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Abstract: This study introduces a 4 X 4 matrix eigenvalue problem and develops an integrable
hierarchy with a bi-Hamiltonian structure. Integrability is ensured by the zero-curvature condition,
while the Hamiltonian structure is supported by the trace identity. Explicit derivations yield second-
order and third-order integrable equations, illustrating the integrable hierarchy.
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1. Introduction

In soliton theory, Lax pairs play a crucial role in exploring integrable models. The
concept of a Lax pair [1] involves formulating a linear eigenvalue problem associated with
a given nonlinear partial differential equation. By constructing an appropriate Lax pair, we
can generate a compatible set of model equations that possess remarkable integrable prop-
erties, such as infinitely countless symmetries and conserved quantities. These equations
exhibit soliton solutions, making them amenable to analytical techniques and providing
deep insights into their dynamics [2,3].

To construct integrable models using Lax pairs, we typically start with a column
potential vector u, and denote an eigenvalue parameter by k. The formulation entails
defining a set of linear differential equations, referred to as the Lax pair, that are related
through the compatibility condition, ensuring the integrability of the associated nonlinear
equations. The Lax pair consists of two eigenvalue equations:

¢x = P(u,k)¢p, ¢r = Q(u, k)¢, 1)

where ¢ is the eigenfunction, P(u, k) is the spatial spectral matrix, and Q(u, k) is the
temporal spectral matrix. These matrices depend on both the potential vector u and the
eigenvalue parameter k. The zero-curvature condition, or the compatibility condition, is
given by

P~ Qx+[P,Q] =0, 2)

where [P, Q] = PQ — QP is the commutator of P and Q. This condition ensures that the
eigenfunction ¢ evolves consistently in both the spatial and temporal directions, leading to
an integrable system.

To illustrate, consider the AKNS (Ablowitz-Kaup-Newell-Segur) system, which is a
well-known framework for generating integrable equations. The AKNS system [4] defines
P and Q as follows:
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where p and g are components of the potential vector u, and A, B and C are functions
of u and k. The specific forms of A, B and C depend on the particular integrable model
under consideration. The zero-curvature condition, Equation (2), then leads to a set of
nonlinear partial differential equations for p and q. For instance, in the case of the nonlinear
Schrodinger (NLS) equation, the condition results in

{ pr = —pxx +2p7q,
4t = Gux — 2pg°.

Solving these equations reveals the integrable structure of the system, characterized
by soliton solutions, infinite symmetries, and conserved quantities.

By appropriately choosing P and Q, one can derive various integrable models such as
the sine-Gordon equation, the Korteweg—de Vries (KdV) equation, and others, all exhibiting
remarkable integrable properties and amenable to powerful analytical techniques like the
inverse scattering transform.

Hamiltonian structures are fundamental in the study of integrable systems, as they
provide a framework for exploring the integrability of the resultant models. One method to
generate Hamiltonian structures is by utilizing the trace identity or the variational identity.
The trace identity, in particular, is a robust technique in this context.

The trace identity reads as follows (see [5] for details):

0 oP

5 [ P\ 9.
o [e®RG) dx =k k(R ), 3)

)

where 3, denotes the variational derivative with respect to u and tr stands for the trace of a

matrix; T remains invariant with respect to the eigenvalue parameter k. Here, R solves
RX = [Pr R]/ (4)

where P is the spectral matrix. The trace identity connects the variational derivative of an
integral involving the eigenvalue parameter k to the trace of a matrix expression, linking
the eigenvalue problem with the system’s Hamiltonian structure.

A plethora of Liouville integrable hierarchies of soliton Hamiltonian equations can be
derived using the aforementioned Lax pair formulation, utilizing loop algebras derived
from both special linear algebras (see, for instance, [4-14]), special orthogonal algebras (see,
for example, [15,16]), and non-semisimple Lie algebras (see, e.g., [17-24]). These hierarchies
are pivotal in the study of integrable models, providing a structured framework to explore
the solutions and properties of soliton equations.

This paper proposes a novel spectral matrix and constructs a Liouville integrable
hierarchy comprising four-component bi-Hamiltonian equations using the Lax pair for-
mulation. The resulting soliton equations exhibit established bi-Hamiltonian structures,
demonstrated through the application of the trace identity. Several demonstrative examples
are provided, including four-component coupled integrable NLS equations and modified
Korteweg—de Vries (mKdV) equations. The conclusion in the final section summarizes the
findings and offers summary remarks.

2. Commuting Integrable Hamiltonian Models

Motivated by a study on non-perturbation-type integrable couplings within the AKNS
hierarchy via the Lax pair formulation [25], we consider a newly proposed matrix eigen-
value problem of the following form:
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Gtk wp mk ug

_ _ | up Gk uy  mok
¢x = Pp =P(u,k)p, P = mk us @k ow |’ 5)

ug mk ux ok

where k is again the eigenvalue parameter and u stands for the dependent variable consist-
ing of four components:
u=u(x,t) = (u1,uz,u3,us)". (6)

If the bottom-left 2 x 2 block is taken to be zero, then this spectral problem with §; = —¢» =
—1and 571 = —1, = —1 becomes the one discussed in the above reference. To guarantee
that an integrable hierarchy can be generated via the Lax pair formation from this new
spectral problem, we need to impose a necessary and sufficient condition:

E—r#£0, =G n=m—1 )

When 771 = 12 = 0 and u3 = uy = 0, the spectral problem reduces to two identical copies of
the standard AKNS eigenvalue problem [4], and thus, it provides a broadened version of
the AKNS eigenvalue problem.

To establish a corresponding four-component Liouville integrable hierarchy, we ini-
tially solve the associated stationary zero-curvature Equation (4) by seeking a specific
Laurent series solution:

a b e f
|l ¢ —a g —e | —np{n}
R = = kTR UY, 8
e f a b ng;) ®)

g —e ¢ —a

with six fundamental components assumed to be expanded in Laurent series of the eigen-
value parameter k:
a=Y,s0k "™, b=y, kb1, c =¥, ok i,
e=Yusok e, f=Y, 0k, g = Tk gt

It is evident that the corresponding associated stationary zero-curvature Equation (4) leads
to the following relations:

©)

Ay = ¢ — b+ usg — usf,
by = Ckb + nkf — 2uja — 2ugze,
cx = —Ckc — kg + 2upa + 2uye,
ex = u1g — Upf + uzc — uyb,

fx =nkb+Ckf — 2uje — 2uza,
8x = —nke — Ckg + 2upe + 2uya.

k[ &7 } { b } _ { by + 2uqa + 2usze ]
/B f fx +2u1e + 2uza

2 ¢ c|_ —Cy + 2upa + 2ugye
n c g —gx +2upe 4+ 2uya |

Therefore, the condition, Equation (7), which guarantees the invertibility of the coefficient
matrix in the above two systems, is both necessary and sufficient to ensure that we can
recursively determine a Laurent series solution R. Furthermore, we observe that the system,
Equation (10), yields the initial requirements

(10)

This gives

and

aJ{CO} — eiO} — 0, b{o} — C{O} = f{o} = g{o} = 0, (11)
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and the recursion relations used to define the Laurent series solution:
pin+1} — nggﬂz(bin} +2M1€l{n} +2u3e{”}) — szﬂ ( {n }+2u eln} +2u3a{n}> (12)
Flry 2172 (bin} + 2uyat™ 4 2uzeln}) 4 525172( {n} 2uret™t 4 2uzalnt),
C{n+1} _ ézf(:%( { } +2M2ﬂ{n} + 2u4e{n}) ( gi } + 2“2@{7’1} +2u4ﬂ{n})/ (13)
gl = _62277]2(_&{5”} + 2upat™t + 2u4€{"}) + f;z (=gl + 2uel") 4 204al)),
" = gy cln+1) —ypplnt1) 4 ug U —uy flr, (14)
e}{cnﬂ} = g1} — gy fln 1} g lnd1} gy pln1d,)

where n > 0. As usual, to determine a specific Laurent series solution, we introduce
arbitrary constant initial data

1 1
(% = SH el0} = SV (15)
and assume the integration constants to be zero:
at o =0, el",_o=0,n>1. (16)

Through these conditions, one can derive all sequences of {a{™},b{}, cln}, eln}, fln} i}y
for n > 1. The first sequence reads

bt} = éz 2 [ (s + vuz) — n(vuy + puus)],
= gz 28 (viny + puz) — 1 (pus +vus)],
oty = 52 2 (6 (puz +vuy) — n(vuy + pug)],

gt = o8 (vua + pus) — n(puuz + i),

The second sequence reads

b2 = @ 2)2 (P2,1u1,x — P22U3 ),

f{z} = (é:z 2( P22U1x + P2,1U3x),
cl2h = (52 2( P2,1U2,x — P22U4x),
g = @z z( P22U2,x = P2,1l4x),

al?t = — (52,1,72)2 [(p2au2 + popus)uy + (potia + paatia)us),
2 = — (,:2_1,72)2 [(p22u2 + p21us)uy + (p21u2 + p2ous)us),

where p; 1 and p; are two special polynomials of second order in terms of ¢ and #:
pan =GP =28V + P, pap = Ev = 28 p + . (17)
The third sequence reads
B = s (3t ,ae + Pagusex — 2(p3aua + paoua)u
—4(paua + p3tta)urus — 2(pa iz + paotia)u3],

8 = M [p3pti1xx + P3guzax — 2(paotia + paatia)u?
—4(p31u2 + papus)uguz — 2(p3puo + P3,1“4)”§]/
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3 = ([:2 755 (P31 0x + Paptta e — 2(paatn + P3lia)u;
—4(p3 2u1 + p31uz)ugiiy — 2(p3u1 + ps, 2”3)”4]

g{3} @2 7)3 3 [P32u2,xx + P31taxe — 2(p32u1 + p3, 1143)
*4(713 111 + p3pus)uaty — 2(p3pu1 + paiuz)us),

a3t = (62 7y 5[ = (p3aua + p3oug)ur,x + (p31u1 + p3puz)uo x

(P3 Uy + p3aUg)us + (P3ou1 + pauz)iy ],
el = (gz 7y s[(=p3oun — p3aug)un,y + (p3ous + p31uz)uo,x
(Ps,luz + paptg)uz x + (p3itin + p32Us)uay],

where p3 1 and p3 are two special polynomials of third order in terms of ¢ and #:

1= 8u =380y + 380 u — 1Py, pap = Ev — 3 nu + 3P — P (18)

The fourth sequence reads

b4 = W[m,lul,xm + PapUz xxx

—6(P4,1u1u2 + papuiitiy + paptiouz + pa1Uziiy)iy x
w (P4 U Uy + Pa1Uity + Pa1toUz + Paptiziis)u3 ],
f 7( vt [P4,2U1 xxx + Pa1U3 xxx

&2—n?)

—6(papurtiy + paiuiiiy + paioUs + Pasuiziis)uy x

—6(pa U1ty + Papliniiy + Partisliz + py1Uziis)us ),
4 = (gz 73 [ P4 1U2 xxx — P42U4 xxx
+6(P4,1u1u2 + papuitiy + paptiouz + pa1Usiis)iin x
w +6(P4 U U + PyiUily + PatioUs + PaoUiziiy)ily o],
8 @2 [ Pa2U2 xxx — P4,1U4,xxx

+6(p4,2u1u2 + pa1Uiliy + pajtiouz + paoUiziiy)iin x

+6(P4 1U1Up + Paotiily + Paptioliz + PaiUzlis)liyy],

alth = ((—ch 77 (= (P2 + pagita) i e — (Pagtin + paptiz )iz cx
(P4,2M2 + pajtia)u3 xx — (Paptt + PaiUs)Us
P4 1U1 U2 x T Pa2U x U4 x T+ Pa2U2 U3 x + P4 1U3 x U4 x
+3(P4,1M% + 2paouipiiy + paqul)ul
+6(p4 2”2 + 2Py Unlly + Pasti)urliz
—3(P4 U3 — 2papuniiy — paui)u3),

it = (gz 7)1 11— (Paptis + paiua)us xx — (Paptin + pajuz)us i

(P4,1M2 + paptia)u3 xx — (Pajtin + pastis) s x
+PapUt U2 x + PaULxUdx T Pa1UDxU3x + Pa U3 U4 x
+3(papu3 + 2partizuiy + paul)us
+6(p4/11/l% + 2p4/2u2u4 + p4,1ui)u1u3

+3(P4,2u% + 2pg oty + P4,2Mﬁ)”§],

where p4 1 and py are two special polynomials of fourth order in terms of ¢ and #:

Pag = Gt — ALy + 68220 — Ay g, (19)
paz =&t — 48 + 6220y — 4l p + ot

On the basis of these computations, we can set A,;, = 0, m > 0, to formulate

¢ = g = QU (u, k)p, QU = (k"R wawﬂ}m>o (20)
n=0
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Uty
“2,t3
U3ty

= U1 xxx T U3,xxx

= U1,xxx T U3,xxx

These are the temporal matrix eigenvalue problems within the Lax pair formulation.
The conditions ensuring solvability for the spatial and temporal matrix eigenvalue problems
in Equations (5) and (20) are given by the following zero-curvature equations:

Pty — ol™ 4P, o™ =0, m>o. (1)

These compatibility equations engender a hierarchy of integrable models with four depen-
dent variables:

u,, = 200 = (ol g ), gty — gl
pbtm 1) 4 gt} k1) eIy 22)

or more concretely,
Uiy, = (:fb{m+1} + Wf{m-&-l},
Uy, = _gc{erl} _ Ug{erl}/
Uz, = ﬂb{m+1} +€f{m+1},
— _Uc{erl} _ gg{erl}/

(23)

Ugt,

in which m > 0.
As particular examples, this soliton hierarchy contains various coupled systems of
integrable NLS equations and coupled systems of integrable mKdV equations. If taking

C=1,1n=0u=1v=0, (24)
one obtains a coupled system of the following integrable NLS equations:

Ui, = Ulxx — Zu%uz — 4u1u3u4 — 2u2u§,

Upp, = —Upxy + 2u1u% + 2u1uﬁ + 4ususiy,
_ ) 2 _4 -2 2 (25)
Uzt, = U3 xx Ugly Ujpis Usiy,
Ugp, = —Ugxy + duguniiy + 2u3uz + 2uzug,
and a coupled system of integrable mKdV equations:
Uiy = Ul xxy — 6(Urtip + uztig)uq , — 6(ugug + uguz)uz y,
Uty = Upxxy — 6(Urtip + uztig)un x — 6(Urliy + Upli3) Uiy y, (26)
Uz g, = U3 xxy — 6(Urty + tpuz)uy , — 6(ugty + Uzliy)uz y,
Ugp, = Ugyxx — 6(Urty + tpu3)n , — 6(U1Uy + Uzlg) Uy x.
If taking
c=1,n=0pu=1v=1, (27)
one obtains a coupled system of the following combined integrable NLS equations:
Uty = Uy + U3 ex — 2 + ug)uf — 4(up + ug)uqguz — 2(uz + ug)u3,
Upp, = —Up ey — Ua ey +2(ur + uz)ud 4+ 4(uy + uz)ugug + 2(uq + uz)u’, 28)
U by = Uy U3 vy — 2 + ug)uf — 4(uz — ug)uguz — 2(uz + tg)u3,
Ugpy, = —Upxy — U xx + 2(u1 + uz)ud + 4(u1 + uz)upug + 2(ug + uz)uj,
and a coupled system of the following combined integrable mKdV equations:
uy (g + ug) +uz(uz + vg)ure — 6[ur (uz + ) + uz(uz + us)|uzx,
(12 + ug) 4 us(uz + ug)|uz,x — 6[ur (uz + ug) + uz(uz + )]s x, (29)
uy (uz + ug) + uz(uz + ug)]urxe — 6[ur (uz + us) + uz(uz + ug)]uzx,
Ugpy = U yxx + Ugxxy — Oty (U + tg) 4 uz(uo + uy)|uz x — 6[uq (uz + ug) + uz(uz 4 ug)|uig x.

—6[uy

= Upxxx + Ugxxx — 6[”1
—6[uy

1

These four systems represent typical coupled integrable models, expanding the class of
coupled integrable NLS equations and mKdV equations (see, e.g., [26,27]).
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3. Bi-Hamiltonian Structures

The introduction of bi-Hamiltonian structures into the soliton hierarchy, Equation (23),
can be achieved by employing the classical trace identity, Equation (3), on the spatial matrix
eigenvalue problem, Equation (5).

The trace identity uses the solution R defined by Equation (8). One can then read-
ily work out the Hamiltonian structures for the resultant hierarchy of soliton models.
Through applying the classical trace identity to the spatial matrix eigenvalue problem, the
Hamiltonian densities and the associated flows can be systematically derived. Concretely,
we have

P P
ﬁ) = 2¢a + 2ye, tr(R@)

and consequently, the classical trace identity gives

tr(R = (2¢,2b,2¢,2f)7, (30)

% /kf(n+1)(§a{n+1} + 176{”+1}) dx = kf'r%k’rfn(c{n},b{n}/g{n}’f{n})T, n>0. (31)
When checked with nn = 2, it results in T = 0, and as a consequence, one obtains
1)
L a{nt — (Ant1} pin+1} {n+1} {n+INT
MH (c ,b .8 f )1, n>0, (32)

in which the required Hamiltonian quantities are computed as follows:

{n+2} {n+2}
i} — _ / ga n__::ze dx, n > 0. (33)

This allows us to establish the Hamiltonian structures for the soliton hierarchy, Equation (23):

) 0 ¢ 0 7

S —E 0 -7 0

uy, =2 Jit S 1 0 4 0 & m >0, (34)
-7 0 =¢ O

where J; is, obviously, Hamiltonian, and #!™") are the functionals defined by Equation (33).
It is important to note that Hamiltonian structures exhibit a significant property, namely,
the interrelation S = J; 9% 5. between a conserved quantity # and a symmetry S within the
same nonlinear model.

The standard soliton theory expresses that those vector fields Z{"} commute

[2tm), 2] = ztnd ) [zt)] — zte) @) (2] = 0, m, e >0, (35)

which can bee seen from an algebra of temporal spectral matrices:

[[Q{nl}, Q{nz}]] = Q{”l}/(u>[Z{”2}] — Q{”Z}/(u)[Z{nl}} + [Q{”l}, Q{"2}] =0, 11,1, > 0. (36)

One can also verify this property directly by analyzing the relationship between the isospec-
tral zero-curvature equations.

Moreover, utilizing the recursion relation Z"+1 = ® 2", a straightforward yet lengthy
computation results in a recursion operator ® = (<I>]k)4x4, Wthh is established as hered-
itary [28], for the soliton hierarchy, Equation (23). This hereditary recursion operator
@ reads

D = _,72(@8 2¢u10 Uy — 2Cu30  uy + 2nu 0 tuy + 2nuz0 T uy),

Dy = Czi172( 2¢u10~ Yy — 2¢u30 " tug + 2nu 0l uz + 2quz0tuy), 7
D3 = ,-;zi,]z( 70 +28u10 ™ iy — 28u30 " up + 27u19~ Lup + 27u30 1 uy),
<1>14— L (2¢uq0  uz — 2¢u3d uy + 2nu0~ tuy + 2uzd0lug);
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@21 ']2 (2(:1/[28 1142 + 2§u4a 11/14 — 2111428 1u4 — 2171448 11/12)
Dy = [:27,72( &0+ 2Cup0~ uy + 2Cu 0 uz — 2nundug — 2nug 0 uy), -
Doz = 621172 (2¢uU0 ™ My + 2CUg0 Ty — 27u20 Uy — 2nugd " tuy), (38)
Dy = 521,72 (70 + 2820 us + 2640wy — 20und~ 'uy — 2usd 1 u);
Oy = 52—172 (=170 — 28u10~  uy — 28uz30 Ly + 2nu10Luy + 2uz0 tuy),
D3y = r;‘zi,IZ( 25110 tuz — 25u30 tuy + 2nu10 uy + 2uz0 us), (39)
D33 = gZEWZ (€0 — 28u10~ 1112 —2¢u30~ 1144 + 2nu 0~ 1u4 + 2nuz0~ 1u2)
Oy = 621172( 2¢u10 uy — 2¢u30 " uz + 2nu1 0 tug + 2nuzdluy);

and

Py = =z ,72 (2¢up0 My + 2Cug0 uy — 27ur0 "ty —217u48 Yuy),
Dy = o ,72 (70 + 25uz0 ™ uz + 2540wy — 20up0 ™ iy — 2nug0 " ug), 40
Dy = 527772 (2¢u20 Uy + 2¢ugd uy — 27upd~tuy — 2ugd " luy), (40)
Py = =z iqz( &0 + 2CuUp0 My + 2Cug 0" ug — 2nup0 ' uz — 2nugdtuy).

Let us show the idea for computing this recursion operator using the recursion re-
lations in Equations (12)—(14). Assume that zim} = (Zl{m}, Z2{m}, Zém}, Zim})T, m > 0.
Here, we focus solely on the third component of Z{"+1} and perform the following com-
putation:

Z;(m-i-l} _ Hb{m+2} + gf{m-&-Z}
= i (@ (" + 2ual D 4 2ugelm sty — (£ 4 2ug el 4 2ugalm 1))
—Cﬂ(b{m+l} 4 2uqatm1} 4 2M3€{m+1}) + Cz(f;({erl} + 2uqetm+1} 4 2u3a{m+l})]
620 2 206w — us) (palm 1) 4 el
+2(Euz — quq ) (gelm 1} 4 galm+1hy),

On the other hand, we have

palmt} 4 gelme1y = 91, 2™ Ly 2 oy zim 2l

All this yields the third row of the recursion operator ®, defined by Equation (39). The
remaining rows can be derived in a completely similar manner.

The recursion operator, defined by Equations (37)—(40), involves two constant parame-
ters, ¢ and #, which are not simultaneously zero, exhibiting the diversity of the recursion
structure in the integrable hierarchy. Despite the nonlocality of the recursion operator, the
locality of the isospectral (k;,, = 0) flows is maintained. This implies that each flow in the
hierarchy preserves the integrable structure, ensuring that the derived soliton equations
remain solvable by inverse scattering techniques and other methods applicable to local
equations.

Further, with some detailed analysis, we can see that J; and J, = ®J; form a Hamil-
tonian pair. Therefore, the soliton hierarchy Equation (23) exhibits the following bi-
Hamiltonian structures [29]:

SHAm} SHAm—1}
up, = 2 = 51 =) 50

,om> 1. (41)

It can then be observed that the resulting Hamiltonian quantities commute under their
respective Poisson brackets:

{H{nl},H{WZ}}]i =0,n;,n>0i=1,2, (42)
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where 34 5K
T .
{H”C}]z = /(E) LE dx, 1= 1,2 (43)

The two equalities established above, Equations (35) and (42), imply that all isospec-
tral flows possess infinitely many conserved quantities and symmetries inherent to the
integrable system. Additionally, based on the recursion and bi-Hamiltonian structures,
the resulting conserved quantities and symmetries can be effectively computed and uti-
lized. This property is crucial for the practical application and analysis of these integrable
models, as it ensures that the solutions exhibit well-defined physical behavior and can be
systematically studied.

In summary, the soliton hierarchy, Equation (23), exhibits specific bi-Hamiltonian
structures, demonstrating Liouville integrability. Each model features infinitely many
commuting conserved quantities ’H{”}ZOZO and symmetries Z {”}ZOZO. The concrete examples
provided in Equations (25), (26), (28), and (29) highlight special nonlinear coupled Liouville
integrable models with bi-Hamiltonian structures, contributing to the ongoing discourse in
the literature (see, for instance, [30-35]).

4. Concluding Remarks

This research explores integrable hierarchies and their relationship to specific matrix
eigenvalue problems formulated under zero-curvature. Generating integrable models
with bi-Hamiltonian structures is essential for comprehending the dynamics inherent in
these systems.

Employing Laurent series solutions for solving the stationary zero-curvature equation
proves to be a robust method, enabling researchers to reveal the integrability characteristics
of the models under investigation. Furthermore, applying the trace identity to the matrix
isospectral eigenvalue problem provides deeper insights into the bi-Hamiltonian structures
embedded within these systems.

The concrete examples presented provide specific coupled systems of nonlinear
uncombined and combined integrable models. These examples, which belong to M;-
extensions [36], demonstrate the practical application of the theoretical framework dis-
cussed earlier and highlight the integrability and rich structure of the resulting equations.

Exploring the structures of explicit soliton solutions in the resulting integrable models
is of interest, employing advanced methods in soliton theory such as the Zakharov-Shabat
dressing method [37], the Riemann-Hilbert technique [38], the determinant approach [39],
and the Darboux transformation (see, e.g., [40-44]). Additionally, other significant solutions
including breather, kink, anti-kink, lump and rogue wave solutions, as well as the corre-
sponding mixed solutions (see, e.g., [45-52]), can be derived from specific wave number
reductions of solitons. Novel reduced integrable equations involving reflection points can
also be obtained through nonlocal reduced matrix eigenvalue problems under similarity
transformations (see, e.g., [53]).

Most certainly, increasing the number of dependent variables in the spatial spectral
matrix can indeed lead to the generation of larger integrable models (see, e.g., [54-56]).
However, it is worth noting that as the number of dependent variables increases, the
complexity of the resulting equations also grows. This can make the analysis and under-
standing of the system more challenging. Nevertheless, the study of larger integrable
models remains a fruitful area of research [36,53], offering insights into the fundamental
principles governing nonlinear dynamics and integrability in mathematical physics.
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