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Abstract

This study investigates lump wave structures that arise from the interplay of dispersion
and nonlinearity in a generalized Calogero–Bogoyavlenskii–Schiff-like model with spatially
symmetric nonlinearity in (2+1) dimensions. A generalized bilinear representation of the
governing equation is formulated using extended bilinear derivatives of the fourth order,
providing a convenient framework for analytic treatment. Through symbolic computation,
we construct positive quadratic wave solutions, which give rise to rationally localized lump
wave tructures that decay algebraically in all spatial directions at fixed time. Analysis shows
that the critical points of these quadratic waves lie along a straight line in the spatial plane
and propagate at a constant velocity. Along this characteristic trajectory, the amplitudes
of the lump waves remain essentially unchanged, reflecting the stability of these coherent
structures. The emergence of these lumps is primarily driven by the combined influence of
five dispersive terms in the model, highlighting the crucial role of higher-order dispersion
in balancing the nonlinear interactions and shaping the resulting localized waveforms.
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1. Introduction
In soliton theory and the study of integrable models, solitons and lump waves receive

a great deal of attention. These nonlinear wave phenomena are characterized by distinct
dynamical features: solitons are stable, exponentially localized waves, while lump waves
are rationally localized structures that decay to zero in all spatial directions. Such dispersive
patterns arise from a delicate balance between nonlinearity and dispersion, and their
analytical or numerical construction continues to play a central role in the study of nonlinear
dispersive wave dynamics.

Hirota’s bilinear method [1] and the inverse scattering transform (IST) [2,3] are two cor-
nerstone techniques for constructing the exact solutions described above. Hirota’s method
provides a direct algebraic approach for systematically generating multi-soliton and ratio-
nal solutions, especially in higher-dimensional systems [4–9]. In contrast, the IST offers
a spectral framework for solving integrable PDEs through their associated Lax pairs of
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matrix spectral problems [10], enabling the analysis of soliton dynamics and the long-time
behavior of dispersive waves [11].

Let P be a polynomal in M variables. In general, a Hirota bilinear equation can be
written as

P(Dx1 , Dx2 , · · · , DxM ) f · f = 0, (1)

where Dxi denotes Hirota’s bilinear operator [1], defined by

Dm
xi

f · f =
( ∂

∂xi
− ∂

∂x′i

)m f (x1, x2, · · · , xM) f (x′1, x′2, · · · , x′M)
∣∣
x′=x, (2)

with 1 ≤ i ≤ M, m ≥ 0, x = (x1, x2, · · · , xM), and x′ = (x′1, x′2, · · · , x′M). Within the
bilinear framework, N-soliton solutions can be expressed as exponential superpositions
(see, e.g., [4]):

f = ∑
ν=0,1

exp(
N

∑
i=1

νiζi + ∑
i<j

νiνjdij), (3)

where the summation runs over all νi ∈ {0, 1}. The linear phases ζi and the phase shifts dij

are given by

ζi = k1,ix1 + k2,ix2 + · · ·+ kM,ixM + ζi,0, exp(dij) = −
P(ki − kj)

P(ki + kj)
, 1 ≤ i < j ≤ N, (4)

with the dispersion relations

P(ki) = 0, ki = (k1,i, k2,i, · · · , kM,i), 1 ≤ i ≤ N. (5)

Let f be defined by (3) and denote with ξ̂ that ξ is omitted. Thus, one can obtain a
recursive relation for computing the bilinear expression:

P(Dx1 , · · · , DxM ) f · f

= (−1)
1
2 N(N−1) H(k1, k2, · · · , kN)

∏1≤i<j≤N P(ki + kj)
eζ1+ζ2+···+ζN

+
N−1

∑
n=1

(−1)
1
2 (N−n)(N−n−1) ∑

1≤i1<···<in≤N

H(k1, · · · , k̂i1 , · · · , k̂in , · · · , kN)

∏ 1≤i<j≤N
i,j ̸∈{i1,··· ,in}

P(ki + kj)

×eζ1+···+ζ̂i1
+···+ζ̂in+···+ζN

+
N−1

∑
n=1

∑
1≤i1<···<in≤N

e2(ζi1
+···+ζin+∑1≤r<s≤n dir is )P(Dx1 , · · · , DxM ) f̃ · f̃ , (6)

where
f̃ = f̃i1···in = ∑

ν̃i1 ···in=0,1
exp( ∑

1≤i≤N
i ̸∈{i1,··· ,in}

νi ζ̃i + ∑
1≤i<j≤N

i,j ̸∈{i1,··· ,in}

dijνiνj), (7)

ζ̃i = ζi +
n

∑
r=1

diir , ν̃i1···in = (ν1, · · · , ν̂i1 · · · , ν̂in , · · · , νN), (8)

with each νi in ν̃i1···in belonging to {0, 1}.
Based on the recursive relation (6), a Hirota bilinear equation admits an N-soliton

solution if and only if all Hirota conditions are satisfied:

H(ki1 , · · · , kin) := ∑
σ=±1

P(
n

∑
r=1

σrkir ) ∏
1≤r<s≤n

P(σrkir − σskis)σrσs = 0, (9)
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for 1 ≤ n ≤ N and 1 ≤ i1 < · · · < in ≤ N, where σ = (σ1, σ2, · · · , σn) with σr = ±1. The
case n = 1 recovers the dispersion relations in (5).

For the (2+1)-dimensional case, let x, y denote spatial variables and t time. A general
Hirota bilinear equation in (2+1) dimensions can be expressed as

P(Dx, Dy, Dt) f · f = 0, (10)

where P is a polynomial in the three variables. Using Bell polynomial theory, nonlinear
PDEs for a scalar field u can be derived from such bilinear forms via logarithmic derivative
transformations. Typical transformations include

u = β(ln f )xx, u = β(ln f )yy, u = β(ln f )xy, u = β(ln f )x, u = β(ln f )y, (11)

where β ̸= 0 is a constant. A crucial step is to verify that f satisfies the bilinear equation
and that the corresponding field u, defined through one of these logarithmic transforma-
tions, satisfies the associated nonlinear PDE. Systematic algorithms for performing this
verification have been established for both (1+1)- and (2+1)-dimensional cases.

Another important class of explicit structures includes rogue waves and lump waves.
Rogue waves are transient, large-amplitude localized structures that decay in all directions
in both space and time. Lump waves, by contrast, are rationally localized, decaying
algebraically in all spatial directions at fixed time [12]. For example, the KPI equation
admits a variety of lump solutions, some of which arise as long-wave limits of multi-soliton
configurations [6,13]. Lump-type solutions have also been observed in nonintegrable
KP-, BKP-, and KP-Boussinesq-type systems (see, e.g., [14–17]) and even in linear higher-
dimensional wave models through superposition principles.

The sum-of-squares ansatz, which inserts a positive quadratic function into a bilinear
equation, has proven effective for constructing lump solutions [6]. When combined with
logarithmic derivative transformations, this approach yields explicit lump solutions for a
wide class of nonlinear PDEs.

In this work, we employ the sum-of-squares ansatz for a (2+1)-dimensional gener-
alized Calogero–Bogoyavlenskii–Schiff-like (gCBS-like) model with spatially symmetric
nonlinearity and five dispersion terms. The resulting lump wave structures emerge from
the delicate interplay of these dispersive effects. Using symbolic computation, we derive
explicit lump solutions and analyze the critical points of the associated quadratic forms,
providing detailed insight into the wave dynamics. Examples with both 2D and 3D plots of
the resulting lump waves are also presented.

2. A gCBS-like Model with Spatially Symmetric Nonlinearity
We employ generalized bilinear derivatives to formulate a gCBS-like model equation.

A broad class of generalized bilinear differential operators was introduced in [18]. In the
(2+1)-dimensional case with coordinates (x, y, t), they are defined as

Dm
p,xDn

p,yDk
p,t f · f

=
( ∂

∂x
+ αp

∂

∂x′
)m( ∂

∂y
+ αp

∂

∂y′
)n( ∂

∂t
+ αp

∂

∂t′
)k f (x, y, t) f (x′, y′, t′)

∣∣
x′=x,y′=y,t′=t, (12)

where the coefficients αk
p are given by

αk
p = (−1)r(k) where k ≡ r(k) mod p, 0 ≤ r(k) < p. (13)
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For example, for p = 3, the sequence of coefficients is

α3 = −1, α2
3 = α3

3 = 1, α4
3 = −1, α5

3 = α6
3 = 1, · · · , (14)

and for p = 5, it is

α5 = −1, α2
5 = 1, α3

5 = −1, α4
5 = α5

5 = 1, α6
5 = −1, α7

5 = 1, α8
5 = −1, α9

5 = α10
5 = 1, · · · . (15)

The coefficients for other values of p can be computed in a similar manner (see [18]).
In summary, the sign sequences for p = 3, 5, 7 are

−, +, +, −, +, +, −, +, +, · · · (p = 3), (16)

−, +, −, +, +, −, +, −, +, +, −, +, −, +, +, · · · (p = 5), (17)

−, +, −, +, −, +, +, −, +, −, +, −, +, +, −, +, −, +, −, +, +, · · · (p = 7). (18)

Investigating the characteristic properties of these alternating sign sequences is an interest-
ing endeavor.

2.1. Bilinear Form with Generalized Derivatives

For p = 3, we propose the following gCBS-like model equation:

PssgCBS-like( f )

:=
(

D3
3,xD3,y + D3,xD3

3,y + γ1D3,tD3,x + γ2D3,tD3,y + γ3D2
3,x + γ4D3,xD3,y + γ5D2

3,y
)

f · f

= 2[3 fxx fxy + 3 fyy fxy + γ1( ftx f − ft fx) + γ2( fty f − ft fy) + γ3( fxx f − f 2
x )

+γ4( fxy f − fx fy) + γ5( fyy f − f 2
y )] = 0, (19)

where D3,x, D3,y, and D3,t are the generalized bilinear derivatives, and γi for 1 ≤ i ≤ 5
denote arbitrary constants.

The fourth-order derivatives D3
3,xD3,y and D3,xD3

3,y appear in a partially symmetric
form, generating the nonlinear terms in the corresponding nonlinear model. In contrast,
the Bogoyavlensky–Konopelchenko-like equation, where the second fourth-order term is
D4

3,x (see, e.g., ref. [19] for the p = 2 case), leads to a different structure. Meanwhile, in
the KP-like model, the nonlinearity involves only the fourth-order term D4

3,x, without the
mixed term D3

3,xD3,y.
This construction for p = 3 produces a novel model capable of supporting lump wave

solutions. We refer to this as a generalized model since it contains all second-order linear
dispersion terms, whereas the original model only involves a single second-order term
D3,tD3,x, which produces the linear dispersion.

2.2. Nonlinear Formulation

By redefining the dependent variables as

u = 2(ln f )xy, v = 2(ln f )xx, w = 2(ln f )yy, r = 2(ln f )x, s = 2(ln f )y, (20)

the gCBS-like model in its nonlinear form reads as follows:

XssgCBS-like(u, v, w, r, s)

:= KssgCBS-like(u, v, w, r, s) + γ1utx + γ2uty + γ3uxx + γ4uxy + γ5uyy = 0, (21)

where the nonlinear terms are given by



Axioms 2025, 14, 869 5 of 12

KssgCBS-like(u, v, w, r, s) =
3
4
(uxx + uyy)(2u + rs) +

3
4

uxy(2v + 2w + r2 + s2)

+
3
2

u2
x +

3
2

u2
y +

3
8

ux
[
4wy + 10ur + (4v + 6w + 3r2 + s2)s

]
+

3
8

uy
[
4vx + 10us + (6v + 4w + r2 + 3s2)r

]
+

3
4

vx(us + wr)

+
3
4

wy(ur + vs) +
9
8
(u2 + vw)(r2 + s2) +

9
4
(v + w)(u2 + urs +

1
3

vw), (22)

provided the compatibility conditions hold:

ux = vy, uy = wx, ry = sx = u. (23)

This equation incorporates a set of spatially symmetric nonlinear terms and five dispersive
contributions. Despite its complexity, it admits lump wave solutions induced by the
interplay of the dispersive terms.

Special reductions occur when only one pair of dispersion coefficients is nonzero. For
example, if γ1 = 1, γ5 = ±1, and the others vanish, the model Equation (21) reduces to

KssgCBS-like(u, v, w, r, s) + utx ± uyy = 0. (24)

If γ2 = 1, γ3 = ±1, and the others vanish, the model reduces to

KssgCBS-like(u, v, w, r, s) + uty ± uxx = 0. (25)

In both cases, the compatibilty conditions (23) remain enforced. These reduced models
still admit lump wave structures, regardless of the positive or negative signs in front of the
dispersion terms uxx and uyy.

2.3. Correspondence Between Bilinear and Nonlinear Forms

The bilinear form (19) and the nonlinear Equation (21) are related through

XssgCBS-like(u, v, w, r, s) =
[PssgCBS-like( f )

f 2

]
xy, (26)

under the transformations in (20). Consequently, any solution f of the bilinear equation
determines corresponding fields u, v, w, r, s, that satisfy the nonlinear model.

It can be readily verified that this model does not support a general class of N-soliton
solutions. A natural question then arises: does it admit lump wave structures, which are
often characteristic of integrable systems? In the following, we investigate lump wave
solutions generated by the interplay of the five dispersive terms in the model.

3. Formation of Lump Waves via Dispersion
We now focus on the explicit construction of lump wave solutions for the nonlinear

model (21) by employing its generalized bilinear form (19) together with symbolic com-
putation. Particular attention is given to the interplay of the five dispersive terms, which
jointly give rise to the lump wave structures. Moreover, we examine the critical points of
the corresponding quadratic function to gain insight into the localization and dynamical
behavior of the resulting lump waves.

3.1. Sum-of-Squares Ansatz Approach

The sum-of-squares ansatz has become a standard approach for constructing lump
solutions in higher-dimensional nonlinear evolution equations [6]. Its key idea is to express
the dependent variable as logarithmic derivatives of a positive quadratic function f . In
particular, we take
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f = θ2
1 + θ2

2 + a9, θ1 = a1x + a2y + a3t + a4, θ2 = a5x + a6y + a7t + a8, (27)

which can produce rational localization in all spatial directions in the (x, y)-plane. Substi-
tuting (27) into the generalized bilinear Equation (19) reduces the problem to an algebraic
system for the parameters ai.

Symbolic computation provides explicit expressions for a3, a7, and a9 in terms of the
other coefficients:

a3 = − 1
(a1γ1 + a2γ2)2 + (a5γ1 + a6γ2)2

[
a1(a2

1 + a2
5)γ1γ3 + a2(a2

1 + a2
5)γ1γ4

+(a1a2
2 − a1a2

6 + 2a2a5a6)γ1γ5 + (a2
1a2 + 2a1a5a6 − a2a2

5)γ2γ3

+a1(a2
2 + a2

6)γ2γ4 + a2(a2
2 + a2

6)γ2γ5
]
, (28)

a7 = − 1
(a1γ1 + a2γ2)2 + (a5γ1 + a6γ2)2

[
a5(a2

1 + a2
5)γ1γ3 + a6(a2

1 + a2
5)γ1γ4

+(2a1a2a6 − a2
2a5 + a5a2

6)γ1γ5 + (2a1a2a5 − a2
1a6 + a2

5a6)γ2γ3

+a5(a2
2 + a2

6)γ2γ4 + a6(a2
2 + a2

6)γ2γ5
]
, (29)

and

a9 = −
3(a1a2 + a5a6)(a2

1 + a2
2 + a2

5 + a2
6)[(a1γ1 + a2γ2)

2 + (a5γ1 + a6γ2)
2]

(a1a6 − a2a5)2(γ2
1γ5 − γ1γ2γ4 + γ2

2γ3)
. (30)

These expressions encode the dispersion relations and structural constraints for the lump
waves. In particular, a3 and a7 determine the temporal frequencies associated with higher-
order rational combinations of dispersion coefficients, while a9 reflects a balance between
the wave numbers and the dispersion parameters. Similar dispersion expressions appear
in lump wave solutions of the second flow of the KP hierarchy and in generalized KP-type
models (see, e.g., refs. [20–22]).

Well-posedness and spatial localization require two essential non-degeneracy condi-
tions. First, the dispersion condition

γ2
1γ5 − γ1γ2γ4 + γ2

2γ3 ̸= 0, (31)

ensures
γ2

1 + γ2
2 ̸= 0, (32)

and, second, the determinant condition

a1a6 − a2a5 ̸= 0, (33)

guarantees
a2

1 + a2
5 ̸= 0, a2

2 + a2
6 ̸= 0, (34)

ensuring that the solutions u, v, w, r, s defined through the logarithmic derivative transfor-
mations in (20), decay to zero as x2 + y2 → ∞, confirming spatial localization.

The positivity of f , and, hence, the analyticity of the resulting lump waves u, v, w, r, s,
is ensured by the mixed necessary and sufficient condition involving the dispersion param-
eters and the wave numbers:

(a1a2 + a5a6)(γ
2
1γ5 − γ1γ2γ4 + γ2

2γ3) < 0. (35)

This requirement can be satisfied in either of the following two cases:
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γ2
1γ5 − γ1γ2γ4 + γ2

2γ3 < 0, (36)

with
a1a2 + a5a6 > 0, (37)

or
γ2

1γ5 − γ1γ2γ4 + γ2
2γ3 > 0, (38)

with
a1a2 + a5a6 < 0. (39)

To satisfy the sufficient condition in (36), one may, for instance, choose

γ1 ̸= 0, γ2 = 0, γ5 < 0, or γ1 = 0, γ2 ̸= 0, γ3 < 0. (40)

Similarly, to satisfy the sufficient condition in (38), one may assume

γ1 ̸= 0, γ2 = 0, γ5 > 0, or γ1 = 0, γ2 ̸= 0, γ3 > 0. (41)

The dispersion coefficient γ4 contributes only when both γ1 and γ2 are nonzero.
Condition (35) guarantees a9 > 0 in (30), keeping f strictly positive and thus ensuring

the analyticity of u, v, w, r, s across the entire (x, y, t)-domain. The conditions in (36) and (38)
essentially act as two dispersion-parameter constraints, emphasizing that the formation of
lump waves stems from the linear dispersive terms. Interestingly, in either case, γ1 ̸= 0 and
γ2 = 0 and γ1 = 0 and γ2 ̸= 0, the other dispersion coefficient γ5 or γ3 could be positive or
negative, generating lump wave solutions.

In summary, the construction of lump wave solutions via the logarithmic derivative
transformations requires two essential conditions: the determinant condition (33), which
secures spatial localization, and the positivity condition (35), which guarantees the well-
posedness of u, v, w, r, and s across the spatial–temporal domain. The sufficient conditions
(36) and (37) or (38) and (39) further establish the existence of lump waves. Under these
constraints, the resulting u, v, w, r, s indeed constitute valid lump wave solutions.

3.2. Trajectory of Critical Points

The dynamical behaviour of the lump waves can be further elucidated by analyzing
the critical points of f . Setting fx = fy = 0 leads to

a1θ1 + a5θ2 = 0, a2θ1 + a6θ2 = 0, (42)

which, under the non-degeneracy condition (33), reduces to

θ1 = 0, θ2 = 0, (43)

with θ1, θ2 as defined in (27). Solving this system gives explicit linear trajectories x(t) and
y(t), representing critical points of the quadratic function f :

x(t) =
[(a2

1 + a2
5)γ3 − (a2

2 + a2
6)γ5]γ1 + [2(a1a2 + a5a6)γ3 + (a2

2 + a2
6)γ4]γ2

(a1γ1 + a2γ2)2 + (a5γ1 + a6γ2)2 t +
a2a8 − a4a6

a1a6 − a2a5
, (44)

y(t) =
[(a2

1 + a2
5)γ4 + 2(a1a2 + a5a6)γ5]γ1 − [(a2

1 + a2
5)γ3 − (a2

2 + a2
6)γ5]γ2

(a1γ1 + a2γ2)2 + (a5γ1 + a6γ2)2 t − a1a8 − a4a5

a1a6 − a2a5
. (45)
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These expressions describe straight-line trajectories in the (x, y)-plane, along which the
lump waves remain stationary, while the solutions stay rationally localized in the surround-
ing region.

Figures 1–9 below provide 3D and 2D plots of the lump waves u = 2(ln f )xy, v =

2(ln f )xx, and w = 2(ln f )yy, computed for the parameter sets specified as follows:

γ1 = γ2 = −γ3 = γ4 = −γ5 = −1,

and
a1 = 1, a2 = −1, a4 = −2, a5 = 2, a6 = −1, a8 = 5.

Figure 1. Three-dimensional plots of u with t = 0 (left), t = 1 (middle), and t = 2 (right).

Figure 2. x curves of u with t = 0 (left), t = 1 (middle), and t = 2 (right).

Figure 3. y curves of u with t = 0 (left), t = 1 (middle), and t = 2 (right).
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Figure 4. Three-dimensional plots of v with t = 0 (left), t = 1 (middle), and t = 2 (right).

Figure 5. x curves of v with t = 0 (left), t = 1 (middle), and t = 2 (right).

Figure 6. y curves of v with t = 0 (left), t = 1 (middle), and t = 2 (right).

Figure 7. Three-dimensional plots of w with t = 0 (left), t = 1 (middle), and t = 2 (right).
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Figure 8. x curves of w with t = 0 (left), t = 1 (middle), and t = 2 (right).

Figure 9. y curves of w with t = 0 (left), t = 1 (middle), and t = 2 (right).

4. Concluding Remarks
We formulated and analyzed a novel (2+1)-dimensional gCBS-like model with spa-

tially symmetric nonlinearity and constructed its lump wave solutions using symbolic
computation in computer algebra systems. These lump waves remain invariant along
characteristic trajectories determined by the critical points of the corresponding quadratic
function, illustrating the subtle interplay among the dispersive terms.

Lump waves arise in a wide range of physical and mathematical contexts, demonstrat-
ing both their versatility and the challenges associated with modeling nonlinear dispersive
phenomena. They appear in linear models as well as in nonlinear and nonintegrable
systems in (2+1) dimensions [23–27], (3+1) dimensions [20,28], and (4+1) dimensions [29].
Their explicit construction often relies on Hirota bilinear forms [1] and generalized bilin-
ear techniques [18], providing a systematic framework for identifying spatially localized
coherent structures.

Moreover, lump waves exhibit rich interactions with other coherent structures in (2+1)-
dimensional integrable systems, including homoclinic and heteroclinic waves [30–32]. They
can also be derived as long-wave or wave-number reductions from N-soliton solutions.
At the same time, N-soliton solutions and integrability properties have been extensively
studied in both local and nonlocal settings, for instance, via Riemann–Hilbert methods, bi-
Hamiltonian formulations, and group reductions [33–37]. The existence, algebro-geometric
structure, and dynamics of lump waves in (2+1)-dimensional extensions of integrable
systems—whether scalar or multi-component, standard or generalized—remain active and
compelling areas of research [38–42].

In summary, the study of lump waves deepens insight into nonlinear dispersive
wave dynamics and may inform applications in physical and engineering contexts, where
localized, coherent, energy-concentrated structures are important.
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