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Abstract A class of non-semisimple matrix loop algebras consisting of triangular block
matrices is introduced and used to generate bi-integrable couplings of soliton equations
from zero curvature equations. The variational identities under non-degenerate, symmetric
and ad-invariant bilinear forms are used to furnish Hamiltonian structures of the resulting
bi-integrable couplings. A special case of the suggested loop algebras yields nonlinear
bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy.
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1 Introduction

It is known that zero curvature equations on non-semisimple loop algebras generate in-
tegrable couplings (see [25-26]), and a kind of variational identities over loop algebras (see
[20, 14]) is used to furnish Hamiltonian structures of the resulting integrable couplings (see
[34, 38, 40]). A key step in generating Hamiltonian structures by the variational identity is
to confirm the existence of non-degenerate, symmetric and ad-invariant bilinear forms on the
underlying loop algebras (see [18]). Based on special non-semisimple loop algebras, Lax pairs of
block matrix form and Lax pairs with several spectral parameters bring various interesting in-
tegrable couplings, including higher dimensional local bi-Hamiltonian integrable couplings (see
[9-10, 31-32]).

Let us consider an integrable evolution equation
ut:K(u):K(xvtauvua:;uzz;"'); (11)

where u is a column vector of dependent variables. We recall that the Gateaux derivative of a
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function or an operator P along a direction X is defined by

0

PuX]= o |

Pu+eX). (1.2)

A vector field

o =o(z,t,u)

is called a symmetry of the equation (1.1), if it satisfies

oo

= K(w)lo] - o’ (W) K], (1.3)
where z;dt denotes the partial derivative with respect to the second variable ¢t. If o is time-

independent, i.e.,

oo
ot

then the above condition (1.3) can be reduced to a commutativity condition between K and o:

:O’

(K, o] := K'(u)]o] — o' (u)[K] = 0. (1.4)

We know that symmetries are crucial in exploring integrability (see [12]) and generate one-
parameter solution transformation groups (see [2]). If ¢ is a symmetry of the equation (1.1),

then the Cauchy problem
d

de

defines a solution transformation group

u=o(x,t,0), Ue=o=u (1.5)

ge tu— ule, x, t,u)

with one parameter ¢ in the interval of existence of the above Cauchy problem. That is to say,
when wu is a solution to the equation (1.1), for every ¢ in the interval of existence, u is again
a solution and satisfies the group axioms because of @(e, w(n,u)) = u(e + n,u). An important
question in soliton theory is to determine and classify integrable equations. It is helpful to
collect examples of evolution equations which possess infinite dimensional symmetry algebras,
to work towards complete classification of integrable equations.

One way to search for integrable equations is to use zero curvature equations (see [33, 8]).
A zero curvature representation of the equation (1.1) means that there exists a Lax pair (see

[6]), U =U(u,\) and V = V(u, \), belonging to a matrix loop algebra, such that
U -V, +[U,V]=0 (1.6)

generates the equation (1.1) (see [33]). An integrable coupling of the equation (1.1) (see [9-10]

for definition)

= Ky (u) = {SI&?@)} e H (1.7)
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is called nonlinear, if S(u, v) is nonlinear with respect to the sub-vector v of dependent variables

(see [28, 19]). An integrable system of the form

up=K@u)=1| Si(u,v) |, uw=|v (1.8)
Sa(u, v, w) w

is called a bi-integrable coupling of the equation (1.1). Note that in (1.8), Sz depends on w
but Sy does not. In what follows, we would like to use zero curvature equations to explore
possibilities of generating bi-integrable couplings and construct Hamiltonian structures for the
resulting integrable couplings through the variational identity associated with the enlarged Lax
pairs.

The rest of the paper is structured as follows. In Section 2, a kind of matrix loop algebras
consisting of triangular block matrices is introduced. Zero curvature equations on the suggested
loop algebras generate bi-integrable couplings. In Section 3, an application to the AKNS
spectral problem is made to construct nonlinear bi-integrable couplings for the AKNS equations,
and the corresponding variational identity furnishes Hamiltonian structures for the resulting
integrable couplings. An important step in generating Hamiltonian structures is to look for
non-degenerate, symmetric and ad-invariant bilinear forms on the underlying loop algebras. In
the final section, a few conclusive remarks on other possibilities and problems on integrable

couplings are given.

2 Constructing Bi-integrable Couplings Through Loop Algebras
2.1 Loop algebras

To construct bi-integrable couplings, let us fix an arbitrary constant o and introduce a class

of triangular block matrices

Ay Ao As
M(Al,AQ,Ag) =0 A +ady As+ ads , (21)
0 0 Al + OéAQ

where A1, Ay and A3 are square matrices of the same order. It is easy to see that the matrix

product of such two block matrices is given by
M(AlvAQ;AB)M(BI;B27BB) :M(015027C3) (22)

with C1,Cy and C3 being defined by
Cy = A1 By,
Co = A\ By + AsBy + adsBs, (2.3)
Cs3 = A1Bs + A3By + A2 By + aAsBs + aA3 Bs.
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This closure property under matrix multiplication guarantees that all the above block ma-

trices defined by (2.1) form a matrix Lie algebra under the matrix commutator
[My, Ms] = My My — MMy . (2.4)
The corresponding loop matrix algebra consists of all block matrices of the form
M (A1, Az, A3) f(N)
with f being smooth, and its Lie product is defined by

[Mi f1(A), Mz fa(N)] = [My, Ma] fi(A) f2(N). (2.5)

Let us denote this matrix loop algebra by g. It is non-semisimple, due to the following semi-

direct sum decomposition:

9=9€ge, g={M(A1,ALA)f(N)},  ge={M(0, Az, A3) f(N)}, (2.6)

where g and g. are Lie subalgebras of g, and ¢ is a non-trivial ideal Lie subalgebra of g.

This kind of matrix loop algebras establishes a basis for constructing nonlinear Hamilto-
nian bi-integrable couplings through zero curvature equations. The first block A; gives the
original integrable equation as required, and the second and third blocks Ay and As yield the
supplementary vector fields S; and Sy in (1.8) that we are looking for. More interestingly,
the commutators [As, Ba], [A2, Bs] and [A3, Bs] often generate nonlinear terms in the resulting

bi-integrable couplings.
2.2 Constructing bi-integrable couplings
Let us assume that an integrable equation
up = K(u) (2.7)

possesses a zero curvature representation

U -V, +[U, V] =0, (2.8)
where two square matrices

U=U(u,A) and V=V(u,\)

usually belong to a semisimple matrix loop algebra (see, e.g., [3]) and constitute a Lax pair (see
[6]). Let us then take an enlarged spectral matrix U in g as
U(u, /\) U1 (ul, /\) UQ (’U,Q, )\)
U=U(u,\) = 0 U(u, \) + aUi(ur, A)  Up(ur, A) + aUs(ur,uz, A) |, (2.9)
0 0 U(u, \) + aUy (ug, \)



Loop Algebras and Bi-integrable Couplings 211

where u consists of three dependent variables u, u; and us. Then an enlarged zero curvature
equation

U=V, +[U,V]=0 (2.10)

with an enlarged Lax matrix V in g:

V(u7/\) ‘/1(’“')“’17)‘) %(uvulau%/\)
V=V(u,\ = 0 V(u, \) + aVi(u,ur, A)  Vi(u,ur, A) + aVa(u,up,ug, A) |, (2.11)
0 0 V(u,A) + aVi(u,ur, A)

yields the following triangular system:

U, -V, +[U, V] =0,
Ul,t - Vi,z + [Uv Vﬂ + [Ula V] + a[Ulv Vﬂ = 07 (212)
U2,t - ‘/2,;13 + [U7 ‘/2] + [UQ; V] + [Ula Vl] + Oé[Ul, ‘/2] + a[U27 ‘/1] =0.

Note that the zero curvature representation (2.8) of the evolution equation (2.7) presents a
bi-integrable coupling of the equation (2.7). It is, usually, nonlinear with respect to the two
supplementary variables u; and wuo, thereby providing candidates for nonlinear bi-integrable
couplings.

To generate infinitely many symmetries, we search for a solution W in g:

W (u, A) Wi (u,u1, \) Wa(u, uy,uz, \)
W =W(u,\) = 0 W (u, A) + oWy (u, ur, A)  Wi(u, w1, N) + aWa(u,u1, A) | (2.13)
0 0 W (u, \) + aWi (u,ug, )

to the enlarged stationary zero curvature equation

W, =[U,W]. (2.14)
This equation equivalently engenders
W:c = [U, W],
Wi = [U, Wh] + [Ur, W] + a|[Us, W], (2.15)

Wa o = [U, W3] + [Uz, W] + [Ur, W1| + a[Ur, Wa] + a[Us, Wh].

We can often (see, e.g., [33, 8]) have a solution of the type
W= WA™, Wi=> Wi A" Wy=) Wy (2.16)
=0 =0 =0

Then, we introduce a set of enlarged matrix modifications A,,, m > 0, and define the enlarged

Lax matrices to be

[m]

VT = W)+ Ay, m >0, (2.17)
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where the subscript “+” denotes the polynomial part, such that the enlarged zero curvature
equations

U, — V™ c o, v™ =0, m>o0 (2.18)

m

generate a soliton hierarchy of nonlinear bi-integrable couplings for the equation (2.7). In
general, integrable couplings in this hierarchy commute with each other, and so, they provide
infinitely many common symmetries for the hierarchy.

The next crucial step is to find a class of bilinear forms over the underlying loop algebra,
which should satisfy the non-degenerate property, the symmetric property and the ad-invariant

property. Then use the corresponding variational identity (see [20]):

0

Su N (W,U,), -~ = const. (2.19)

0
=\
/<W,U)\>d$ A o\

to furnish Hamiltonian structures for the resulting bi-integrable couplings. In the above varia-
tional identity (2.19), (-, -) is the required non-degenerate, symmetric and ad-invariant bilin-
ear form over the underlying loop algebra consisting of square matrices of the form (2.9) (see
[20, 27, 17] for details). Hamiltonian structures link symmetries and conservation laws together.

In the next section, to show an illustrative example, we apply the above general com-
putational paradigm to the AKNS spectral problem and generate nonlinear Hamiltonian bi-

integrable couplings for the AKNS equations.
3 An Application to the AKNS Spectral Problem

3.1 AKNS hierarchy

The spectral matrix

A p P
U=U(u,\) = [ )\] ., u= l ] ,  A-spectral parameter (3.1)
q q

generates the AKNS hierarchy of soliton equations (see [1, 39]). There are other integrable
equations associated with gl(2) (see, e.g., [41]). Upon setting

v t)g 2

—a iSo LG —ai
the stationary zero curvature equation
W, = [U, W]

yields

1 1
biv1 =—_bix —Dpai, ciy1 = 5

5 Ciz — QQ4, Qit1,z = PCit1 — qbip1, 7 >0. (3.3)
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Taking the initial data as
ag=—1, by=cy=0, (3.4)
and assuming
@ilu=0 = bilu=0 = Cilu=0 =0, i>1
(equivalently selecting constants of integration to be zero), the recursion relation (3.3) uniquely

defines all differential polynomial functions a;, b; and ¢;, ¢ > 1. The first few sets are listed as

follows:

1
b2 = — 4Dz, Co = 2(191:7 a2 = _Pg;
1 1 1 1 1
b T T ? = rr — 2 - x — Pzq);
55 yPae = WP 3= dew — P4 a3 = (Pde — Paq);
b 1 . 3 1 3
= — oPzax xPq, C4 = rrr T zq;
4 817 4}7 Pq 4 8q 4Pq q
wr 1 . 1 399
4 — Squ SPxQI SPQME 8p q .
Note that the zero curvature equations
U, — vy v =0, v =0mw),, m>0 (3.5)
generate the AKNS hierarchy of soliton equations
—2b -2 OH
ut,, = K = e | TP =g om0l (3.6)
2Cm 41 2q ou

The Hamiltonian operator J, the hereditary recursion operator ® and the Hamiltonian functions

in (3.6) are given by

1
—28+p8_1q PO~ 1p 9%
, ®= . , :}cm:/m“ff dz, (3.7)
—q07'q 50— g0~ 'p

where 0 = 8‘1 and m > 0.

3.2 Bi-integrable couplings

We begin with an enlarged spectral matrix

p

U Uy Us q
U=Uu\) =0 U+al, Ui+als|, u= 78" , (3.8)

0 0 U+ alU; v

w
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where U is defined as in (3.1) and the supplementary spectral matrices U; and Us read

0 r r
Uy =Ui(u) = L 0] , Ul = L] ;

0 v v
U2 = UQ(UQ) = lw 0] s U = lw] .

As before, to solve the enlarged stationary zero curvature equation (2.14), we take a solution

of the following type:

W Wi Wo
W = VV(U,7 )\) =10 W+aW, Wi+aWs|, (39)
0 0 W + oWy

where W, defined by (3.2), solves W, = [U, W], and

WIZWI(U;UDA): )
g —e

6/ f'/
W2 = WQ(U,Ul,Ug,A) = [ ,‘| .

Then, the second and third equations in (2.15) equivalently generate

ex =pg —qf +arg—asf +rc— sb,
fz = —=2\f — 2pe — 2are — 2ra,
gz = 2qe + 2)g + 2ase + 2sa

and

e.=((p+ar)g —(g+as)f + (r+av)g — (s + aw)f + vc — wb,
fi==2\f"—=2(p+ ar)e’ —2(r + av)e — 2va,
gh =2(q+ as)e’ +27\g' + 2(s + aw)e + 2wa,

respectively. Trying a formal series solution W by assuming

ezzeﬁ\iz, f:ZfiAil; gzzgz)‘ila
=0 =0 =0

(o] (o] o
=D e =Y N g =) g
=0 i=0 =0
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we arrive at

1

2fi,z — pé; — are; —ra;,

fir1=—

1
Ji+1 = 29i,x — (e — ase; — way,

€it1l,x = PYit1 — qfit1 + argiz1 — asfiyr + i1 — sbiya,

X (3.10)
flor = =3l = (o a)el — (r -+ aw)es — va,
1
gy = 292@ — (g + as)e; — (s + aw)e; — wa,,
e;“’x =(p+ar)g, — (g+as)fl + (r+av)g — (s + aw) fi +ve; — wb;,
where 7 > 0. We select the initial data to be
60:_17 f0290:05 66:_17 f6:g6:07 (311)

and assume that
€ilu=0 = filu=0 = gilu=0 =0,  €jlu=0 = f{lu=0 = gilu=0 =0, @i >1.

Then the recursion relation (3.10) uniquely determines the sequence of e, fi, g; and e, f/, g.,

1 > 1, recursively. It is now direct to compute the first few sets of functions:

fi=p+r+ar,

g1=4q+stas,

er = 0;
1 1 1
f2:_2pz_ 20[7’95— 27’95,
1 1 1
g2 = 2(]95 + ZOCSz + 2Sz;
1 . 1 . 1 . «a n « N o+ o?
ey = S r s r rS;
2 217(] 2}7 2(] 2]3 2(] 9 ;
1 a+1 1 a+1
fz= 4pzz+ 4 Tea — p2q_ 9 p23—(a—|—1)p(q+a3)r
1 2 1
_ O‘(O‘;‘ )qr2 o« (042"‘ )7“23,
1 a+1 1 a+1
93:4qgcgc+ 4 Sm—2q2p— 9 @r—(a+1)(p+ar)gs
1 2 1
_ 0‘(04;‘ )pSQ o« (o;—l— )TSQ,
1 1 a+1 a+1 a+1 a+1
63:_4pr+ 4pq:c_ 4 PaS + 4 PSSy + 4 qxr — 4 qry
1 1
B a(a4+ )rxs—i— a(a4+ )rsm;

fi=p+(a+1)r+(a+ 1),
g1 =q+(@+1)s+ (a+ 1w,
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1 a+1
fé:_pz_ 9 Tz

1 a—+1 a+1
2qgc+ 9 Sy + 9 We
1
2

a+1
- Vg,
2

9o =
, a+1 a+1 a+1 a+1
62:

2
ala+1)

2 2 2

n . ala+1)
rw sv;
2 2 ’
1 1 + a+1 + a+1 1,
= r Vpz — —

a+
~ (o + Dpgr (0 + Dpg — (a4 %prs — @
Cafat)(a+2) ,
2
2
1
@ (o;—f— )rzw —a?(a+ 1)rsv,

, 1 a+1 a+1 a+1 o

g3 = 4(]9595 + 4 Sza + 4 Wyx — 9 pq —

—ala+1)grv —

2
— (a+ 1)pgs — (a + 1)pqw — (o + 1)%qrs —

2
1
“ (a2+ )82’[} —a?(a+ 1)rsw,

+1 a+1 a+1
PzS + 4 PSx — 4
a—+1 a+1 a—+1 a—+1
- qzV — 4

n ala+1)2
TSy — rypw TWy
4 4 4

pq+ ps+ pw + qr+ qu +

«
Paw +

qUy —

(a+1)°

2

1 1
o+ 28_04+ p2w

2

12
2

r*s — a(a+ 1)prw — a(a + 1)psv

1 1
o+ q2r—a+ 2

(a+1)? ,

ps

rs® —ala + 1)psv — ala + 1)prw

4

+1
4
(a+1)?

W. X. Ma

We point out that those functions are all differential polynomials in six variables p, q,r, s, v, w.

For each integer m > 0, let us further define an enlarged Lax matrix by

yiml Vl[m]

v = orwy =1 0 viml ey oy

where

7

Then the enlarged zero curvature equation

U — (V™ + 0, v™ =0

m

i

(3.12)

(3.13)
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generates

Ut — VI 4 [0, V™) 4 (00, V] 4 afUr, V™) =0,

Us ity — Vi (U, V™) 4 [Un, VI o+ (U4, V™) 4 alUy, V™) + alUs, V™) = 0,

together with the m-th AKNS system in (3.6). This presents the supplementary systems

_q _ _ | Suml(u,u) _ T
vy, = Spm = S (u) = [52,m(u,’u1,u2) , v=(rs,v,w)", m>0, (3.14)
where )
_2fm+1 _me+1
Sl,m(u;ul) - [ ‘| 5 S2,m(u;u17u2) = [ , .
2gm+1 2gm+1

In this way, the hierarchy of enlarged zero curvature equations gives a hierarchy of bi-integrable

couplings
P —2br 11
q 2Cm+1
! Ko (u) Y
Uty = | =Kpu)=| Simu,u) | = % m"; , m>0 (3.15)
v SQ,m(u; uy, Ug) _2;34_
m—41
Wlt,, 2911

for the AKNS hierarchy (3.6).

Except the first two, all bi-integrable couplings presented above are nonlinear, since the
supplementary systems (3.14) with m > 2 are nonlinear with respect to the four dependent
variables 7, s,v,w. This implies that (3.15) provides a hierarchy of nonlinear bi-integrable
couplings for the AKNS hierarchy of soliton equations. The first nonlinear bi-integrable coupling
system is given by

Pty = —2b3, qi, = 2c3,
re, = —2f3, S, = 2¢3, (3.16)
v, = —2f3, wi, = 293,

where bs, c3, f3, 93, f4, g4 are defined before.
3.3 Hamiltonian structures

To furnish Hamiltonian structures of the obtained bi-integrable couplings, we need to com-

pute non-degenerate, symmetric and ad-invariant bilinear forms on the adopted matrix loop

algebra:
Ay Ag As
g=210 A +ady As+adz| fN)] A€sl(2),1<i<3, feC®(SY)y. (3.17)
0 0 A+ Ay

For convenience, the general algorithm (see [18]) suggests us to transform the Lie algebra ¢ into

a vector form through the mapping

§:9— R, A (a1,a9,: - ,ag)T, (3.18)
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where
_al a9 [e7} as ar as 1
as —aq ag —ay4 a9 —ar
0 0 a1 +aay as+aas  ag+ aar  as + aag
A= Aar, a2, - ,a9) = (3.19)
0 0 as +aag —a1 —aay ag+aag —ag — oar
0 0 0 0 a1 +aag  as + aas
L0 0 0 0 a3z +oag  —a; — oay
This mapping ¢ induces a Lie algebraic structure on R?, isomorphic to the above matrix Lie
algebra g. The corresponding commutator [, -] on the resulting Lie algebra R? reads
T T T T 9
[a,b] =a R(b), a:(al,ag,--- ,ag) s bz(bl,bg,-" ,bg) € RY, (320)
where R(b) is given by
ro 2bo —2bs 0 2bs —2bg 0 2bg —2bg 1
by —2by 0 be —2by 0 bo —2b; 0
—b 0 2b; —bs 0 2by —bg 0 2b7
0 0 0 0 2bs + 2abs —2bs — 2abg 0 2bs + 2abg —2bg — 2abg
R(b) = 0 0 0 bs + abg —2b1 — 2aby 0 be + abg —2by — 2aby 0
0 0 0 —bsy — abs 0 2b1 + 2aby —bs — abg 0 2by + 2aby
0 0 0 0 0 0 0 2by 4 2abs  —2bs — 2abg
0 0 0 0 0 0 by + abs  —2b1 — 2abs 0
L o 0 0 0 0 0 —by — abs 0 2b1 + 2aby |
An arbitrary bilinear form on R? takes the form
(a,b) = aTFb
a,b) =a" Fb, (3.21)

where F' is a constant matrix. Two of the three required properties, the symmetric property

(a,b) = (b,a)
and the ad-invariance property
(a, [b, ]y = ([a,b], ), (3.22)
mean that
F'=F
and

(R()F)* = —R(b)F for all beR".

This matrix equation on F' yields a system of linear equations on the elements of F. Solving
the resulting linear system gives

[m 0 0 12 0 0 213 0 (U
0 0 Im 0 0 572 0 0
0 ém 0 0 ; 72 0 0 3 0
2 0 0  am+2n3 0 0 2am3 0 0

F=1]0 0 im 0 0 sam+m3 0 0  ams|, (3.23)

0 ém 0 0 ; anz + 13 0 0 ans 0

2n3 0 0 2ams 0 0 0 0 0
0 0 n3 0 0 ans 0 0 0

1 0 n3 0 0 ans 0 0 0 0 |
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where 71, 2 and 13 are arbitrary constants.

Therefore, a required bilinear form on the underlying Lie algebra ¢ is determined by

(A,B)g = (671(A),071(B))mo
= (a1,a, -+ ,a9)F(b1,by, - ,by)"
1 1
=1 <a1b1 + 2a2b3 + 2a3b2)
1 1
2a5(b3 + abg) + 2a6(b2 + ab5)}
+ n3[2a1b7 + asbg + asbs + 2a4(bs + abr) + as(bs + aby) + ag(bs + abs)

1 1
+ 12 [a1b4 —+ 2a2b6 —+ 2a3b5 + a4(b1 + ab4) —+

+ 2a7(b1 + ch4) + asg (bg + ch(;) + ag (bz + ab5)], (3.24)

where A = A(ai, a2, - ,a9) and B = B(by,ba, -+ ,bg) are two block matrices of the form

defined by (3.19). This bilinear form (3.24) is symmetric and ad-invariant:
(A,B) = (B,4), (A, [B,C])=(A,B],C), AB,Ccy,
and it is non-degenerate if and only if
det(F) = (a®n — ang + 2n3)%nS # 0. (3.25)
To apply the variational identity, let us further compute that

<W7 U)\> = —na—12€ — 2773ela

1 1 1 1 1
W,U,) = (2mc+ 2n29+n39’, 2mb+ 2n2f+773f', 2772(c+ag) +n3(9 + ag'),
1 T
y(b+ af) +m(f +af ) (e + aghm(b+af))
A d

where W is given by (3.9). Therefore, the corresponding variational identity (2.19) leads to

8 / M A1 + N2€mt1 + 203€0, 41

dx
ou m
1 1 o1 1 o1 )
= <2n10m + o M2gm M3y o Mbm + 112 fn 411 fns M2 (Cm + Agim) +13(9m + g ),
1 T

2772(bm +afm) +n3(fm + afv,n)v n3(Cm + gm), 13 (bm + afm)) ;o om =1
It follows thus that the AKNS bi-integrable couplings in (3.15) possess the following Hamiltonian
structures:

m >0, (3.26)
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where the Hamiltonian operator is

402 4o 4
02 B 0 B 0 B
4o 4o 4
B 0 B 0 B ( 0 )
4a _ 4 2(n2—am
J= (A)la g El) 05 2(77207an1) 583 (327)
B B T PBs )
_4 2(n2 —am) ann2+2nin3—n
0 B 0 Bns 0 ) 613 ’
4 _ 2(m2—am) _amnz+2n1m3—n
N 0 Bns 0 P 0 ]
with 3 being defined by 3 = a?n; — any + 213, and the Hamiltonian functionals read
a + 1€ + 2n3e]
KH,, = / MAmt2 TIROmA2 T LBCme2 g0 S . (3.28)
m+1
3.4 Commutativity of symmetries and conserved functionals
Based on (3.3) and (3.10), a direct computation shows a recursion relation
Kpni1=2K,,, m>1, (3.29)

where the recursion operator ® (see [30] for definition of recursion operators) is given by

with ® being given by (3.7) and

® 0 0
d=|D, B 0 (3.30)
s By Dy

[=30+(p+ar)d~ (g +as) (p+ar)d~!(p+ar)
o) = )
—(q+as)d (¢ +as) 20— (a+as)o (p+ar)
[ r0~ g+ (p+ar)d™ s rOp+ (p+ar)dolr
Py = )
_fsafqu (g + as)d s —s07p — (¢ + as)0~1r
M1
on _ | 20T @ and T @+ as) (p+ar)d~ ! (p+ar)
3= )
—(q+as)d” (g + as) 20— (a+as)d~ (p+ar)
o [ (r+av)d (g + as) + (p+ ar)d (s + aw) (r+av)d~Yp+ar)+ (p+ar)d~ 1 (r+ av)
4 = )
| —(s + aw)d~ (g + as) — (¢ + as)d~ (s + aw) —(s 4+ aw)d Yp+ar) — (¢g+ as)d~ 1 (r + av)
[ w0 g+ (r+av)d s+ (p+ar)d tw v p+ (r+aw)dlr + (p+ ar)o" v
o5 = .
|—wd g — (s + aw)d s — (¢ + as)d 1w —wd p — (s +aw)d"1r — (g + as)0~r

Furthermore, we can show

Jo = J,

where ' denotes the adjoint operator of ®. This tells that all bi-integrable couplings in (3.15)

commute with each other and so do all conserved functionals in (3.28). It is also direct to verify
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that J and M = ®.J constitute a Hamiltonian pair (see [29, 5]), and so, ® is a hereditary
recursion operator (see [4]) for the hierarchy of Hamiltonian bi-integrable couplings (3.15). It

now follows that there exist infinitely many commuting symmetries and conserved functionals:

(K, Ky = K/m(u)[[(n] — K;(u)[[{m] =0, m,n>0, (3.31)
OH T O0H,
= ) = > .
{0, 30} /( Su ) J 5u dzr =0, m,n >0, (3.32)

and that the resulting bi-integrable couplings possess a bi-Hamiltonian structure

w =K,y = g0%m _ M(mm‘l,

> 1. .
Su Su m > (3.33)

In particular, the bi-integrable coupling (3.16) has the following bi-Hamiltonian structure:

0H > 0H,
g K g = M . 4
iz 2= Su Su’ (3.34)
where
1 / 1 /
H, = 5 (mas + maes + 2nzes)de, Ho = 3 (mag + naeq + 2n3ey)da. (3.35)

4 Concluding Remarks

We have introduced a kind of matrix loop algebras which provide an architecturally rich
context for understanding and constructing integrable couplings. The variational identities on
the adopted matrix loop algebras were used to furnish Hamiltonian structures of the resulting
bi-integrable couplings. An application to the AKNS spectral problem presented a hierarchy
of nonlinear bi-integrable Hamiltonian couplings for the AKNS soliton hierarchy. Our results
complement well some of the previous ideas of generating linear and nonlinear integrable cou-
plings (see [9, 11, 19-20]), and help us gain fresh insights into rich structures that integrable
couplings possess.

We remark that matrix loop algebras of high order block type will allow us to generate
multi-integrable couplings and more diverse integrable couplings, and provide supplements to
the spectral matrices of the other forms in the literature (see, e.g., [13, 22]). Moreover, enlarged
Lax pairs of direct-sum type always hold for degenerate coupled systems. For instance, we can

specify an enlarged spectral matrix U (u) in either of the following forms:

U(u) Us(u,r) Us(u,r,s)
0 0  Uu)+aUsx(u,r) Us(u,r)+ aUs(u,r,s)
0 0 U(u) + aUs(u, )
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and
U(u) Ui(u,v) 0
0 0
U(u) Us(u, ) Us(u,r, )
0 0  Uu) +aUs(u,r) Us(u,r)+ aUs(u,r,s)
0 0 U(u) + aUs(u, )

Those can also be generalized to enlarged spectral matrices which generate tri-integrable cou-

plings:
Ut = K(u)7 Uit = Sl (U,U,l), U2t = SQ(U7U'1; u2)a us,t = S3(ua Uy, U2, ’LL3)-

Further, by an idea of using the Kronecker product (see [23, 37]), we can construct many other
enlarged Lax pairs generating integrable couplings.

Moreover, various other integrable characteristics such as Hirota bilinear forms can be ex-
hibited for integrable couplings (see, e.g., [24]). Integrable couplings may possess another
interesting property: the linear superposition principle on subspaces of solutions, and the clo-
sure of such subspaces of exponential wave solutions should contain all soliton solutions (see
[21]). In particular, it is interesting to see what kinds of subspaces of solutions the bi-integrable
coupling

up=K(u), v=K(@pl, w=K@u)lwl

can possess. To enrich multi-component integrable equations (see, e.g., [15-16, 35-36, 7, 42]), it
has been an important task to explore more integrable properties for multi-integrable couplings

including the above intriguing bi-integrable coupling.
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