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1 Introduction

The zero curvature equation is a nonlinear partial differential equation that describes the

compatibility conditions for a pair of linear differential equations, which arises in the theory of

integrable equations and has important applications in mathematical physics [1]. It allows for

the construction of infinitely many symmetries and conserved quantities for certain nonlinear

equations, such as nonlinear Schrödinger equations and modified Korteweg-de Vries eqautions.

This leads to the integrability of these equations and allows for the explicit construction of their

solutions.

To generate integrable equations by the zero curvature equation, it is crucial to formulate

an appropriate matrix spatial spectral problem. As usal, let u and λ denote a q-dimensional

potential: u = (u1, · · · , uq)T and the spectral parameter, respectively. First, use a loop algebra

g̃ to form a spatial spectral matrix:

U = U(u, λ) = e0(λ) + u1e1(λ) + · · ·+ uqeq(λ), (1.1)
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where e1, · · · , eq are linear independent elements in g̃ and e0 is required to be a pseudo-regular

element in g̃:

Ker ade0 ⊕ Im ade0 = g̃, and Ker ade0 is commutative. (1.2)

This characterizes the solvability of the stationary zero curvature equation:

Wx = i[U,W ], (1.3)

among Laurent series

W =
∑
s≥0

λ−sW [s].

Second, consider the spatial and temporal matrix spectral problems:

−iφx = Uφ, −iφt = V [r]φ, r ≥ 0, (1.4)

where V [r] is detemined by using the Laurent series solution W . Subsequently, an integrable

hierarchy is presented through a hierarchy of zero curvature equations:

Ut − V [r]
x + i[U, V r]] = 0, r ≥ 0, (1.5)

which are the compatibility conditions of the matrix spectral problems in (1.4). Hamiltonian

formulations of the resulting integrable equations could be established by applying the trace

identity [2, 3]:

δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ

∂

∂λ
λγtr

(
W
∂U

∂u

)
, (1.6)

where δ
δu is the variational derivative with respect to u and γ is the constant, independent of

the spectral parameter. Usually, a bi-Hamiltonian formulation can also be furnished, which

directly yields the Liouville integrability of the presented integrable equations [4].

Many integrable Hamiltonian hierarchies are computed through the above zero curvature

formulation, based on the special linear algebras (see, e.g., [5–10]) and the special orthogonal

algebras (see, e.g., [11–17]). The case of two components, p and q, is of great importance, The

four well-known integrable hierarchies of two components are associated with the folllowing

spectral matrices:

U =

λ p

q −λ

 , U =

λ2 λp

λq −λ2

 , U =

 λ λp

λq −λ

 , U =

λv λp

λq −λv

 , (1.7)

where pq + v2 = 1. The corresponding integrable hierarchies are called the Ablowitz-Kaup-

Newell-Segur hierarchy [5], the Kaup-Newell hierarchy [18], the Wadati-Konno-Ichikawa hier-

archy [19] and the Heisenberg hierarchy [20], respectively.

This paper aims to present integrable Hamiltonian hierarchies of six components by apply-

ing the zero curvature formulation. We use the trace identity to furnish Hamiltonian formula-

tions for the resulting hierarchies. Two illustrative examples are six-component integrable cou-

pled nonlinear Schrödinger equations and six-component integrable coupled modified Korteweg-

de Vries equations. The final section is devoted to the conclusion and some concluding remarks.
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2 An Integrable Hierarchy with Six Potentials

To construct integrable equations by the zero curvature equation, we begin with a matrix

spectral problem of the form:

−iφx = Uφ = U(u, λ)φ, U =



λ p1 p2 p3 p1 0

q1 0 0 0 0 p1

q2 0 0 0 0 p2

q3 0 0 0 0 p3

q1 0 0 0 0 p1

0 q1 q2 q3 q1 −λ


, (2.1)

where λ is the spectral parameter as usual, and u is the six-dimensional vector of potentials:

u = u(x, t) = (p1, p2, p3, q1, q2, q3)T . (2.2)

This spectral problem can not be reduced from the matrix Ablowitz-Kaup-Newell-Segur spectral

problem (see, e.g., [21]). It is determined by a Maple symbolic computation process.

In order to compute an associated integrable hierarchy, we first solve the stationary zero

curvature equation (1.3) by assuming

W =



a b1 b2 b3 b1 0

c1 0 d1 d2 0 b1

c2 −d1 0 d3 −d1 b2

c3 −d2 −d3 0 −d2 b3

c1 0 d1 d2 0 b1

0 c1 c2 c3 c1 −a


=
∑
s≥0

λ−sW [s], (2.3)

with

W [s] =



a[s] b
[s]
1 b

[s]
2 b

[s]
3 b

[s]
1 0

c
[s]
1 0 d

[s]
1 d

[s]
2 0 b

[s]
1

c
[s]
2 −d

[s]
1 0 d

[s]
3 −d

[s]
1 b

[s]
2

c
[s]
3 −d

[s]
2 −d

[s]
3 0 −d[s]2 b

[s]
3

c
[s]
1 0 d

[s]
1 d

[s]
2 0 b

[s]
1

0 c
[s]
1 c

[s]
2 c

[s]
3 c

[s]
1 −a[s]


, s ≥ 0, (2.4)

which is determined, again based on symbolic computations. It is direct to see that the corre-

sponding stationary zero curvature equation leads to the initial conditions:

b
[0]
1 = b

[0]
2 = b

[0]
3 = c

[0]
1 = c

[0]
2 = c

[0]
3 = 0, d

[0]
1,x = d

[0]
2,x = d

[0]
3,x = 0, a[0]x = 0, (2.5)

and the recursion relations:
b
[s+1]
1 = −ib

[s]
1,x + p1a

[s] + p2d
[s]
1 + p3d

[s]
2 ,

b
[s+1]
2 = −ib

[s]
2,x + p2a

[s] − 2p1d
[s]
1 + p3d

[s]
3 ,

b
[s+1]
3 = −ib

[s]
3,x + p3a

[s] − 2p1d
[s]
2 − p2d

[s]
3 ,

(2.6)
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c
[s+1]
1 = ic

[s]
1,x + q1a

[s] − q2d[s]1 − q3d
[s]
2 ,

c
[s+1]
2 = ic

[s]
2,x + q2a

[s] + 2q1d
[s]
1 − q3d

[s]
3 ,

c
[s+1]
3 = ic

[s]
3,x + q3a

[s] + 2q1d
[s]
2 + q2d

[s]
3 ,

(2.7)


d
[s+1]
1,x = i(q1b

[s+1]
2 − q2b[s+1]

1 + p1c
[s+1]
2 − p2c[s+1]

1 ),

d
[s+1]
2,x = i(q1b

[s+1]
3 − q3b[s+1]

1 + p1c
[s+1]
3 − p3c[s+1]

1 ),

d
[s+1]
3,x = i(q2b

[s+1]
3 − q3b[s+1]

2 + p2c
[s+1]
3 − p3c[s+1]

2 ),

(2.8)

and

a[s+1]
x = i(−2q1b

[s+1]
1 − q2b[s+1]

2 − q3b[s+1]
3 + 2p1c

[s+1]
1 + p2c

[s+1]
2 + p3c

[s+1]
3 )

= −(2q1b
[s]
1,x + q2b

[s]
2,x + q3b

[s]
3,x + 2p1c

[s]
1,x + p2c

[s]
2,x + p3c

[s]
3,x), (2.9)

where s ≥ 0. To get the uniqueness of Laurent series solutions, we set the initial values,

a[0] = 1, d
[0]
1 = d

[0]
2 = d

[0]
3 = 0, (2.10)

and take the constant of integration as zero,

a[s]|u=0 = 0, d
[s]
1 |u=0 = d

[s]
2 |u=0 = d

[s]
3 |u=0 = 0, s ≥ 1. (2.11)

Consequently, we can uniquely determine that
b
[1]
1 = p1, b

[1]
2 = p2, b

[1]
3 = p3,

c
[1]
1 = q1, c

[1]
2 = q2, c

[1]
3 = q3,

d
[1]
1 = d

[1]
2 = d

[1]
3 = 0, a[1] = 0;

b
[2]
1 = −ip1,x, b

[2]
2 = −ip2,x, b

[2]
3 = −ip3,x,

c
[2]
1 = iq1,x, c

[2]
2 = iq2,x, c

[2]
3 = iq3,x,

d
[2]
1 = −p1q2 + p2q1, d

[2]
2 = −p1q3 + p3q1, d

[2]
3 = −p2q3 + p3q2,

a[2] = −2p1q1 − p2q2 − p3q3;
b
[3]
1 = −p1,xx − 2p21q1 − 2p1(p2q2 + p3q3) + (p22 + p23)q1,

b
[3]
2 = −p2,xx + 2p21q2 − 4p1p2q1 − 2p2p3q3 − (p22 − p23)q2,

b
[3]
3 = −p3,xx + 2p21q3 − 4p1p3q1 − 2p2p3q2 + (p22 − p23)q3,
c
[3]
1 = −q1,xx − 2p1q

2
1 − 2p2q1q2 − 2p3q1q3 + p1(q22 + q23),

c
[3]
2 = −q2,xx + 2p2q

2
1 − 4p1q1q2 − 2p3q2q3 − p2(q22 − q23),

c
[3]
3 = −q3,xx + 2p3q

2
1 − 4p1q1q3 − 2p2q2q3 + p3(q22 − q23),

d
[3]
1 = −i(p1q2,x − p2q1,x − p1,xq2 + p2,xq1),

d
[3]
2 = −i(p1q3,x − p3q1,x − p1,xq3 + p3,xq1),

d
[3]
3 = −i(p2q3,x − p3q2,x − p2,xq3 + p3,xq2),

a[3] = −i(2p1q1,x − 2p1,xq1 + p2q2,x − p2,xq2 + p3q3,x − p3,xq3);
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and 

b
[4]
1 = i(p1,xxx + 6p1p1,xq1 + 3p1p2,xq2 + 3p1p3,xq3

−3p2p2,xq1 − 3p3p3,xq1 + 3p1,xp2q2 + 3p1,xp3q3),

b
[4]
2 = i(p2,xxx + 6p1p2,xq1 − 6p1p1,xq2 + 6p1,xp2q1

+3p2p2,xq2 + 3p2p3,xq3 + 3p2,xp3q3 − 3p3p3,xq2),

b
[4]
3 = i(p3,xxx + 6p1p3,xq1 − 6p1p1,xq3 + 6p1,xp3q1

−3p2p2,xq3 + 3p2p3,xq2 + 3p2,xp3q2 + 3p3p3,xq3),

c
[4]
1 = −i(q1,xxx + 6p1q1q1,x − 3p1q2q2,x − 3p1q3q3,x

+3p2q1,xq2 + 3p2q1q2,x + 3p3q1,xq3 + 3p3q1q3,x),

c
[4]
2 = −i(q2,xxx − 6p2q1q1,x + 6p1q1q2,x + 6p1q1,xq2

+3p2q2q2,x − 3p2q3q3,x + 3p3q2q3,x + 3p3q2,xq3),

c
[4]
3 = −i(q3,xxx + 6p1q1q3,x + 6p1q1,xq3 − 6p3q1q1,x

+3p2q2q3,x + 3p2q2,xq3 − 3p3q2q2,x + 3p3q3q3,x),

d
[4]
1 = 6(p1q1 +

1

2
p2q2 +

1

2
p3q3)(p1q2 − p2q1) + p1,xxq2 − p2,xxq1

−p2q1,xx + p1q2,xx − p1,xq2,x + p2,xq1,x,

d
[4]
2 = 6(p1q1 +

1

2
p2q2 +

1

2
p3q3)(p1q3 − p3q1) + p1,xxq3 − p3,xxq1

−p3q1,xx + p1q3,xx − p1,xq3,x + p3,xq1,x,

d
[4]
3 = 6(p1q1 +

1

2
p2q2 +

1

2
p3q3)(p2q3 − p3q2) + p2,xxq3 − p3,xxq2

−p3q2,xx + p2q3,xx − p2,xq3,x + p3,xq2,x,

a[4] = 3(2q21 − q22 − q23)p21 −
3

2
(2q21 − q22 + q23)p22 −

3

2
(2q21 + q22 − q23)p23

+ 12p1(p2q2 + p3q3)q1 + 6p2p3q2q3 + 2p1q1,xx + 2p1,x,xq1

+ p2q2,xx + p2,xxq2 + p3q3,xx + p3,xxq3 − 2p1,xq1,x − p2,xq2,x − p3,xq3,x.

Based on the structure of the spatial spectral matrix U , we can determine that the temporal

matrix spectral problems can be taken as

−iφt = V [r]φ = V [r](u, λ)φ, V [r] = (λrW )+ =
r∑
s=0

λsW [r−s], r ≥ 0, (2.12)

which are the other parts of Lax pairs of matrix spectral problems. The resulting compatibility

conditions of the spatial and temporal matrix spectral problems in (2.1) and (2.12), namely,

the zero curvature equations in (1.5), yield a six-component integrable hierarchy:

utr = K [r] = (ib
[r+1]
1 , ib

[r+1]
2 , ib

[r+1]
3 ,−ic

[r+1]
1 ,−ic

[r+1]
2 ,−ic

[r+1]
3 )T , r ≥ 0, (2.13)

or more concretely,p1,tr = ib
[r+1]
1 , p2,tr = ib

[r+1]
2 , p3,tr = ib

[r+1]
3 ,

q1,tr = −ic
[r+1]
1 , q2,tr = −ic

[r+1]
2 , q3,tr = −ic

[r+1]
3 ,

r ≥ 0. (2.14)
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To illustrate the hierarchy, we work out the first two nonlinear examples. The first gives a

system of integrable coupled nonlinear Schrödinger equations:
ip1,t2 = p1,xx + 2p21q1 + 2p1(p2q2 + p3q3)− (p22 + p23)q1,

ip2,t2 = p2,xx − 2p21q2 + 4p1p2q1 + 2p2p3q3 + (p22 − p23)q2,

ip3,t2 = p3,xx − 2p21q3 + 4p1p3q1 + 2p2p3q2 − (p22 − p23)q3,

(2.15)

and 
iq1,t2 = −q1,xx − 2p1q

2
1 − 2p2q1q2 − 2p3q1q3 + p1(q22 + q23),

iq2,t2 = −q2,xx + 2p2q
2
1 − 4p1q1q2 − 2p3q2q3 − p2(q22 − q23),

iq3,t2 = −q3,xx + 2p3q
2
1 − 4p1q1q3 − 2p2q2q3 + p3(q22 − q23);

(2.16)

and the seond presents a system of integrable coupled modified Korteweg-de Vries equations:

p1,t3 = −p1,xxx − 6p1p1,xq1 − 3p1p2,xq2 − 3p1p3,xq3

+3p2p2,xq1 + 3p3p3,xq1 − 3p1,xp2q2 − 3p1,xp3q3,

p2,t3 = −p2,xxx − 6p1p2,xq1 + 6p1p1,xq2 − 6p1,xp2q1

−3p2p2,xq2 − 3p2p3,xq3 − 3p2,xp3q3 + 3p3p3,xq2,

p3,t3 = −p3,xxx − 6p1p3,xq1 + 6p1p1,xq3 − 6p1,xp3q1

+3p2p2,xq3 − 3p2p3,xq2 − 3p2,xp3q2 − 3p3p3,xq3,

(2.17)

and 

q1,t3 = −q1,xxx − 6p1q1q1,x + 3p1q2q2,x + 3p1q3q3,x

−3p2q1,xq2 − 3p2q1q2,x − 3p3q1,xq3 − 3p3q1q3,x,

q2,t3 = −q2,xxx + 6p2q1q1,x − 6p1q1q2,x − 6p1q1,xq2

−3p2q2q2,x + 3p2q3q3,x − 3p3q2q3,x − 3p3q2,xq3,

q3,t3 = −q3,xxx − 6p1q1q3,x − 6p1q1,xq3 + 6p3q1q1,x

−3p2q2q3,x − 3p2q2,xq3 + 3p3q2q2,x − 3p3q3q3,x.

(2.18)

They are different from the counterparts associated with the AKNS standard matrix spectral

problems (see, e.g., [22]), and provide novel representatives of integrable coupled nonlinear

Schrödinger equations and integrable coupled modified Korteweg-de Vries equations.

3 Hamiltonian Formulation

To establish a Hamiltonian formulation for the integrable hierarchy (2.14), we apply the

trace identity (1.6) to the matrix spatial spectral problem (2.1). By using the solution W

defined by (2.3), we can directly compute that

tr
(
W
∂U

∂λ

)
= 2a, tr

(
W
∂U

∂u

)
= 2(2c1, c2, c3, 2b1, b2, b3)T ,

and therefore, we have

δ

δu

∫
adx = λ−γ

∂

∂λ
λγ(2c1, c2, c3, 2b1, b2, b3)T .

A check of the case with s = 2 leads to γ = 0, and consequently, we obtain

δ

δu
H[s] = (2c

[s+1]
1 , c

[s+1]
2 , c

[s+1]
3 , 2b

[s+1]
1 , b

[s+1]
2 , b

[s+1]
3 )T , s ≥ 0, (3.1)
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where the Hamiltonian functionals are defined by

H[s] = −
∫
a[s+2]

s+ 1
dx, s ≥ 0. (3.2)

This allows us to furnish the Hamiltonian formulation for the integrable hierarchy (2.14):

utr = K [r] = J
δH[r]

δu
, J =



0

1
2 i 0 0

0 i 0

0 0 i

− 1
2 i 0 0

0 − i 0

0 0 −i

0


, r ≥ 0, (3.3)

where J is a Hamiltonian operator and the Hamiltonian functionals H[r] are given by (3.2).

The resulting Hamiltonian formulation gives a relation S = J δHδu from a conserved functional

H to a symmetry S. The commutativity of these symmetries:

[[K [s1],K [s2]]] = K [s1]′(u)[K [s2]]−K [s2]′(u)[K [s1]] = 0, s1, s2 ≥ 0, (3.4)

is a consequence of a Lax operator algebra:

[[V [s1], V [s2]]] = V [s1]′(u)[K [s2]]− V [s2]′(u)[K [s1]] + [V [s1], V [s2]] = 0, s1, s2 ≥ 0, (3.5)

which can be proved directly (see [23] for details). It further follows from the Hamiltonian

formulation that the conserved functionals also commute:

{H[s1],H[s2]}J =

∫ (δH[s1]

δu

)T
J
δH[s2]

δu
dx = 0, s1, s2 ≥ 0, (3.6)

under the Poisson bracket associated with the Hamiltonian operator J . Based on a combination

of the Hamiltonian operator J and a recursion operator Φ [24], generated from K [s+1] = ΦK [s],

a bi-Hamiltonian formulation [4] can also be furnished for the integrable hierarchy (2.14).

4 Integrable Hierarchies with Higher-order Spectral Matrices

Fix an arbitrary natural number n. Let us take a generalization of the matrix spatial

spectral problem (2.1):

−iφx = Uφ, U =



λ p1 p2 p3 p1 · · · p1 0

q1

q2

q3

q1
...

q1

0

p1

p2

p2

p1
...

p1

0 q1 q2 q3 q1 · · · q1 −λ


(n+5)×(n+5)

. (4.1)
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Assume that a Laurent series solution to the stationary zero curvature equation (1.3) reads

W =



a b1 b2 b3 b1 · · · b1 0

c1 0 d1 d2 0 · · · 0 b1

c2 −d1 0 d3 −d1 · · · −d1 b2

c3 −d2 −d3 0 −d2 · · · −d2 b3

c1 0 d1 d2 0 · · · 0 b1
...

...
...

...
...

. . .
...

...

c1 0 d1 d2 0 · · · 0 b1

0 c1 c2 c3 c1 · · · c1 −a


(n+5)×(n+5)

=
∑
s≥0

λ−sW [s],

with

W [s] =



a[s] b
[s]
1 b

[s]
2 b

[s]
3 b

[s]
1 · · · b[s]1 0

c
[s]
1 0 d

[s]
1 d

[s]
2 0 · · · 0 b

[s]
1

c
[s]
2 −d

[s]
1 0 d

[s]
3 −d

[s]
1 · · · −d

[s]
1 b

[s]
2

c
[s]
3 −d

[s]
2 −d

[s]
3 0 −d[s]2 · · · −d

[s]
2 b

[s]
3

c
[s]
1 0 d

[s]
1 d

[s]
2 0 · · · 0 b

[s]
1

...
...

...
...

...
. . .

...
...

c
[s]
1 0 d

[s]
1 d

[s]
2 0 · · · 0 b

[s]
1

0 c
[s]
1 c

[s]
2 c

[s]
3 c

[s]
1 · · · c[s]1 −a[s]


(n+5)×(n+5)

,

where s ≥ 0. Consequently, we can have
b1,x = −i(p1a+ p2d1 + p3d2 − λb1),

b2,x = −i[p2a− (n+ 1)p1d1 + p3d3 − λb2],

b3,x = −i[p3a− (n+ 1)p1d2 − p2d3 − λb3],

(4.2)


c1,x = i(q1a− q2d1 − q3d2 − λc1),

c2,x = i[q2a+ (n+ 1)q1d1 − q3d3 − λc2],

c3,x = i[q3a+ (n+ 1)q1d2 + q2d3 − λc3],

(4.3)


d1,x = i(q1b2 − q2b1 + p1c2 − p2c1),

d2,x = i(q1b3 − q3b1 + p1c3 − p3c1),

d3,x = i(q2b3 − q3b2 + p2c3 − p3c2),

(4.4)

and

ax = i[−(n+ 1)q1b1 − q2b2 − q3b3 + (n+ 1)p1c1 + p2c2 + p3c3)

= −λ−1[(n+ 1)q1b1,x + q2b2,x + q3b3,x + (n+ 1)p1c1,x + p2c2,x + p3c3,x]. (4.5)

A direct computation shows that

δ

δu

∫
adx = λ−γ

∂

∂λ
λγ((n+ 1)c1, c2, c3, (n+ 1)b1, b2, b3)T . (4.6)
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Therefore, we obtain the Hamiltonian formulation for those associated integrable equations:

utr = K [r] = (ib
[r+1]
1 , ib

[r+1]
2 , ib

[r+1]
3 ,−ic

[r+1]
1 ,−ic

[r+1]
2 ,−ic

[r+1]
3 )T = J

δH[r]

δu
, r ≥ 0, (4.7)

where

J =



0

1
n+1 i 0 0

0 i 0

0 0 i

− 1
n+1 i 0 0

0 −i 0

0 0 −i

0


, H[r] = −

∫
a[r+2]

r + 1
dx, r ≥ 0. (4.8)

If we take the initial values in (2.10) and zero constants of integration, then we can compute

the first two nonlinear examples in those generalized hierarchies depending on values of n. The

first system is the integrable coupled nonlinear Schrödinger equations:
ip1,t2 = p1,xx + (n+ 1)p21q1 + 2p1p2q2 + 2p1p3q3 − (p22 + p23)q1,

ip1,t2 = p2,xx − (n+ 1)p21q2 + 2(n+ 1)p1p2q1 + 2p2p3q3 + (p22 − p23)q2,

ip3,t2 = p3,xx − (n+ 1)p21q3 + 2(n+ 1)p1p3q1 + 2p2p3q2 − (p22 − p23)q3,

(4.9)

and 
iq1,t2 = −q1,xx − (n+ 1)p1q

2
1 − 2p2q1q2 − 2p3q1q3 + p1(q22 + q23),

iq2,t2 = −q2,xx + (n+ 1)p2q
2
1 − 2(n+ 1)p1q1q2 − 2p3q2q3 − p2(q22 − q23),

iq3,t2 = −q3,xx + (n+ 1)p3q
2
1 − 2(n+ 1)p1q1q3 − 2p2q2q3 + p3(q22 − q23);

(4.10)

and the second system, the integrable coupled modified Korteweg-de Vries equations:

p1,t3 = −p1,xxx − 3(n+ 1)p1p1,xq1 − 3p1p2,xq2 − 3p1p3,xq3

+3p2p2,xq1 + 3p3p3,xq1 − 3p1,xp2q2 − 3p1,xp3q3,

p2,t3 = −p2,xxx − 3(n+ 1)p1p2,xq1 − 3(n+ 1)p1p1,xq2 − 3(n+ 1)p1,xp2q1

−3p2p2,xq2 − 3p2p3,xq3 − 3p2,xp3q3 + 3p3p3,xq2,

p3,t3 = −p3,xxx − 3(n+ 1)p1p3,xq1 + 3(n+ 1)p1p1,xq3 − 3(n+ 1)p1,xp3q1

+3p2p2,xq3 − 3p2p3,xq2 − 3p2,xp3q2 − 3p3p3,xq3,

(4.11)

and 

q1,t3 = −q1,xxx − 3(n+ 1)p1q1q1,x + 3p1q2q2,x + 3p1q3q3,x

−3p2q1,xq2 − 3p2q1q2,x − 3p3q1,xq3 − 3p3q1q3,x,

q2,t3 = −q2,xxx + 3(n+ 1)p2q1q1,x − 3(n+ 1)p1q1q2,x − 3(n+ 1)p1q1,xq2

−3p2q2q2,x + 3p2q3q3,x − 3p3q2q3,x − 3p3q2,xq3,

q3,t3 = −q3,xxx − 3(n+ 1)p1q1q3,x − 3(n+ 1)p1q1,xq3 + 3(n+ 1)p3q1q1,x

−3p2q2q3,x − 3p2q2,xq3 + 3p3q2q2,x − 3p3q3q3,x.

(4.12)

Again, these provide two novel examples of integrable coupled equations.
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5 Concluding Remarks

Certain integrable hierarchies of Hamiltonian equations with six components have been

constructed from a kind of special matrix spectral problems, through the zero curvature formu-

lation. For each hierarchy, two important objects are a spatial spectral matrix and a Laurent

series solution to the corresponding stationary zero curvature equation. The resulting integrable

equations possess Hamiltonian formulations, derived from applications of the trace identity to

the underlying matrix spectral problems. This guarantees the existence of infinitely many

symmetries and conserved Hamiltonian functionals.

On one hand, generalized matrix spectral problems can further be made by taking more

copies of p2 and p3 as did for p1. On the other hand, one can also include more dependent

variables in matrix spectral problems (see, e.g., [25, 26]). These generalizations need enormous

effort, due to computational complexity.

It is definitely interesting to study soliton structures for the resulting integrable equations,

and one can try the Riemann-Hilbert technique [27], the Darboux transformation [28, 29] and

the determinant approach [30]. Various other types of interesting solutions (see, e.g., [31–

34]) can be computed by taking wave number reductions of soliton solutions. Another avenue

that needs further investigation is to make group reductions for the considered matrix spectral

problems. This will generate local and nonlocal reduced integrable equations (see, e.g., [22, 35]

and [36–38], respectively).
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