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Abstract This paper aims to construct six-component integrable hierarchies from a kind
of matrix spectral problems within the zero curvature formulation. Their Hamiltonian for-
mulations are furnished by the trace identity, which guarantee the commuting property of
infinitely many symmetries and conserved Hamiltonian functionals. Illustrative examples of
the resulting integrable equations of second and third orders are explicitly computed.
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1 Introduction

The zero curvature equation is a nonlinear partial differential equation that describes the
compatibility conditions for a pair of linear differential equations, which arises in the theory of
integrable equations and has important applications in mathematical physics [1]. It allows for
the construction of infinitely many symmetries and conserved quantities for certain nonlinear
equations, such as nonlinear Schrodinger equations and modified Korteweg-de Vries eqautions.
This leads to the integrability of these equations and allows for the explicit construction of their
solutions.

To generate integrable equations by the zero curvature equation, it is crucial to formulate
an appropriate matrix spatial spectral problem. As usal, let v and A denote a g-dimensional
potential: u = (uq,- - ,uq)T and the spectral parameter, respectively. First, use a loop algebra
g to form a spatial spectral matrix:

U=U(u,\) = eg(A) +urer(A) + - - - + ugeq(N), (1.1)
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where eq,- - , e, are linear independent elements in g and eq is required to be a pseudo-regular

element in g:

Kerad., ® Imad,, = g, and Kerad,, is commutative. (1.2)

This characterizes the solvability of the stationary zero curvature equation:

Wy = 1[U7 W]7 (13)
among Laurent series
w=> AWl
s>0

Second, consider the spatial and temporal matrix spectral problems:
—ig, = U, —igy = VI'lg, r >0, (14)

where V"l is detemined by using the Laurent series solution W. Subsequently, an integrable

hierarchy is presented through a hierarchy of zero curvature equations:
U, — v 4iu,vi =0, r>o0, (1.5)

which are the compatibility conditions of the matrix spectral problems in (1.4). Hamiltonian
formulations of the resulting integrable equations could be established by applying the trace
identity [2, 3]:

% /tr(Wg—Z) dz = A_W%)\Wtr(wg—g), (1.6)
where % is the variational derivative with respect to u and v is the constant, independent of
the spectral parameter. Usually, a bi-Hamiltonian formulation can also be furnished, which
directly yields the Liouville integrability of the presented integrable equations [4].

Many integrable Hamiltonian hierarchies are computed through the above zero curvature
formulation, based on the special linear algebras (see, e.g., [5—10]) and the special orthogonal
algebras (see, e.g., [11-17]). The case of two components, p and ¢, is of great importance, The
four well-known integrable hierarchies of two components are associated with the folllowing
spectral matrices:

A A2 A A A Av A
v=|"?" | v= Pl Pl oo=|" ", (1.7)
q—X Ag —\2 Aqg —A Aq —Av

where pg + v2 = 1. The corresponding integrable hierarchies are called the Ablowitz-Kaup-
Newell-Segur hierarchy [5], the Kaup-Newell hierarchy [18], the Wadati-Konno-Ichikawa hier-
archy [19] and the Heisenberg hierarchy [20], respectively.

This paper aims to present integrable Hamiltonian hierarchies of six components by apply-
ing the zero curvature formulation. We use the trace identity to furnish Hamiltonian formula-
tions for the resulting hierarchies. Two illustrative examples are six-component integrable cou-
pled nonlinear Schrodinger equations and six-component integrable coupled modified Korteweg-

de Vries equations. The final section is devoted to the conclusion and some concluding remarks.
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2 An Integrable Hierarchy with Six Potentials

To construct integrable equations by the zero curvature equation, we begin with a matrix

spectral problem of the form:

Apip2p3pr O
q1 0 O 0 0 P1
0000
—ig, = Up = U(u, o, U= | " P (2.1)
g3 0 0 0 0 p3

q10000p1

| 0 a1 g2 93 1 —A |

where X is the spectral parameter as usual, and v is the six-dimensional vector of potentials:

u = 'LL((E,t) = (p17p27p37 q1, 492, QS)T' (22)

This spectral problem can not be reduced from the matrix Ablowitz-Kaup-Newell-Segur spectral
problem (see, e.g., [21]). Tt is determined by a Maple symbolic computation process.
In order to compute an associated integrable hierarchy, we first solve the stationary zero

curvature equation (1.3) by assuming

a b1 bg b3 bl 0
(&) 0 d1 d2 0 bl
cg—dy 0 ds—dy b
Wo— 2 1 3 102 Z )\_SW[S], (2.3)
cg —dy —d3 0 —dy b $>0

C1 0 d1 d2 0 bl

0 C1 Cy C3 C1 —a

with
alsl ol piT Bl Bl g

Ao dt a0 Bl
S —dt o dft —di) ol
Sl —dyt —dft o —dit by
Ao dt alt oo Bl

i 0 c[f] 0[28] 0[35] c[f] —als]

wlsl =

which is determined, again based on symbolic computations. It is direct to see that the corre-
sponding stationary zero curvature equation leads to the initial conditions:

O =l = P 9 0, Y Y 0, =0, (25)

and the recursion relations:
b[ls+1] _ _1bg-57]x -|—p1a[5] + p2d[15] +p3d[25],
ot = bl + poaldl — 2pydl + pydl, (2.6)
b5+ = —ib, + paal) — 2p1dy’ — pady),
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[8+1] [ ] 4 qral® — 2d[S] 3d[S]
[s+1] [ ] I+ goal! + 2q1d[ s _ qug}’ (2.7)
A0 T 4 o+ 20+ gl
d[le] =i(q b[8+ ] . b[6+ ] T C[8+ ] ~ poc [S+1])
d[s+1] ( b[s+1] b[ls—H] o C[s+ ] — s C[S+1]) (28)
d;:” = 1(q2b§f+” — ng[;ﬂ] + po c[SJr I, c[SH])
and
af“l =i(—2¢ b[8+1] — g b[3+1] . b[s+1] + 2plc[s+1] +pzc[ 1] T ps C[9+1})
= — (20165, + gabs) + gsbls] 4 21l 4 pack] 4 pac), (2.9)
where s > 0. To get the uniqueness of Laurent series solutions, we set the initial values,
a =1, d” = a? = 4" =0, (2.10)
and take the constant of integration as zero,
a[s]|u:0 = 0, d[ls]|u:0 = d[;]lu:o = dgs]‘u:() = 0, S Z 1. (2.11)

Consequently, we can uniquely determine that

bgl] DP1, b[ ] = p2, b[ ] = P3,
| D
=4dq1, C5° =(q2, C3° = (3,
a gl = gl — o gl g,
2 . . 2 .
b[ ] = _lpl x5 b[ ] = _1p2 x5 bg] = _lp3,LE7
[2] _ (2] _ 2 _ .
lql X9 C2 1Q2 x> 63 lq3,.’E7
2 2
d[l] = —p1g2 + D21, d[z] = —p1g3 + P3¢, d;[g] = —p2g3 + P32,
a?l = —2p1g1 — p2ge — p3gs;
plBl — _ _ 9920, — 9 2 2
1 Plze — 201q1 — 2p1(P2G2 + P3q3) + (P53 + p3)aq1,
3
b[g] = —pozz + 2P3q2 — Ap1p2qi — 2p2p3qs — (3 — P3)qe,
3
b5 = —ps e + 20203 — Ap1p3ar — 2papsaz + (03 — p3)as,
3
A = — 1 ee — 20107 — 2o — 2psqras + p1(dE + @3),
[ D o + 2P20% — 4p101G2 — 2P30203 — P2 (@ — ¢2),
[ V500 + 20307 — Ap11gs — 2p2gaqs + ps(aE — 43),
d[13] = —i(p1g2,c — P201,2c — P1,2G2 + P2,21),
3 .
d[z] = —i(p1g3,2 — P3q1,2 — P1,243 + P3,2q1),
3
d;[g] = —i(p2¢3,2 — P392,c — D223 + P3.242),
aPl = —i(2p1q10 — 2p1001 + D202w — P2.2G2 F P3G32 — D3.2G3);
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and

b = i(p1,saw + 6P1P1201 + 3D1P2,002 + 3P1P3.005
—3p2p2.2q1 — 3P3P3.2q1 + 3P1,2P2G2 + 3P1,2P3G3),

b5 = i(po,nwe + 6p1p2,2@r — 6p1P10Go + 6p1 Do
+3pap2,2q2 + 3p2p3.2q3 + 3P2,.2P393 — 3P3P3.2G2),

b£4] = 1(p3,222 + 6P1P3,2q1 — 6P1P1,243 + 6P1,2D3¢1
—3p2p2,2q3 + 3P2P3,2q2 + 3P2,2P392 + 3P3D3.443),

4 .
6[1] = —i(q1,002 + 6P101¢1,2 — 3P14292,2 — 3P143G3,»

+3p2q1,2G2 + 3p29192,2 + 3P3¢1.293 + 3P3¢1¢3.2),

4 .
0[2] = —i(q2,000 — 6P201q1,2 + 6P1G1G2,2 + 6141242
+3p2¢2q2,2 — 3P24343,2 + 3P39243,2 + 3P3G2,2q3),

4 .
Cg] = —i(¢3,002 + 60101432 + 6P1¢1,2q3 — 6P3¢1G1 2

+3p2¢243,0 + 3P2G2,243 — 3P392G2,2 + 3P3G343,2),

1 1
d = 6(p1ay + P22 + 5P343)(P1g2 = P2a1) + Prawz — P2aay

—P2q1,22 + P192,22 — P1,292,2 T P2,291 2,

1 1
d[24] =6(p1q1 + 5P2q2 + 5?3%)(?1(13 = P3¢1) + Pleads — P3aal

—P3q1,22 T P193,22 — P1,293,2 T P3,291 2,

1 1
d?] =6(p1q1 + 5P2q2 + 51?3%)(172(13 = P3G2) + P2,2203 — P3,22q2

—P392,zx + P243,xx — P2,2493,x + P3,292,x,

3 3

ol =324 — g3 — i§)pd — 5 (2aF — 43 + @)pd — 5 (207 + 43 — @)}

+ 12p1 (p2q2 + P3a3) @1 + 6p2p3G2q3 + 2p1G1 20 + 212,001

+ P2Q2,22 + P2,2292 + P393,20 + P3,2293 — 2p1,:cq1,;c — DP2,292,2 — P3,293,x-

Based on the structure of the spatial spectral matrix U, we can determine that the temporal
matrix spectral problems can be taken as

—igy = Vg = VI(u,N)g, VIT=w), =3 xwl=l r >0, (2.12)
s=0

which are the other parts of Lax pairs of matrix spectral problems. The resulting compatibility
conditions of the spatial and temporal matrix spectral problems in (2.1) and (2.12), namely,

the zero curvature equations in (1.5), yield a six-component integrable hierarchy:

uy, = KM = (@l il aplr ) et el e T s g (2.13)

)

or more concretely,

. 1 . 1 . 1

pre, =00 pay = b5 pay, = bl -0 2.14
_ ] 4] L[] r=u (2.14)

qit,. = 1 y 42,t, = —1Cq y 43,t, = —1C3 )
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To illustrate the hierarchy, we work out the first two nonlinear examples. The first gives a
system of integrable coupled nonlinear Schrédinger equations:
1,6, = P1ae + 20701 + 2p1(P2g2 + P3g3) — (D3 + P31,
P26, = P2wx — 2P142 + 4P1D2G1 + 2pap3qs + (P3 — P3)ge, (2.15)
iD3,1, = D3,we — 20143 + 413y + 2p2p3ge — (03 — p3)as,
and
iq1,6, = =100 — 2165 — 2P20192 — 2p3q1g3 + p1(g3 + 43),
iG2,6, = —G2,20 + 2247 — 4P191G2 — 2p3d2q3 — P2(43 — 43),
ig3,6, = —G3,20 + 234} — 4P11G3 — 2p2qags + p3(43 — 63);

and the seond presents a system of integrable coupled modified Korteweg-de Vries equations:

(2.16)

Plits = —Plaze — 0P1P1,2q1 — 3P1P2,2G2 — 3P1P3,243
+3p2p2,2q1 + 3P3P3,291 — 3P1,2P2G2 — 3P1,2P3G3,
D2,t; = —P2,zzz — 6P1P2.2q1 + 6p1P1,2q2 — 6p1 P21

—3p2p2,xq2 — 3P2P3,293 — 3P2,2P393 + 3P3P3,242; 247
D3,t5 = —P3,zze — OP1P3,2q1 + 6P1P1,293 — 61 «P3q1
+3p2p2,2q3 — 3P2P3,292 — 3D2,2P3q2 — 3P3D3,243;
and
Qs = —q1aze — 0P10191,2 + 3P1G292,2 + 3P193G3.2
—3p2q1,292 — 3p2G192,2 — 3391293 — 3P39193,2
G2,ts = —G2,zzz T 6P2q141,2 — 6P1G1G2,2 — 6P1G1,2G2 (2.18)

—3p2G292,2 + 3P29393,2 — 3P3G2G3,2 — 3P3G2,243,
43,t3 = —G3,zzzx — 0P1¢193,2 — 6P141,293 + 6p3¢1q1,2

—3D2G2q3,x — 3P2q2,293 + 3P3G2G2,c — 3P3G3G3 z-
They are different from the counterparts associated with the AKNS standard matrix spectral
problems (see, e.g., [22]), and provide novel representatives of integrable coupled nonlinear

Schrédinger equations and integrable coupled modified Korteweg-de Vries equations.

3 Hamiltonian Formulation

To establish a Hamiltonian formulation for the integrable hierarchy (2.14), we apply the
trace identity (1.6) to the matrix spatial spectral problem (2.1). By using the solution W
defined by (2.3), we can directly compute that

0 oUu

U
tI‘(Wa) = 2&, tI‘(W%) = 2(261,62,03,2b1,b2,b3)T,

and therefore, we have
0 _, 0
@/&dﬂ?z)\ ’Ya)\’y(ch,CQ,C;g,2b1,b2,b3)T.

A check of the case with s = 2 leads to v = 0, and consequently, we obtain

1)
O qqlsl — (26[1s+1},c[2s+1],c[35+1],2b[1s+1]’ b[28+1]7bg8+1])T

> N
= 520, (31)
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where the Hamiltonian functionals are defined by

1 G 0 3.2
S = — > . .
ol — = [ da, s (32
This allows us to furnish the Hamiltonian formulation for the integrable hierarchy (2.14):
[ 10 0]
0 010
gHI 00 i
wp, = KW = g0y , >0, (3.3)
ou - 0 o0
0 —-i 0 0
| 0 0 —i ]

where J is a Hamiltonian operator and the Hamiltonian functionals #!") are given by (3.2).
The resulting Hamiltonian formulation gives a relation S = J %‘ from a conserved functional

‘H to a symmetry S. The commutativity of these symmetries:
[, Kl = Kl () [K2)) — K2l () [K 1] = 0, 51,80 >0, (3.4)
is a consequence of a Lax operator algebra:
[Vl visel] = visl ) [rlel]) — il ) k) 4 visl visel] =0, 5,8, >0, (3.5)

which can be proved directly (see [23] for details). It further follows from the Hamiltonian

formulation that the conserved functionals also commute:

SHI) s ls]
[s1] qyls2ln . = >
{HPEH H2Y /( 5 ) J 5 dz =0, s1,s2 >0, (3.6)

under the Poisson bracket associated with the Hamiltonian operator .J. Based on a combination
of the Hamiltonian operator J and a recursion operator ® [24], generated from K [s+1] = o Ks],

a bi-Hamiltonian formulation [4] can also be furnished for the integrable hierarchy (2.14).

4 Integrable Hierarchies with Higher-order Spectral Matrices

Fix an arbitrary natural number n. Let us take a generalization of the matrix spatial

spectral problem (2.1):

Alpipapspr---pr| 0
@ D1
q2 p2
. q3 D2
—ig, = Ug, U = 0 ' ey
@ D1
@ D1
0 s g q | —A
V2o @ d (n45)x (n+5)
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Assume that a Laurent series solution to the stationary zero curvature equation (1.3) reads

a by by b3 by --- by O
ct 0 dy da 0 -+ 0 b
ca—dy 0 ds—dy---—di by
cg —dy —d3 0 —dg -+ —d2 b3

W= =Y AWl
C1 0 d1 d2 o --- 0 bl §
C1 0 dl dg 0o --- 0 bl
|0 1 e 3 o -1 —a (net5)x (n45)
with ) )
R R
Ao gt dd oo o0 Bl
a0 aft i —dl bl
i —all —dih o —di) . —dlT ol
whl=1 s fs] (s )
Ao dt gt o o0 b
Ao gt dd oo o0 Bl
OGRS R R B
| 0 g ¢ ¢ g cy at® | (nh5) x (n5)

where s > 0. Consequently, we can have

b1,z = —i(pra + padi + p3da — Ab1),
bax = —i[p2a — (n + 1)p1d1 + pads — Aba], (4.2)
b » = —i[psa — (n + 1)p1da — pads — Abs],

Cl,x = i(ChCl — qody — g3da — Aep),
C2,2 = i[q2a + (n + 1)q1d1 — q3dz — )\02], (43)
c3.e = ilgza+ (n+ 1)qids + q2d3 — Acs),

di = i(q1ba — gab1 + p1ca — paca),
d2 o = 1(q1bs — q3b1 + p1cs — psc), (4.4)
d3 o = 1(q2bs — q3ba + pacs — psca),
and
ag = i[—(n+ 1)q1b1 — g2ba — g3bs + (n+ 1)pic1 + paca + p3cs)
= - A"+ 111z + g2bay + qsbs e + (0 + 1)picie + paco s + pacs o] (4.5)
A direct computation shows that
)
- /adx = )F”i)ﬂ((n + ].)Cl, Ca,C3, (TL + ].)bl, bQ, bg)T. (46)
ou oA
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Therefore, we obtain the Hamiltonian formulation for those associated integrable equations:

T T T T T T 6 [T]
wp, = K = 1 plr 1) jplr+1] i+t ol e+ ?u r>0, (A7)
where
100
0 0 i0
0 O0i [r+2]
J = — ,HM:_/“Jrldx,rzo. (4.8)
—37i 00 r
0 —-i0 0
i 0 0 —i i

If we take the initial values in (2.10) and zero constants of integration, then we can compute
the first two nonlinear examples in those generalized hierarchies depending on values of n. The
first system is the integrable coupled nonlinear Schrodinger equations:

ip1,t, = Prae + (0 + Dpiqr + 2p1p2ge + 2p1psgs — (P3 + p3)ar,
ip1,t; = P2e — (n+ 1)pTg2 + 2(n + )p1paar + 2pap3gs + (3 — p3)ae, (4.9)
P3¢, = P32z — (N4 1)pigs + 2(n + 1)p1psqr + 2p2psqz — (P53 — p3)as,
and
1,4, = —Q1,00 — (N + 1)p1a} — 2p2q142 — 2p3q143 + P1(03 + 43).
92,0, = =222 + (N + 1)p2gi — 2(n+ 1)p1a1g2 — 2p3g2q3 — p2(43 — 43), (4.10)
1g3,, = —3,00 + (n + Dp3gi — 2(n+ 1)p1a1gs — 2p2q2q3 + p3(a3 — 43);

and the second system, the integrable coupled modified Korteweg-de Vries equations:

Pits = —Plaze — 3(n+ 1)p1p1,2q1 — 3p1p2,292 — 3P1P3,23
+3p2p2.2q1 + 3P3P3,2q1 — 3P1,2P2G2 — 3P1,2P3G3,

P2ty = —DP2axe — 3(n+ 1)p1p2,2q1 — 3(n+ 1)p1p1,2g2 — 3(n + 1)p1ap2qa (4.11)
—3p2p2,xq2 — 3P2P3,293 — 3P2,2P343 + 3P3P3,242;

P3,ts = —P3.zee — 3(n 4+ 1)p1p3eq1 + 3(n 4 1)p1p1,2qs — 3(n + 1)p1ap3sqr
+3p2p2,2q3 — 3p2p3,292 — 3P2,2P3q2 — 3P3D3,293;

and

Aty = —Qzze — 3N+ 1)P101¢1,2 + 3P1G2¢2,2 + 3P1G3G3,0
—3p2q1,242 — 3P2¢192, — 3P341,293 — 3P3¢143,2,

@2t = —q2,222 + 30+ 1)p2giqr e — 3(n+ 1)p1gigee — 3(n + 1)p1¢1,2G2 (4.12)
—3p2G292,5 + 3P29393,0 — 3P39243,5 — 3P3G2,293;

@Bty = —Q3azz — 3N+ )P1¢1g3.c — 3(n+ 1)p1g1,2q3 + 3(n + 1)p3qiqi .z
—3p29243,5 — 3P292,293 + 3P3G292,5 — 3P34343,2-

Again, these provide two novel examples of integrable coupled equations.
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5 Concluding Remarks

Certain integrable hierarchies of Hamiltonian equations with six components have been
constructed from a kind of special matrix spectral problems, through the zero curvature formu-
lation. For each hierarchy, two important objects are a spatial spectral matrix and a Laurent
series solution to the corresponding stationary zero curvature equation. The resulting integrable
equations possess Hamiltonian formulations, derived from applications of the trace identity to
the underlying matrix spectral problems. This guarantees the existence of infinitely many
symmetries and conserved Hamiltonian functionals.

On one hand, generalized matrix spectral problems can further be made by taking more
copies of ps and ps as did for p;. On the other hand, one can also include more dependent
variables in matrix spectral problems (see, e.g., [25, 26]). These generalizations need enormous
effort, due to computational complexity.

It is definitely interesting to study soliton structures for the resulting integrable equations,
and one can try the Riemann-Hilbert technique [27], the Darboux transformation [28, 29] and
the determinant approach [30]. Various other types of interesting solutions (see, e.g., [31-
34]) can be computed by taking wave number reductions of soliton solutions. Another avenue
that needs further investigation is to make group reductions for the considered matrix spectral
problems. This will generate local and nonlocal reduced integrable equations (see, e.g., [22, 35]

and [36-38], respectively).

Conflict of Interest The author declares no conflict of interest.
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