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1. Introduction

The Lax formulation of matrix spectral problems lays the foundations for using the inverse scattering transform to study
integrable equations. It has been found that group reductions of matrix spectral problems can lead to nonlocal integrable
equations [2,10,13]. For the Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems, taking one group reduction
yields three kinds of nonlocal nonlinear Schrodinger (NLS) equations and two kinds of nonlocal modified Korteweg-de
Vries (mKdV) equations [2,15], and conducting two group reductions generates different kinds of novel nonlocal integrable
equations. The inverse scattering transform can still be used to construct soliton solutions to nonlocal integrable equations
(see, e.g., [1,19]).

Moreover, Darboux transformation, the Hirota bilinear method and Riemann-Hilbert problems have been proved to be
other powerful approaches to integrable equations, both local and nonlocal, and especially to their soliton solutions. Indeed,
numerous integrable equations have been studied through those methods (see, e.g., [5,9,20,21,24]). Particularly, Riemann-
Hilbert problems are formulated and used to solve nonlocal integrable NLS and mKdV equations. We refer the interested
readers to the recent references [3,22,23] for the local case and [10,14,16,25] for the nonlocal case, regarding the application
of Riemann-Hilbert problems. In this paper, we would like to present a kind of novel reduced nonlocal integrable AKNS
equations by taking two group reductions and compute their soliton solutions through special Riemann-Hilbert problems
with the identity jump matrix.
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The rest of this paper is structured as follows. In Section 2, we make two group reductions of the AKNS matrix spectral
problems to present type (A*, 1) reduced nonlocal integrable AKNS equations, where A* denotes the complex conjugate of
. Two paradigmatic examples of scalar nonlocal integrable mKdV equations are

P1.t = P1xxx +60p1 |2pl,x + 30 p1(—x, —t)(plpT(—xs —t))x,
and

D1t = P1xx + 68p1p1(—X, —t)p1,x + 38T (P1P] (=X, —1))x,

where 0 =§ = 11 (see how o and § are involved later in Section 2). In Section 3, based on the specific distribution of
eigenvalues, we formulate solutions to the corresponding Riemann-Hilbert problems with the identity jump matrix, where
eigenvalues could equal adjoint eigenvalues, and construct soliton solutions to the resulting reduced nonlocal integrable
AKNS equations. In the last section, we give a conclusion and a few concluding remarks.

2. Reduced nonlocal integrable AKNS equations
2.1. The matrix AKNS integrable hierarchies revisited

In order to make the subsequent analysis smoothly, let us recall the AKNS hierarchies of matrix integrable equations. As
usual, let A denote the spectral parameter, and assume that p and g are two matrix potentials:

p=pX,t) = Pjkdmxn, §=qX,t) = (qkjInxm: (2.1)

where m,n > 1 are two arbitrarily given integers. We consider the matrix AKNS spectral problems as follows:

—ipgx=Udp=Uu, )¢ =LA+ P)¢, 22)
—ige = Vg =vIlw. g =02+ QMe. r=0. ‘
where the (m + n)-th order square matrices, A and €2, read
A =diag(arIm, azln), Q= diag(B1lm, f2ln), (2.3)

in which Is; denotes the identity matrix of size s, and o1, and Bq, B2 are two pairs of arbitrarily given distinct real
constants, and where the other two (m + n)-th order square matrices, P and Q[7, read

0 p
P=P@u)= , (2.4)
q O
called the potential matrix, and
r—1 [r—s] [r—s]
a b
=3 ")s 2.5
Q Z |: clr=sl glr—sl :| ’ (2.5)
s=0
in which als!, b8!, cls] and dIs! will be defined recursively by
b =0, =0, d =piln, d° =By, (2.6a)
1
plst1l — &(—ib,lfj —pd® +dlp), s>0, (2.6b)
1
= — (i’ + qa*! — dPg), 5 >0, (2:60)
o) =i(pc! - bllg), d = i(gh!! — c¥Ip), s> 1, (2.6d)
with zero constants of integration being taken. In particular, we can obtain
Q=Lp qu_Fyp_ ﬁzlm,n(P2 +iPy),
o o o
and
QB = Birp_ ﬁzum,n(P2 +iPy) — %(i[P, Pyl + Pxx 4 2P),
o o o

where o = a1 — a2, B = p1 — B2 and Iy = diag(Im, —In). The recursive relations in (2.6) also tell that
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[s1 pls]
w=3y 2" [ZSJ Zm } (2.7)
s>0

solves the stationary zero curvature equation

Wy =i[U, W]. (2.8)

The compatibility conditions of the two matrix spectral problems in (2.2), i.e., the zero curvature equations

U — vl +iu, vl =o, r>o, (2.9)
give us one matrix AKNS integrable hierarchy (see, e.g., [17] for more details):

pe = b g = —igec™ N r >0, (2.10)

which has a bi-Hamiltonian structure and so infinitely many symmetries and conservation laws. The first and second non-
linear integrable equations in the hierarchy give us the AKNS matrix NLS equations:

pe= —%i(pxx +2pgp), qc = gimxx + 24p). (211)

and the AKNS matrix mKdV equations:

B B
Pe = =5 (Proc + 3PP+ 3PxGP). e = — 5 (Gwor +30xPq + 30D, (212)

where the two matrix potentials, p and q, are defined by (2.1).
2.2. Reduced nonlocal integrable AKNS equations

We would like to construct a class of novel reduced nonlocal reverse-spacetime integrable AKNS equations by taking two
group reductions for the matrix AKNS spectral problems in (2.2). One reduction is local while the other is nonlocal (see also
[11] for the basic idea of conducting group reductions).

Let 1, ¥, be a pair of constant invertible Hermitian matrices of sizes m and n, respectively, and A1, Ay be another pair
of constant invertible symmetric matrices of sizes m and n, respectively. We now introduce two group reductions for the
spectral matrix U:

UTx, t, 2% = U, 6,2 =SUux, t, )1, (213)
and
UT(=x, —t, 1) = (U(=x, —t, )T = AU(x, t, ) AT, (2.14)
where 7 denotes the Hermitian transpose and the two constant invertible matrices, ¥ and A, are defined by
|z 0 A O
E‘[o 22:|’A_[0 A2:|' (215)
These two group reductions equivalently generate
Pi(x,t)=TP(x,t)s !, (2.16)
and
PT(—x,—t) = AP(x,t)A7 T, (217)
respectively. More precisely, they allow us to make the reductions for the matrix potentials:
qx,t) =% "pTx %, (218)
and
qx, 0 =A;'p" (=x, —D) A1, (2.19)
respectively. Therefore, an additional constraint is required for the matrix potential p:
T )% = A 1pT (—=x, —)A (2.20)
2 s 1=58 D s 1s .
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to satisfy both group reductions in (2.13) and (2.14). Moreover, we point out that under the group reductions in (2.13) and
(2.14), we have that

Wi, t, 2 = W, t, ) =swx, t, )z,

WT(—x, —t,2) = (W (=x, —t, ) = AW (x,t, VA, (221
which implies that

vITix e, 0% = (vIx e, )T = svIi e, 0T,

VAT (—x, —t, ) = (VI (—x, =t 2T = AVIT(x, t, ) AT, (2:22)
and

QM x, t.2%) = (@M. t. ) =2t T,

QT (—x, —t,2) = (Q(—x, —t, )T = AQ M (x,t, AT, (2:23)
where r > 0.

As a consequence, we see that under the potential reductions (2.18) and (2.19), the integrable matrix AKNS equations in
(2.10) reduce to a hierarchy of nonlocal reverse-spacetime integrable matrix AKNS equations:

pe = iab 1| r>0, (2.24)

q=25"pToi=A7"pT(=x,—0A* | =
where p is an m x n matrix potential satisfying (2.20), X1, X, are a pair of arbitrary invertible Hermitian matrices of sizes
m and n, respectively, and A1, A, are a pair of arbitrary invertible symmetric matrices of sizes m and n, respectively. Each
reduced equation in the hierarchy (2.24) possesses a Lax pair of the reduced spatial and temporal matrix spectral problems
in (2.2) and infinitely many symmetries and conservation laws reduced from those for the integrable matrix AKNS equations
in (2.10).

If we fix r = 3, then the reduced matrix integrable AKNS equations in (2.24) give a kind of reduced nonlocal integrable
matrix mKdV equations:

pr = —%(Pxxx +3p%; ' pT1px 4 3px=5 ' pT1p)

B _ _
= —E(Pxxx +3pA, 'pT (=X, —0)A1px + 3pxA, TpT(—x, —t)A1p), (2.25)

where p is an m x n matrix potential satisfying (2.20).

In what follows, we would like to show the richness of these novel reduced nonlocal integrable matrix mKdV equations,
by a few examples with different values for m,n and appropriate choices for X, A.

Let us first consider m =1 and n = 2. We take

1 o 0 1 (V)
=13, = s A=1, Ay = , (2.26)
0 o § 0
where o and § are real constants and satisfy o2 = §2 = 1. Then the potential constraint (2.20) requires
p2 =08p7(—X, —t), (2.27)
where p = (p1, p2), and thus, the corresponding potential matrix P reads
0 p1 08pi(=x, —t)
P = op; 0 0 . (2.28)
dp1(—x,—t) O 0

Further, the corresponding novel reduced nonlocal integrable mKdV equations become

pP1e= _%[pl,xxx +60|p112p1x + 30 p1(=x, —t)(P1P} (=%, —))x], (2.29)

where 0 = +1 and |z| denotes the absolute value of z. These two equations are totally different from the ones studied in
[2,6-8], in which only one nonlocal factor and one nonlinear term appear. A similar argument with

L, [0 o L [e o0
Si=1, %"= L A=1, A7 = , (2.30)
o 0 0 s
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where o and & are real constants and satisfy o2 = §2 =1, can generate the following different type reduced nonlocal

integrable mKdV equations:

pPie= —%[m,m +68p1p1(—X, —0)p1x + 38pT (P1P](—X, —1))x],
where § = +1.
Let us second consider m =1 and n = 4. We take
op 0 0 O 0 6 0 O
; 0 o1p 0 O ; 56 0 0 O
1=1 % = A1 =1, A = ,
0 0 o O 0 0 0 &
0 0 0 oy 0 0 6 O

where o and §; are real constants and satisfy ajz = 812 =1, j=1,2. Then the potential constraint (2.20) generates

p2 =0181p7 (=X, —t), ps=0282p3(—x, —t),

where p = (p1, P2, P3, P4), and so the corresponding potential matrix P becomes

0 P1 O181Pf(—X. —t) pP3 0282p5(—x. —1) ]
01D} 0 0 0 0
P=| 8pi(=x.—t) 0 0 0 0
o2} 0 0 0 0

| S2p3(—x,—t) 0 0 0 0 ]

This enables us to obtain a class of two-component reduced nonlocal integrable mKdV equations:
D1 = L3 D1+ 601101 D1+ 30101 (X OB (-1, ~O)
+30203(P1P3)x + 302P3 (=X, =) (P1P3 (=X, —t))x],

B
p3= —Ewsm +301p1(P1P3)x + 3011 (=%, =) (p] (=X, =) P3)x

+6021p312p3 x + 302p3 (=%, =) (p3P3(—%, —1))x],

where o are real constants which satisfy 02=1, j=1,2.
Let us third consider m =2 and n = 2. We take

0 oq 1 o, O 0 &1 1 0 &
o= i A= , Ay = :
or 0 0 oy 61 O 5 0
where o and §; are real constants and satisfy ajz = 812 =1. Then the potential constraint (2.20) tells

P12 =01810282p71 (—X, —t), P22 =01810282p7,(—X, —t),

and so the corresponding matrix potentials read

p11 01810282p7; (=X, —b) 010207, 0102P;
p = N = .
P12 01810282p7,(—x, —t) 8182p12(—x, —t) 8182p11(—x%, —1)
This enables us to get another class of two-component reduced nonlocal integrable mKdV equations:
B
Pt = —a—3[P11,xxx + 60 p11P72P11,x + 30 p12(—x, —t)(P11p]1 (—X, —t))x
+30 p11(P11P12)x + 30 p11(—=X, =) (P71 (=X, —H)p12)x],
B
P12t = _Ol_3[p12,xxx +30p]2(P11P12)x + 30 p12(—x, =) (P11P]2(—X, —t))x

+60 pi1P12P12,x + 30 P11 (=X, —t)(P12P72 (=X, —t))x],

where 0 = 0107 = £1. The pattern of nonlinear terms in these two equations is different from the one in (2.35).
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3. Soliton solutions
3.1. Distribution of eigenvalues

It is easy to see that the group reduction in (2.13) (or (2.14)) guarantees that A is an eigenvalue of the matrix spectral
problems in (2.2) if and only if A = A* (or A = A) is an adjoint eigenvalue, i.e., it satisfies the adjoint matrix spectral
problems:

iy = U = pU (u, 1), iy = pVI =gV (u, i), (3.1)

where r > 0. Accordingly, we can assume that we have eigenvalues A : j, wu*, and adjoint eigenvalues A : u*, u, where
neC.

Moreover, under the group reductions in (2.13) and (2.14), ¢T(x*)= and ¢T(—x, —t, A)A present two adjoint eigen-
functions associated with the same eigenvalue A, when ¢ (1) is an eigenfunction of the matrix spectral problems in (2.2)
associated with an eigenvalue A.

3.2. Solution formulation of special Riemann-Hilbert problems

We would like to present a general formulation of solutions to special Riemann-Hilbert problems with the identity
jump matrix. Let N1, N2 > 0 be two integers such that N =2N; + N, > 1. First, we take N eigenvalues A, and N adjoint
eigenvalues Ay as follows:

My TSRSND pa, -y Ny, 475 505 UNgs V1 o0 s VN, (32)

and

Mo TSRSNG WY, ooy W s 05 ANgs VEs oo s Uy (33)

where € C, 1<k <Ny, and v, € C, 1 <k < N3, and assume that their corresponding eigenfunctions and adjoint
eigenfunctions are given by

Vi, 1<k<N, and ¥y, 1<k <N, (3.4)
respectively. We point out that in the current nonlocal case, the condition
M1 <k <NIN{iy|1<k<N}=0,

is not satisfied. Next, let us introduce two matrices:

N 1\ 4 N PN
VM~ Davy Ve(M™ vy
T =Inn— Y, ————, G 'O =lnn+ Yy, ————, (35)
ko1 AT M Py
= k,1=1
where M is a square matrix M = (my;)yxn With its entries defined by
Vv N
k—,{, if A # Mg,
mg=1{ M— where 1 <k,I <N. (3.6)

0, if &) = A,

It has been shown in [14] that these two matrices GT (1) and G~ (1) solve the corresponding special Riemann-Hilbert
problem with the identity jump matrix:

(GG M) = Imgn, L €R, (3.7)
when an orthogonal condition:
vi=0if A\ =iy, when1 <k,I <N, (3.8)

is satisfied.
When zero potentials are taken, the matrix spectral problems in (2.2) yield

Vi = Vi(X, £, ) = e ARy 1 <k <N, (3.9)

where wy, 1 <k <N, are constant column vectors. Following the preceding analysis, we can take
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U= Uk 6, A = v 6, 1) B = e THRATIRRE G —wis 1<k <N (3.10)

The orthogonal condition (3.8) leads equivalently to

w! Zw; = 0if 3 = iy, where 1 <k, <N. (3.11)
Now, upon making an asymptotic expansion
c+m=1m+n+%cl++0(;—2), (3.12)
as A — oo, we get
N
Gi == viM D, (313)
k=1

and further, substituting this into the matrix spatial spectral problems in (2.2), we obtain

P=—[A,G]] [GT (), Al (3.14)

= lim
A—>00

This produces the N-soliton solution to the matrix AKNS equations (2.10):

N N
p=a Y viM it g=—a Y viM i), (315)
k=1 k=1

where for each 1 <k < N, we have made the splittings, vy = ((v))T, (v2)")T and ¥4 = (¥}, ¥2), where v} and ¥} are column
and row vectors of dimension m, respectively, and v,% and \7,% are column and row vectors of dimension n, respectively.
To present N-soliton solutions for the reduced nonlocal matrix integrable AKNS equations (2.24), we need to check
whether Gfr determined by (3.13) satisfies the involution properties:
GH ==2¢7=71, GHT(=x, —t) =—AGT AT, (3.16)

which mean that the resulting potential matrix P defined by (3.14) will satisfy the two group reduction conditions in (2.16)
and (2.17). Consequently, under these conditions, the above N-soliton solution to the matrix AKNS equations (2.10) reduces
to the following N-soliton solution:

N
p=a Yy viM it (317)
k,I=1

to the reduced nonlocal matrix integrable AKNS equations (2.24).
3.3. Realizing the involution conditions

We would now like to check how to realize the involution properties in (3.16).
First, based on the preceding analysis in subsection 3.1, all adjoint eigenfunctions v, 1 <k < 2N1, can be taken as
follows:

e = D, £, J) = VG T =V (=X —60)A, 1<k <Ny, (3.18)

and

Uy ke = VN k(X B ANy k) = V;r\,1+k()w1+k)2 =V (=X, —t, })A, 1<k <Ny, (3.19)
These selections in (3.18) and (3.19) require the conditions on wy, 1 <k <N:
wl(Z*A* T AT =0, 1<k<Ny,

(3.20)
wi=AT"S*wi_y . Ni+1<k<2Ng,

where * denotes the complex conjugate of a matrix. Note that all these conditions aim to satisfy the reduction conditions
in (2.16) and (2.17).

Next, note that when the solutions to the Riemann-Hilbert problems with the identity jump matrix, defined by (3.5) and
(3.6), possess the involution properties
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GHIWH=2GH Tz GHT(—x —t, ) =AGH)TMATY, (3.21)

the corresponding relevant matrix G;L will satisfy the involution properties in (3.16), which are consequences of the group
reductions in (2.13) and (2.14). Accordingly, when the conditions in (3.20) and the orthogonal condition in (3.11) are satisfied
for wy, 1 <k <N, the formula (3.17), together with (3.5), (3.6), (3.9) and (3.10), gives rise to N-soliton solutions to the
reduced nonlocal matrix integrable AKNS equations (2.24).

Finally, we present an example of solutions to the reduced nonlocal mKdV equations in the case of m=n=N=1. We
take A1 =iv, il = —iv, v e R, and choose

wi= (Wi, wi2, wi3)', (3.22)

where w1 1, wi2, w3 are arbitrary real numbers with wf 3= W% ,- These selections lead to a class of one-soliton solutions
to the reduced nonlocal integrable mKdV equation (2.29):

2i0’l)(0l1 — Olz)WL] W172

p1=— (3.23)

W%Je—(a1—az)vx—(ﬁ1—ﬁz)v3t 420 w% e —a)vx+(B1—p)v3t’

where v € R is arbitrary and wj 1, wq 2 € R are arbitrary but need to satisfy w% 1= ZWf »» Which comes from the involu-
tion properties in (3.16).

4. Concluding remarks

Type (A*, 1) reduced nonlocal reverse-spacetime integrable AKNS equations were presented and their soliton solutions
were formulated through special Riemann-Hilbert problems with the identity jump matrix. The analysis is based on two
group reductions of the AKNS matrix spectral problems, one of which is local while the other is nonlocal. The resulting
nonlocal integrable AKNS equations are a type of novel nonlocal reverse-spacetime integrable equations.

We remark that it would also be interesting to search for other kinds of reduced nonlocal integrable equations by
different kinds of pairs of group reductions, both local and nonlocal. Moreover, it is very interesting to study dynamical
properties of exact solutions in the nonlocal case, including lump solutions [18], solitonless solutions [12] and algebro-
geometric solutions [4], from a perspective of Riemann-Hilbert problems. All this will greatly enrich the mathematical
theory of nonlocal integrable equations.
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