(A) and gy = Y g A" if g = 3 9, A™. By using (2.1) and (2.2),
: n20

we have the following relation

W(UQ) = UW)/(A = 1), V()] = u(arhy + azha), a’h + b'e + ¢'f]
= [p(arhy + azhs),be + ¢/ fl = apb'e —apc'f .

Choosing A(A) = 3= AnpA™" = 61hy + 02k = §1(A)hy + 82(X)ho (k = 1), we obtain

n>=1
Au(p) = [UA), AW)] = 8 by + Syoha + (8 — 8)re — as(8, — 85)f
To obtain Lax integrable equations, we need the condition
a3(8y —83) = —ake or & = = —caz'ic. _ (2.8)
At this moment, by (2.5),
adb+ (81 — 62)r = aeg ' A(re — a;) — aaz  Are = —aai da, .

Therefore we get a determining equation for generating Lax integrable
evolution equations

W(UA) =T )/ (A= p), V()] + Bal) = [U(X), M)
= 81,k + 65, hy — caz ' pale := flhy + fihy + fie . (2.9)

Set V(*) = (A"V), + An,n > —1. According to Tu’s schemel*®], we have

D VA = [T, V)"

n>-1

= [(UQR) =U(m))/(A=p), V(;u)]+A () = [UQA), Aw)] -

Therefore we see by (2.9) that a sequence of zero curvature representation U, — Vr( M+[U Vi) =
0, n > —1, gives the following Lax integrable evolution equations

qt, = 61nz»
i, = —0Q; Gngrz, n>-1 (2.10)

S, = b2nzs
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where the a, are defined by (2.6), and §; = Y 6, A7", i =1,2. satisfy the condition (2.8).
n>-1

Evidently here (2.10) includes an arbitrary function. In the next section we shall choose a sort

of such functions so that {(2.10) becomes a hierarchy of generalized Hamiltonian equations.

§3. A HAMILTONIAN STRUCTURE THROUGH THE TRACE IDENTITY

In order to derive a Hamiltonian structure by means of the trace identity, we need the following
equalities which are easily worked out from (2.1) and (2.3)

ou au ou ouU
aq'hl’ar’e"a's"h”’E,T‘“‘h‘*‘"?h"” (3.1)
and 8U U U U
<V,a >=a, <V,a >=c, <V’6 —a,<V,-5x>=aa. (3.2)
We further choose that
81 = MpPra+ Bae) ', b2 = Mbra+ Fze) (3.3)
where 31, 82, B3 are constants and
B2 = B3 = —aaz’ (3.4)
by which we have (2.8). Let :
P10 Bad O
= | B8 0 [30 . (3.5)
0 30 —B10
Then we have
ou ouU oU _.p
)J(<V,a >, <V(9 >, <Vas >)
= AJ(G,C, —a)T = (5137—003 Aa:ﬂa&zr)T =(f11f2vf3)T . (36)

Obvmusly J is a Hamiltonian operator and thus we can deﬁne a Poisson bracket for two func-
tionals H = J Hdz, I_fId:r:

(4,7} = / (—)TJ : (3.7)
Now applying the trace identityl!48l
5 L 0U 8 . o 8U U _.r
<V TA T RN Vg i <V >

we obtain at once

6 ., 0. T
Eaa—/\ BA)‘ (a,c,—a)

Equating the coefficients of A~"~! on the left and right sides, we have

] .
Eaaft+l =(y- n)(aﬂ»cﬂr-aﬂ)T , n20
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To fix the constant 4. we take simply n = 0 and obtain v(5.0. —=7)T = 0. Thus v = 0. In this
way we obtain an important equality

&
';{” = (an,cn. —an)’ n>0 (3.3)
u
where the H, are defined as follows
Ho=’7(q—3) 3 Hn =-ﬁﬂ , n2 1 . (3.9)

n

Therefore we see by (3.6) that Lax integrable evolution equations (2.10) read as the following
hierarchy of generalized Hamiltonian equations

-5Hn+1 -
q 5q
rl =g 8| s g (3.10)
or
d ta 5Hn+1
L $s
Now let us to assume that H = 5 H,A~". Then
n>0
§H _ . 8U U U .7
-;—(< V,-a-q—>,< v, ar >, < V,E;>)

It is shown by a direct computation (see [4,6]) that

AU (N) SU(N)
(< V(N e >. < V(A), e >, < V(}),

Therefore we obtain by (3.6)

aU(A)

S5 > (A, Falw). fo(u)T

WER) T EEW) - o v 0), v )/ = 3) + A) >

A further computation may yield that

< VA, uV(0)/ (1= A) + A(p) >= —E (2aa’ +bc' + cb') — aaz pac’ |

[T
by which we arrive at
SH(N) 6H
(1 - A)—%ZJT(JQ = [(2ad’ + b’ + ¢b') + (A = p)aag 'ad), , (3.11)

which may also be proved directly. Based on (3.11), we can know that {H,}3%, is a series of
common conserved densities of the hierarchy (3.10) and is an involutive system with respect to
the Poisson bracket (3.7). Noticing the relation (3.9) and the recursive formula (2.6), it is not dif-
ficult to see that {dH,,}3%, is linearly independent. Thus all generalized Hamiltonian equations
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in the hierarchy (3.10) are Liouville integrable. Moreover the hierarchy (3.10) possesses a series

of common symmetries {.\,_; = J 2212 since one has
fHy 0H, s . -
) .- =J—3H, Ho} = < >
U(Su ]6u] jéu{H Hp} =0 for 0<mn<x

In addition, we easily work out

- | Gn = Psan + P;cn,
{ * n>0 (3.12)

Cngl = Qaan + Qccnv
where

o—ltq A=l _ = —a-1(g1 r) -
{Pa—a 0-07"(q-9)0], P.==a" (07 r0+r); (3.13)

Qa=20"az, Q.= —a" [0 +(qg~3)].

Thus we obtain

An41 an P, +R; P. R; Gn
tnpt | =¥ | cn | =| Qa+R2 Qc R Cn , n>0, (3.14)
~On<41 —Qn —P, - Rz =P.—R3 —an

where Ry, Ry, Ra are all arbitrary integro-differential operators. Therefore here the operator ¥
includes three arbitrary operators, which is a specific property of the integrable hierarchy (3.10).
We have not yet know whether there exist three operators R;, R;, R3 so that the operators
J,M = JV¥, being closely related with the bi-Hamiltonian structure of the hierarchy (3.10),
constitute a Hamiltonian pair.

§4. A KIND OF REDUCTION

In this section we consider a kind of reduction of (1.5) with ¢ = a4s where a4 =const. and
as # 1. Right now U reads as

A
U= [m a-l:m,s az/\r+s] a1 Fay, ag#0, ag #1. (4.1)

We choose §; = asds. To fulfil the condition (2.8), we need to set

a
0 = =————2 4.2
2 az(as —1) ‘ 42)
In this case, a hierarchy of Lax integrable evolution equations (2.10) becomes
Tt, = —aa;lan.,.l,x,
. s o . on>-1 . (4.3)
= Ogpg = —————""Cntirzr
tn 2 a3(a4 -_— ].) +1

In order to derive Hamiltonian structures of (4.3), we similarly need the following

oU ouU ouU
F;:e,—a-;=a4h1+h2,5x=alh1+a2h2;
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2y e 7

o U Lor
<V,-T>—c,<V.E;>—(a4—1)a.<$.5/\—>_aa.

d
which are easily calculated. Supposing that
n
0 -9
7= [ az(og = 1) J
R 0
az(ag — 1)

which is obviously a Hamiltonian operator, then we get

A [(a4 : 1)a] = [—mfsi)mx]‘

The trace identity of this case engenders

] = 9 | c o Ir
S-Jaa_,\ 8A’\ [(a4—1)a} ; u—LJ )

from which we have

Cn

8
5o %0n+1 = (Y= n) [

After setting n = 0, one obtains 7 = 0 immediately. Therefore

6H, Cn
= >
ou [(aq—l)an} om0,
where {H,}3%, is given by
Ho=(as=Dps , Hy=-2tl 55

Now the hierarchy (4.3) becomes the following forms

6Hn+l

r Cn41 67‘
=J =J , n> =1
[SJ"\ [(0’4 - l)a,..HJ 6Hpyp =

bs

. This shows that (4.3) possesses Hamiltonian structures.
It is easy to calculate that

[(04 in;)lanﬁ] =" [(&4 inl)an}

- 2a
_ ,: —a”d + (ag = 1)3] a(ag i 1) ] [ Cn
~a~Yag - 1)(3"'rd +r) a0 — (aq — 1)8-134)

(04 - l)an

(4.5)

(4.7)

Jinzo
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and
-1, ; 1 S i A
g (7‘0 -+ ()7’) —m()' -+ Ng S0
M=J¥= . B )
— 9 +alld -
az(ag — 1) %3 09 (aq —1)2
=¥ J=-M". (4.9)

It appears to us that the conjugate operator ¥* of ¥ is a hereditary symmetry and that the
operator M is a Hamiltonian operator. Also we conjecture that J, M constitute a Hamiltonian
pair. By using (4.7) and (4.8), the hierarchy of equations (4.3} reads as

- 0H

, —aeylany o 0 __.6.211.

[ } = o :J\II"“[ . ]:J 5H" , o n>-=1. (4.10)
————————-c ——
Sle, a3(014— 1) n+l,z (054 )Tl 6r;+1
The first two nonzero systems are as follows
—9,.-3 — 9.—3

Ty, =207z , S, = 20778z, (4.11)

T, = —20-47)[—733 + 2(“4 - l)(TS);-] )

2 4.12
o3 1 Ty + Szz + 2(04 - 1)38,] . ( )

On the other hand, one can also find an analogous equality for the Poisson bracket

SH(X) 6
(- /\)—(—)J—M = [(2aa’ + be’ + cb') + (A = plaastac], .
Su Su
This is exactly the same as (3.11) in the third section. But here J is given by (4.4) and
H(A) = 3 H,A™" in which {Hn}3% is defined by (4.6). From this fact, using similar derivation
n>0

as in Section 3, one can show that the hierarchy (4.10) is Liouville integrable and that { H,}3%,
is just the desired conserved densities for Liouville integrability. Moreover {X,.; = J %%'- Bl
is a series of common symmetries of the hierarchy (4.10).

In the following we give two special cases of the reduction.
Case 1: Let a1 = —a3 = =1/2, a3 = 1, oy = -1, s = =(1/2)uy, r = —~uy, then the matrix U
of (4.1) reads as

p[Prin e ]
1 - %/\ - %ul

Caol!® investigated the nonlinearization of the spectral problem that the U corresponds to. Xu
and Zhaol'®] established the Hamiltonian structures of the corresponding hierarchy of integrable
systems by the trace identity. The first nonlinear system in the hierarchy is the following
dispersive long wave equation(!7]

{ Ule = Upzz + 2U U1z + 2ug,, 1

Uge = —Ugzz + 2(UyUz)g,
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Case 2: Let oy =0, as =1, a3 = -1, ag =0, r = —uy, s = —u,, then one has
. 0 —u
S

which has been introduced by Levil!®!%] The first two typical integrable systems in the corre-
sponding Levi’s hierarchy are as follows

)

[ R

n=-

{ Ut = —Uizz + 2(“1“2)3;

Uyt = =2z + Ugze + 2uguag,
- 2

ULt = Upgze — BU Uy, — 3(“12“2): + 3("1“2):;

n=-— (4.13)

[T

3
Uzt = Uzzer + E(Ug)zr- + (u3)z = 6(uru3)s,

The system (4.13) is called a coupled Korteweg-de Vries(CKdV) system since it reduces to the
KdV equation by setting us = 0.

Finally we point out that the spectral problem (1.5) itself is a reduction of the spectral
problem which is discussed in Ref.[20]. Thus we also give a definite answer to the first question
posed in Ref.[20].
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