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We construct a class of novel reduced nonlocal reverse-spacetime integrable AKNS 
equations by taking two group reductions of the AKNS matrix spectral problems of 
arbitrary order. One reduction is local, replacing the spectral parameter with its complex 
conjugate while the other is nonlocal, replacing the spectral parameter with itself. Then 
based on the specific distribution of eigenvalues, we compute soliton solutions by using 
the Riemann-Hilbert problems with the identity jump matrix, where eigenvalues could 
equal adjoint eigenvalues.
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1. Introduction

The Lax formulation of matrix spectral problems lays the foundations for using the inverse scattering transform to study 
integrable equations. It has been found that group reductions of matrix spectral problems can lead to nonlocal integrable 
equations [2,10,13]. For the Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems, taking one group reduction 
yields three kinds of nonlocal nonlinear Schrödinger (NLS) equations and two kinds of nonlocal modified Korteweg-de 
Vries (mKdV) equations [2,15], and conducting two group reductions generates different kinds of novel nonlocal integrable 
equations. The inverse scattering transform can still be used to construct soliton solutions to nonlocal integrable equations 
(see, e.g., [1,19]).

Moreover, Darboux transformation, the Hirota bilinear method and Riemann-Hilbert problems have been proved to be 
other powerful approaches to integrable equations, both local and nonlocal, and especially to their soliton solutions. Indeed, 
numerous integrable equations have been studied through those methods (see, e.g., [5,9,20,21,24]). Particularly, Riemann-
Hilbert problems are formulated and used to solve nonlocal integrable NLS and mKdV equations. We refer the interested 
readers to the recent references [3,22,23] for the local case and [10,14,16,25] for the nonlocal case, regarding the application 
of Riemann-Hilbert problems. In this paper, we would like to present a kind of novel reduced nonlocal integrable AKNS 
equations by taking two group reductions and compute their soliton solutions through special Riemann-Hilbert problems 
with the identity jump matrix.
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The rest of this paper is structured as follows. In Section 2, we make two group reductions of the AKNS matrix spectral 
problems to present type (λ∗, λ) reduced nonlocal integrable AKNS equations, where λ∗ denotes the complex conjugate of 
λ. Two paradigmatic examples of scalar nonlocal integrable mKdV equations are

p1,t = p1,xxx + 6σ |p1|2 p1,x + 3σ p1(−x,−t)(p1 p∗
1(−x,−t))x,

and

p1,t = p1,xxx + 6δp1 p1(−x,−t)p1,x + 3δp∗
1(p1 p∗

1(−x,−t))x,

where σ = δ = ±1 (see how σ and δ are involved later in Section 2). In Section 3, based on the specific distribution of 
eigenvalues, we formulate solutions to the corresponding Riemann-Hilbert problems with the identity jump matrix, where 
eigenvalues could equal adjoint eigenvalues, and construct soliton solutions to the resulting reduced nonlocal integrable 
AKNS equations. In the last section, we give a conclusion and a few concluding remarks.

2. Reduced nonlocal integrable AKNS equations

2.1. The matrix AKNS integrable hierarchies revisited

In order to make the subsequent analysis smoothly, let us recall the AKNS hierarchies of matrix integrable equations. As 
usual, let λ denote the spectral parameter, and assume that p and q are two matrix potentials:

p = p(x, t) = (p jk)m×n, q = q(x, t) = (qkj)n×m, (2.1)

where m, n ≥ 1 are two arbitrarily given integers. We consider the matrix AKNS spectral problems as follows:{ −iφx = Uφ = U (u, λ)φ = (λ� + P )φ,

−iφt = V [r]φ = V [r](u, λ)φ = (λr� + Q [r])φ, r ≥ 0,
(2.2)

where the (m + n)-th order square matrices, � and �, read

� = diag(α1 Im,α2 In), � = diag(β1 Im, β2 In), (2.3)

in which Is denotes the identity matrix of size s, and α1, α2 and β1, β2 are two pairs of arbitrarily given distinct real 
constants, and where the other two (m + n)-th order square matrices, P and Q [r] , read

P = P (u) =
[

0 p

q 0

]
, (2.4)

called the potential matrix, and

Q [r] =
r−1∑
s=0

λs

[
a[r−s] b[r−s]

c[r−s] d[r−s]

]
, (2.5)

in which a[s], b[s], c[s] and d[s] will be defined recursively by

b[0] = 0, c[0] = 0, a[0] = β1 Im, d[0] = β2 In, (2.6a)

b[s+1] = 1

α
(−ib[s]

x − pd[s] + a[s]p), s ≥ 0, (2.6b)

c[s+1] = 1

α
(ic[s]

x + qa[s] − d[s]q), s ≥ 0, (2.6c)

a[s]
x = i(pc[s] − b[s]q), d[s]

x = i(qb[s] − c[s]p), s ≥ 1, (2.6d)

with zero constants of integration being taken. In particular, we can obtain

Q [1] = β

α
P , Q [2] = β

α
λP − β

α2
Im,n(P 2 + i P x),

and

Q [3] = β

α
λ2 P − β

α2
λIm,n(P 2 + i P x) − β

α3
(i[P , P x] + P xx + 2P 3),

where α = α1 − α2, β = β1 − β2 and Im,n = diag(Im, −In). The recursive relations in (2.6) also tell that
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W =
∑
s≥0

λ−s

[
a[s] b[s]

c[s] d[s]

]
(2.7)

solves the stationary zero curvature equation

W x = i[U , W ]. (2.8)

The compatibility conditions of the two matrix spectral problems in (2.2), i.e., the zero curvature equations

Ut − V [r]
x + i[U , V [r]] = 0, r ≥ 0, (2.9)

give us one matrix AKNS integrable hierarchy (see, e.g., [17] for more details):

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0, (2.10)

which has a bi-Hamiltonian structure and so infinitely many symmetries and conservation laws. The first and second non-
linear integrable equations in the hierarchy give us the AKNS matrix NLS equations:

pt = − β

α2
i(pxx + 2pqp), qt = β

α2
i(qxx + 2qpq), (2.11)

and the AKNS matrix mKdV equations:

pt = − β

α3
(pxxx + 3pqpx + 3pxqp), qt = − β

α3
(qxxx + 3qx pq + 3qpqx), (2.12)

where the two matrix potentials, p and q, are defined by (2.1).

2.2. Reduced nonlocal integrable AKNS equations

We would like to construct a class of novel reduced nonlocal reverse-spacetime integrable AKNS equations by taking two 
group reductions for the matrix AKNS spectral problems in (2.2). One reduction is local while the other is nonlocal (see also 
[11] for the basic idea of conducting group reductions).

Let 
1, 
2 be a pair of constant invertible Hermitian matrices of sizes m and n, respectively, and �1, �2 be another pair 
of constant invertible symmetric matrices of sizes m and n, respectively. We now introduce two group reductions for the 
spectral matrix U :

U †(x, t, λ∗) = (U (x, t, λ∗))† = 
U (x, t, λ)
−1, (2.13)

and

U T (−x,−t, λ) = (U (−x,−t, λ))T = �U (x, t, λ)�−1, (2.14)

where † denotes the Hermitian transpose and the two constant invertible matrices, 
 and �, are defined by


 =
[


1 0
0 
2

]
, � =

[
�1 0
0 �2

]
. (2.15)

These two group reductions equivalently generate

P †(x, t) = 
P (x, t)
−1, (2.16)

and

P T (−x,−t) = �P (x, t)�−1, (2.17)

respectively. More precisely, they allow us to make the reductions for the matrix potentials:

q(x, t) = 
−1
2 p†(x, t)
1, (2.18)

and

q(x, t) = �−1
2 pT (−x,−t)�1, (2.19)

respectively. Therefore, an additional constraint is required for the matrix potential p:


−1 p†(x, t)
1 = �−1 pT (−x,−t)�1, (2.20)
2 2
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to satisfy both group reductions in (2.13) and (2.14). Moreover, we point out that under the group reductions in (2.13) and 
(2.14), we have that{

W †(x, t, λ∗) = (W (x, t, λ∗))† = 
W (x, t, λ)
−1,

W T (−x,−t, λ) = (W (−x,−t, λ))T = �W (x, t, λ)�−1,
(2.21)

which implies that{
V [r]†(x, t, λ∗) = (V [r](x, t, λ∗))† = 
V [r](x, t, λ)
−1,

V r]T (−x,−t, λ) = (V [r](−x,−t, λ))T = �V [r](x, t, λ)�−1,
(2.22)

and {
Q [r]†(x, t, λ∗) = (Q [r](x, t, λ∗))† = 
Q [r](x, t, λ)
−1,

Q [r]T (−x,−t, λ) = (Q [r](−x,−t, λ))T = �Q [r](x, t, λ)�−1,
(2.23)

where r ≥ 0.
As a consequence, we see that under the potential reductions (2.18) and (2.19), the integrable matrix AKNS equations in 

(2.10) reduce to a hierarchy of nonlocal reverse-spacetime integrable matrix AKNS equations:

pt = iαb[r+1]|q=
−1
2 p†
1=�−1

2 pT (−x,−t)�1
, r ≥ 0, (2.24)

where p is an m × n matrix potential satisfying (2.20), 
1, 
2 are a pair of arbitrary invertible Hermitian matrices of sizes 
m and n, respectively, and �1, �2 are a pair of arbitrary invertible symmetric matrices of sizes m and n, respectively. Each 
reduced equation in the hierarchy (2.24) possesses a Lax pair of the reduced spatial and temporal matrix spectral problems 
in (2.2) and infinitely many symmetries and conservation laws reduced from those for the integrable matrix AKNS equations 
in (2.10).

If we fix r = 3, then the reduced matrix integrable AKNS equations in (2.24) give a kind of reduced nonlocal integrable 
matrix mKdV equations:

pt = − β

α3
(pxxx + 3p
−1

2 p†
1 px + 3px

−1
2 p†
1 p)

= − β

α3
(pxxx + 3p�−1

2 pT (−x,−t)�1 px + 3px�
−1
2 pT (−x,−t)�1 p), (2.25)

where p is an m × n matrix potential satisfying (2.20).
In what follows, we would like to show the richness of these novel reduced nonlocal integrable matrix mKdV equations, 

by a few examples with different values for m, n and appropriate choices for 
, �.
Let us first consider m = 1 and n = 2. We take


1 = 1, 
−1
2 =

[
σ 0

0 σ

]
, �1 = 1, �−1

2 =
[

0 δ

δ 0

]
, (2.26)

where σ and δ are real constants and satisfy σ 2 = δ2 = 1. Then the potential constraint (2.20) requires

p2 = σδp∗
1(−x,−t), (2.27)

where p = (p1, p2), and thus, the corresponding potential matrix P reads

P =

⎡
⎢⎢⎣

0 p1 σδp∗
1(−x,−t)

σ p∗
1 0 0

δp1(−x,−t) 0 0

⎤
⎥⎥⎦ . (2.28)

Further, the corresponding novel reduced nonlocal integrable mKdV equations become

p1,t = − β

α3
[p1,xxx + 6σ |p1|2 p1,x + 3σ p1(−x,−t)(p1 p∗

1(−x,−t))x], (2.29)

where σ = ±1 and |z| denotes the absolute value of z. These two equations are totally different from the ones studied in 
[2,6–8], in which only one nonlocal factor and one nonlinear term appear. A similar argument with


1 = 1, 
−1
2 =

[
0 σ

σ 0

]
, �1 = 1, �−1

2 =
[

δ 0

0 δ

]
, (2.30)
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where σ and δ are real constants and satisfy σ 2 = δ2 = 1, can generate the following different type reduced nonlocal 
integrable mKdV equations:

p1,t = − β

α3
[p1,xxx + 6δp1 p1(−x,−t)p1,x + 3δp∗

1(p1 p∗
1(−x,−t))x], (2.31)

where δ = ±1.
Let us second consider m = 1 and n = 4. We take


1 = 1, 
−1
2 =

⎡
⎢⎢⎢⎢⎢⎣

σ1 0 0 0

0 σ1 0 0

0 0 σ2 0

0 0 0 σ2

⎤
⎥⎥⎥⎥⎥⎦ , �1 = 1, �−1

2 =

⎡
⎢⎢⎢⎢⎢⎣

0 δ1 0 0

δ1 0 0 0

0 0 0 δ2

0 0 δ2 0

⎤
⎥⎥⎥⎥⎥⎦ , (2.32)

where σ j and δ j are real constants and satisfy σ 2
j = δ2

j = 1, j = 1, 2. Then the potential constraint (2.20) generates

p2 = σ1δ1 p∗
1(−x,−t), p4 = σ2δ2 p∗

3(−x,−t), (2.33)

where p = (p1, p2, p3, p4), and so the corresponding potential matrix P becomes

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 p1 σ1δ1 p∗
1(−x,−t) p3 σ2δ2 p∗

3(−x,−t)

σ1 p∗
1 0 0 0 0

δ1 p1(−x,−t) 0 0 0 0

σ2 p∗
3 0 0 0 0

δ2 p3(−x,−t) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.34)

This enables us to obtain a class of two-component reduced nonlocal integrable mKdV equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = − β

α3
[p1,xxx + 6σ1|p1|2 p1,x + 3σ1 p1(−x,−t)(p1 p∗

1(−x,−t))x

+3σ2 p∗
3(p1 p3)x + 3σ2 p3(−x,−t)(p1 p∗

3(−x,−t))x],

p3,t = − β

α3
[p3,xxx + 3σ1 p∗

1(p1 p3)x + 3σ1 p1(−x,−t)(p∗
1(−x,−t)p3)x

+6σ2|p3|2 p3,x + 3σ2 p3(−x,−t)(p3 p∗
3(−x,−t))x],

(2.35)

where σ j are real constants which satisfy σ 2
j = 1, j = 1, 2.

Let us third consider m = 2 and n = 2. We take


1 =
[

0 σ1

σ1 0

]
, 
−1

2 =
[

σ2 0

0 σ2

]
, �1 =

[
0 δ1

δ1 0

]
, �−1

2 =
[

0 δ2

δ2 0

]
, (2.36)

where σ j and δ j are real constants and satisfy σ 2
j = δ2

j = 1. Then the potential constraint (2.20) tells

p12 = σ1δ1σ2δ2 p∗
11(−x,−t), p22 = σ1δ1σ2δ2 p∗

12(−x,−t), (2.37)

and so the corresponding matrix potentials read

p =
[

p11 σ1δ1σ2δ2 p∗
11(−x,−t)

p12 σ1δ1σ2δ2 p∗
12(−x,−t)

]
, q =

[
σ1σ2 p∗

12 σ1σ2 p∗
11

δ1δ2 p12(−x,−t) δ1δ2 p11(−x,−t)

]
. (2.38)

This enables us to get another class of two-component reduced nonlocal integrable mKdV equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p11,t = − β

α3
[p11,xxx + 6σ p11 p∗

12 p11,x + 3σ p12(−x,−t)(p11 p∗
11(−x,−t))x

+3σ p∗
11(p11 p12)x + 3σ p11(−x,−t)(p∗

11(−x,−t)p12)x],

p12,t = − β

α3
[p12,xxx + 3σ p∗

12(p11 p12)x + 3σ p12(−x,−t)(p11 p∗
12(−x,−t))x

+6σ p∗
11 p12 p12,x + 3σ p11(−x,−t)(p12 p∗

12(−x,−t))x],

(2.39)

where σ = σ1σ2 = ±1. The pattern of nonlinear terms in these two equations is different from the one in (2.35).
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3. Soliton solutions

3.1. Distribution of eigenvalues

It is easy to see that the group reduction in (2.13) (or (2.14)) guarantees that λ is an eigenvalue of the matrix spectral 
problems in (2.2) if and only if λ̂ = λ∗ (or λ̂ = λ) is an adjoint eigenvalue, i.e., it satisfies the adjoint matrix spectral 
problems:

iφ̃x = φ̃U = φ̃U (u, λ̂), iφ̃t = φ̃V [r] = φ̃V [r](u, λ̂), (3.1)

where r ≥ 0. Accordingly, we can assume that we have eigenvalues λ : μ, μ∗ , and adjoint eigenvalues λ̂ : μ∗, μ, where 
μ ∈C.

Moreover, under the group reductions in (2.13) and (2.14), φ†(λ∗)
 and φT (−x, −t, λ)� present two adjoint eigen-
functions associated with the same eigenvalue λ, when φ(λ) is an eigenfunction of the matrix spectral problems in (2.2)
associated with an eigenvalue λ.

3.2. Solution formulation of special Riemann-Hilbert problems

We would like to present a general formulation of solutions to special Riemann-Hilbert problems with the identity 
jump matrix. Let N1, N2 ≥ 0 be two integers such that N = 2N1 + N2 ≥ 1. First, we take N eigenvalues λk and N adjoint 
eigenvalues λ̂k as follows:

λk, 1 ≤ k ≤ N : μ1, · · · , μN1 ,μ
∗
1, · · · , μ∗

N1
, ν1, · · · , νN2 , (3.2)

and

λ̂k, 1 ≤ k ≤ N : μ∗
1, · · · , μ∗

N1
,μ1, · · · , μN1 , ν∗

1 , · · · , ν∗
N2

, (3.3)

where μk ∈ C, 1 ≤ k ≤ N1, and νk ∈ C, 1 ≤ k ≤ N2, and assume that their corresponding eigenfunctions and adjoint 
eigenfunctions are given by

vk, 1 ≤ k ≤ N, and v̂k, 1 ≤ k ≤ N, (3.4)

respectively. We point out that in the current nonlocal case, the condition

{λk |1 ≤ k ≤ N} ∩ {λ̂k |1 ≤ k ≤ N} = ∅,

is not satisfied. Next, let us introduce two matrices:

G+(λ) = Im+n −
N∑

k,l=1

vk(M−1)kl v̂l

λ − λ̂l

, (G−)−1(λ) = Im+n +
N∑

k,l=1

vk(M−1)kl v̂l

λ − λk
, (3.5)

where M is a square matrix M = (mkl)N×N with its entries defined by

mkl =

⎧⎪⎨
⎪⎩

v̂k vl

λl − λ̂k

, if λl �= λ̂k,

0, if λl = λ̂k,

where 1 ≤ k, l ≤ N. (3.6)

It has been shown in [14] that these two matrices G+(λ) and G−(λ) solve the corresponding special Riemann-Hilbert 
problem with the identity jump matrix:

(G−)−1(λ)G+(λ) = Im+n, λ ∈R, (3.7)

when an orthogonal condition:

v̂k vl = 0 if λl = λ̂k, when 1 ≤ k, l ≤ N, (3.8)

is satisfied.
When zero potentials are taken, the matrix spectral problems in (2.2) yield

vk = vk(x, t, λk) = eiλk�x+iλr
k�t wk, 1 ≤ k ≤ N, (3.9)

where wk , 1 ≤ k ≤ N , are constant column vectors. Following the preceding analysis, we can take
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v̂k = v̂k(x, t, λ̂k) = v†
k(x, t, λk)
 = ŵke−iλ̂k�x−iλ̂r

k�t, ŵk = w†
k
, 1 ≤ k ≤ N. (3.10)

The orthogonal condition (3.8) leads equivalently to

w†
k
wl = 0 if λl = λ̂k, where 1 ≤ k, l ≤ N. (3.11)

Now, upon making an asymptotic expansion

G+(λ) = Im+n + 1

λ
G+

1 + O(
1

λ2
), (3.12)

as λ → ∞, we get

G+
1 = −

N∑
k,l=1

vk(M−1)kl v̂l, (3.13)

and further, substituting this into the matrix spatial spectral problems in (2.2), we obtain

P = −[�, G+
1 ] = lim

λ→∞[G+(λ),�]. (3.14)

This produces the N-soliton solution to the matrix AKNS equations (2.10):

p = α

N∑
k,l=1

v1
k (M−1)kl v̂

2
l , q = −α

N∑
k,l=1

v2
k (M−1)kl v̂

1
l , (3.15)

where for each 1 ≤ k ≤ N , we have made the splittings, vk = ((v1
k )T , (v2

k )T )T and v̂k = (v̂1
k , ̂v2

k ), where v1
k and v̂1

k are column 
and row vectors of dimension m, respectively, and v2

k and v̂2
k are column and row vectors of dimension n, respectively.

To present N-soliton solutions for the reduced nonlocal matrix integrable AKNS equations (2.24), we need to check 
whether G+

1 determined by (3.13) satisfies the involution properties:

(G+
1 )† = −
G+

1 
−1, (G+
1 )T (−x,−t) = −�G+

1 �−1, (3.16)

which mean that the resulting potential matrix P defined by (3.14) will satisfy the two group reduction conditions in (2.16)
and (2.17). Consequently, under these conditions, the above N-soliton solution to the matrix AKNS equations (2.10) reduces 
to the following N-soliton solution:

p = α

N∑
k,l=1

v1
k (M−1)kl v̂

2
l , (3.17)

to the reduced nonlocal matrix integrable AKNS equations (2.24).

3.3. Realizing the involution conditions

We would now like to check how to realize the involution properties in (3.16).
First, based on the preceding analysis in subsection 3.1, all adjoint eigenfunctions v̂k, 1 ≤ k ≤ 2N1, can be taken as 

follows:

v̂k = v̂k(x, t, λ̂k) = v†
k(λk)
 = v T

N1+k(−x,−t, λ∗
k )�, 1 ≤ k ≤ N1, (3.18)

and

v̂ N1+k = v̂ N1+k(x, t, λ̂N1+k) = v†
N1+k(λN1+k)
 = v T

k (−x,−t, λk)�, 1 ≤ k ≤ N1. (3.19)

These selections in (3.18) and (3.19) require the conditions on wk, 1 ≤ k ≤ N:{
w T

k (
∗�∗−1 − �
−1) = 0, 1 ≤ k ≤ N1,

wk = �−1
∗w∗
k−N1

, N1 + 1 ≤ k ≤ 2N1,
(3.20)

where ∗ denotes the complex conjugate of a matrix. Note that all these conditions aim to satisfy the reduction conditions 
in (2.16) and (2.17).

Next, note that when the solutions to the Riemann-Hilbert problems with the identity jump matrix, defined by (3.5) and 
(3.6), possess the involution properties
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(G+)†(λ∗) = 
(G−)−1(λ)
−1, (G+)T (−x,−t, λ) = �(G−)−1(λ)�−1, (3.21)

the corresponding relevant matrix G+
1 will satisfy the involution properties in (3.16), which are consequences of the group 

reductions in (2.13) and (2.14). Accordingly, when the conditions in (3.20) and the orthogonal condition in (3.11) are satisfied 
for wk , 1 ≤ k ≤ N , the formula (3.17), together with (3.5), (3.6), (3.9) and (3.10), gives rise to N-soliton solutions to the 
reduced nonlocal matrix integrable AKNS equations (2.24).

Finally, we present an example of solutions to the reduced nonlocal mKdV equations in the case of m = n = N = 1. We 
take λ1 = iν, λ̂1 = −iν, ν ∈R, and choose

w1 = (w1,1, w1,2, w1,3)
T , (3.22)

where w1,1, w1,2, w1,3 are arbitrary real numbers with w2
1,3 = w2

1,2. These selections lead to a class of one-soliton solutions 
to the reduced nonlocal integrable mKdV equation (2.29):

p1 = − 2iσν(α1 − α2)w1,1 w1,2

w2
1,1e−(α1−α2)νx−(β1−β2)ν3t + 2σ w2

1,2e(α1−α2)νx+(β1−β2)ν3t
, (3.23)

where ν ∈R is arbitrary and w1,1, w1,2 ∈R are arbitrary but need to satisfy w2
1,1 = 2w2

1,2, which comes from the involu-
tion properties in (3.16).

4. Concluding remarks

Type (λ∗, λ) reduced nonlocal reverse-spacetime integrable AKNS equations were presented and their soliton solutions 
were formulated through special Riemann-Hilbert problems with the identity jump matrix. The analysis is based on two 
group reductions of the AKNS matrix spectral problems, one of which is local while the other is nonlocal. The resulting 
nonlocal integrable AKNS equations are a type of novel nonlocal reverse-spacetime integrable equations.

We remark that it would also be interesting to search for other kinds of reduced nonlocal integrable equations by 
different kinds of pairs of group reductions, both local and nonlocal. Moreover, it is very interesting to study dynamical 
properties of exact solutions in the nonlocal case, including lump solutions [18], solitonless solutions [12] and algebro-
geometric solutions [4], from a perspective of Riemann-Hilbert problems. All this will greatly enrich the mathematical 
theory of nonlocal integrable equations.

Acknowledgements

The work was supported in part by NSFC under the grants 12271488, 11975145, 11972291 and 51771083, the Ministry 
of Science and Technology (China) (G2021016032L), and the Natural Science Foundation for Colleges and Universities in 
Jiangsu Province (17 KJB 110020).

References

[1] M.J. Ablowitz, Z.H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity 29 (2016) 
915–946.

[2] M.J. Ablowitz, Z.H. Musslimani, Integrable nonlocal nonlinear equations, Stud. Appl. Math. 139 (1) (2017) 7–79.
[3] X.G. Geng, J.P. Wu, Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion 60 (2016) 62–72.
[4] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-geometric Solutions: (1 + 1)-Dimensional Continuous Models, Cambridge University Press, 

Cambridge, 2003.
[5] M. Gürses, A. Pekcan, Nonlocal nonlinear Schrödinger equations and their soliton solutions, J. Math. Phys. 59 (5) (2018) 051501.
[6] M. Gürses, A. Pekcan, Nonlocal modified KdV equations and their soliton solutions by Hirota method, Commun. Nonlinear Sci. Numer. Simul. 67 (2019) 

427–448.
[7] J.L. Ji, Z.N. Zhu, On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux transformation and soliton solutions, Commun. Nonlinear 

Sci. Numer. Simul. 42 (2017) 699–708.
[8] J.L. Ji, Z.N. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. 

Appl. 453 (2) (2017) 973–984.
[9] T. Kawata, Riemann spectral method for the nonlinear evolution equation, in: Advances in Nonlinear Waves Vol. I, Pitman, Boston, MA, 1984, 

pp. 210–225.
[10] W.X. Ma Huang, Y.H. Huang, F.D. Wang, Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies, 

Stud. Appl. Math. 45 (3) (2020) 563–585.
[11] W.X. Ma, Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction, Math. Methods Appl. Sci. 42 (4) (2019) 

1099–1113.
[12] W.X. Ma, Long-time asymptotics of a three-component coupled mKdV system, Mathematics 7 (7) (2019) 573.
[13] W.X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett. 102 (2020) 106161.
[14] W.X. Ma, Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations, Proc. Am. Math. Soc. 149 (1) (2020) 

251–263.
[15] W.X. Ma, Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems, Partial Differ. Equ. Appl. Math. 4 (2021) 100190.
[16] W.X. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies, Acta Math. Sci. 42B (1) (2022) 127–140.
[17] W.X. Ma, Riemann-Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies, Physica D 430 (2022) 133078.
[18] W.X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equ. 264 (4) (2018) 1062–1082.
112

http://refhub.elsevier.com/S0168-9274(22)00329-4/bib0B97BBF6BA3CDB76B0FF1116D664F562s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib0B97BBF6BA3CDB76B0FF1116D664F562s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib674369325D2C7A0F11D434C299F466E8s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibEF94EA47BD0541C06BAA5D3D6579A4BEs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib59AE2BD701C6121CB9B0D7BEF1CCDADAs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib59AE2BD701C6121CB9B0D7BEF1CCDADAs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibD31B8622E12CCF8BB7DAB3E5E2B65794s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibA98953CF9AA26E3B5636D3E55358450Bs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibA98953CF9AA26E3B5636D3E55358450Bs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib19BE54F7107F35CCE5749BC40F21D2CEs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib19BE54F7107F35CCE5749BC40F21D2CEs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibC1013BB74BEF8740839CE19B74996C60s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibC1013BB74BEF8740839CE19B74996C60s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib2F5C1638FA89E56E57F8BE6A16670F2Cs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib2F5C1638FA89E56E57F8BE6A16670F2Cs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibC6B59361948A196655339EBB34E5DC07s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibC6B59361948A196655339EBB34E5DC07s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibB569D2BF013C5798F6F27902DD2D3AE8s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibB569D2BF013C5798F6F27902DD2D3AE8s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib0FD1DD59E9CCD1AC844EA7D46A7AC6CAs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibDB5DF2907B1FCE6F1D8BF377C16927C1s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib1632E5EB5743E92807E3768E988B4ECFs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib1632E5EB5743E92807E3768E988B4ECFs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibE790C408B1C6CC26E5FA6E69CB257040s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibCA80F5541FB45A7A8BEFD2078CA8C65Ds1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib5E5BD65E93C7535FF89ED811D52C7836s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib30CDC70E1C7AE184B9075D44374424A6s1


W.-X. Ma Applied Numerical Mathematics 199 (2024) 105–113
[19] W.X. Ma, Y.H. Huang, F.D. Wang, Inverse scattering transforms for non-local reverse-space matrix non-linear Schrödinger equations, Eur. J. Appl. Math. 
33 (2022), https://doi .org /10 .1017 /S0956792521000334.

[20] S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Consultants Bureau, New York, 1984.
[21] C.Q. Song, D.M. Xiao, Z.N. Zhu, Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation, Commun. Nonlinear 

Sci. Numer. Simul. 45 (2017) 13–28.
[22] D.S. Wang, D.J. Zhang, J. Yang, Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys. 51 (2) (2010) 023510.
[23] Y. Xiao, E.G. Fan, A Riemann-Hilbert approach to the Harry-Dym equation on the line, Chin. Ann. Math., Ser. B 37 (3) (2016) 373–384.
[24] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM, Philadelphia, 2010.
[25] J. Yang, General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations, Phys. Lett. A 383 (4) (2019) 328–337.
113

https://doi.org/10.1017/S0956792521000334
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib58E59EE05D4E715C2FADE095E57ECE3Es1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibDD73E4BDB010411493F4FD3E8E3CAF2Cs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bibDD73E4BDB010411493F4FD3E8E3CAF2Cs1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib5EAC403CCD1AADCCA0DF18502BDF9E79s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib874331099EED94A75D06D8EB70B87068s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib4807261FBDF62D28D47BB658537D2EE4s1
http://refhub.elsevier.com/S0168-9274(22)00329-4/bib5D8F7FE9CD075057D30BC03C650B9A6Fs1

	Type (λ∗,λ) reduced nonlocal integrable AKNS equations and their soliton solutions
	1 Introduction
	2 Reduced nonlocal integrable AKNS equations
	2.1 The matrix AKNS integrable hierarchies revisited
	2.2 Reduced nonlocal integrable AKNS equations

	3 Soliton solutions
	3.1 Distribution of eigenvalues
	3.2 Solution formulation of special Riemann-Hilbert problems
	3.3 Realizing the involution conditions

	4 Concluding remarks
	Acknowledgements
	References


