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Abstract The paper aims at establishing Riemann-Hilbert problems and presenting soliton
solutions for nonlocal reverse-time nonlinear Schrodinger (NLS) hierarchies associated with
higher-order matrix spectral problems. The Sokhotski-Plemelj formula is used to transform
the Riemann-Hilbert problems into Gelfand-Levitan-Marchenko type integral equations. A
new formulation of solutions to special Riemann-Hilbert problems with the identity jump
matrix, corresponding to the reflectionless inverse scattering transforms, is proposed and
applied to construction of soliton solutions to each system in the considered nonlocal reverse-

time NLS hierarchies.
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Introduction

Nonlocal integrable equations are presented and analyzed by nonlocal reductions [1], and

their inverse scattering transforms were established under zero or nonzero boundary conditions

[2-4]. There exist five nonlocal integrable nonlinear Schrodinger (NLS) equations and modified

Korteweg-de Vries (mKdV) equations. Soliton solutions to nonlocal NLS equations were gener-

ated from special Riemann-Hilbert problems with the identity jump matrix, corresponding to

the reflectionless inverse scattering transforms, [5, 6]. Moreover, the Hirota bilinear method [7]

and Darboux transformations [8-10] were applied to construction of exact solutions to nonlocal

NLS and higher-order NLS equations. A few other nonlocal integrable equations [11-13] and

multicomponent generalizations [14-16] were also proposed.
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Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020).
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It is known that for integrable equations, the Riemann-Hilbert problems are generated
from the associated matrix spectral problems and they are powerful in establishing inverse
scattering transforms and presenting soliton solutions [17, 18]. Many integrable equations
have been investigated through analyzing the corresponding Riemann-Hilbert problems. In
this paper, we would like to construct a class of general nonlocal reverse-time NLS hierarchies
of multicomponent equations, analyze their Riemann-Hilbert problems, and present soliton
solutions through a new formulation of solutions to special Riemann-Hilbert problems with the
identity jump matrix.

We will focus on the multicomponent AKNS spectral problem and its soliton hierarchy. For
ease of reference, let us recall the multicomponent AKNS hierarchy. Let n € N be arbitrary, I,,,
the identity matrix of size n, ay, as € R, arbitrary but different constants. The multicomponent
AKNS matrix spectral problem reads (see, e.g., [19]):

atA P

—i¢m = U(b = U(u, )\)¢, U= (Ujl)(n+1)><(n+1) = N (1.1)
q aoAl,

where X is a spectral parameter and u is a potential of dimension 2n:

u=(p,q")", p=(p1,p2, ,Pn)s 4= (01,02, ,qn)" (1.2)

When p; =¢; =0, 2 <j <n, (1.1) reduces to the standard AKNS spectral problem [20]. We
assume [19] that a solution W to W, = i[U, W] is given by

ab s alml plm]
W= = WA, Wi = Wiy (u) = ,m >0, (1.3)
cd = clml qlml
where bl™ | ¢l™ and dl"™ denoted by
b[m] = (b[lm]abgm]u e 7b£;n])7 C[m] = (C[lm]uc[2m]7 e 7C£zm])T7 d[m] = (d/gln])ana m 2 07 (14)
are defined recursively by
bl =0, =0, al =0, dl% =0, (1.5a)
1
pim ) — — (—iplm] — palml 1 gImlp) m >0, (1.5b)
@
1
U = Z (el 4 g™ — glmlg), m > 0, (1.5¢)
@
af™ = i(pc™ —plmg), " = i(gpl™ — cl™Ip), m > 1, (1.5d)
where o = @y — 3. Upon fixing the initial values:
al® = g1, d% = ps1,, (1.6)

(1, B2 € R being arbitrary but different constants, and by taking zero constants of integration
in (1.5d), i.e.,
Winlu=o =0, m >1, (1.7)

the recursive relations in (1.5) determine a series of matrices W,, m > 1, uniquely. In partic-

ular, we have

1 ﬁ 1 ﬁ 1
by = Pis G = PR alh =0, dj = 0; (1.8a)
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2 B . 2 B, B 2] B
bg-] = ——5ipja, cg.] = —3i0jq, al? = — P4 dg-z] = P (1.8b)
3 6 3 6
bg] = _ﬁ[pj,mz + 2pqu]7 Cg] = _5[(]]’,11 + 2]9(](]3‘]7
(1.8¢)
al?l = —ﬁi(pq — pq), di = —ﬁi(]?l 4 — P18j,z);
043 x x4)y “ji 043 sTHL] 7T/
aq B,
bg' = Jl[Pj,mm + 3papj,. + 3p1qu]’
1 B.
Cg- ] = _Jl[q_j,mmw + 3quJ,LE + 3pq$qj]7
; (1.8d)
a[4] = ¥[3(pq)2 + Pz — Pzqa +pme]u

4 B
dﬂ-l] = A [3p1pag; + preadj — Pladje + Pidjzal;

where 3 = 31 — 32 and 1 < j,1 < n. A recursion relation for b[™ and ¢[™ is found to be

clm+1] clml
=y ,m>1, (1.9)
plm+1T plmIT
where VU is a 2n X 2n matrix operator
@+ g0 )+ g0 —q07'q" — (g0 "'¢")"
g i=1 n
pTaflp_’_(pTaflp)T _(a_’_zpjaflqj)ln_pTafqu
j=1

Upon introducing the following temporal matrix spectral problems

—ige = Vo = VI, Ng, VI = (Vi) inyxniny = D WA=, r >0, (1.10)
=0

the compatibility conditions of (1.1) and (1.10),
U, — v iu vl =0, r>o, (1.11)

generate the so-called multicomponent AKNS soliton hierarchy:

pT ablr+1uT
Uy = =K,=1i =1iJG,, r >0, (1.12)
—aclr ]
t
where
0 al, clr+1]
J = , G = , r>0. (1.13)
—al, 0 plr+1T

One of the nonlinear members (r = 2) in the hierarchy (1.12) is the standard NLS equations:

8. g .
pe= =51 (poa + 2pqp), @ = 7@z + 29pg). (1.14)

The multicomponent AKNS soliton hierarchy (1.12) possesses a Hamiltonian structure, which
can be established by applying the trace identity [21], or more generally, the variational identity
[22]: )
5Hr+1

’U,t:KT:J 611, T>1

piy )

(1.15)
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where

=——/a1a’”+1 +azzd[’”+” dz, m > 1. (1.16)

The operator ® = ¥ provides a recursion operator for the whole hierarchy (1.12). For each r >
1, adjoint symmetry constraints (or a little bit loosely, symmetry constraints) transform the rth
multicomponent AKNS equations into two commuting finite-dimensional Liouville integrable
Hamiltonian systems, which generate involutive solutions [19, 23].

The rest of the paper is structured as follows. In Section 2, we make a kind of nonlocal
reductions to generate nonlocal reverse-time multicomponent NLS hierarchies. One of our

examples of nonlocal coupled equations is as follows:
ipl,t(xa t) = pl,m,w(xu t) + [Clpl (‘Tu t)pl (‘Tu _t) + 02192(557 t)pQ(xa _t)]pl (:I;a t)u
ip2.1(2,t) = p2.oo(w,t) + [c1p1(z, £)p1 (7, —1) + capa(, t)p2(z, —t)|p2(w, 1),

where ¢; and ¢y are arbitrary nonzero complex constants. In Section 3, we formulate Riemann-

(1.17)

Hilbert problems from the associated matrix spectral problems. In Section 4, we analyze inverse
scattering transforms via the presented Riemann-Hilbert problems. In Section 5, we construct
soliton solutions through a new formulation of solutions to special Riemann-Hilbert problems
with the identity jump matrix, namely, from the reflectionless inverse scattering transforms. In
the final section, we give a conclusion and a few concluding remarks.

2 Nonlocal Reverse-time NLS Hierarchies

Motivated by the classical local reductions [24], we consider a kind of nonlocal reductions

for the spectral matrix U:

Ul (z,—t,—=\) = =CU(x,t,\)C!, (2.1)
where
C= =3
D)
This means that
PT(z,—t) = —CP(z,t)C™! (2.2)

in which the potential matrix P is defined by

0
p=1" 7. (2.3)
q 0
Here and in what follows, T stands for the matrix transpose, and X is an invertible constant
symmetric matrix. For convenience, we also denote
M(z,t,\) = M (u(x,t), \),
MT(f(x,t, A)) (M(f(z,t, )", (2.4)
M=H(f(z,t,N) = (M(f(z,t,0))) 7"
for a matrix M depending on a function f.
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Equivalently, (2.2) yields
Q(‘Tu t) = _E_lpT(xa _t)' (25)

Under such a kind of potential reductions, the vector function ¢ in W can be taken as
c(x,t,\) = =271 (z, —t, =), (2.6)
and all those reduction relations guarantee that
a(z, —t,=X\) = —a(z,t,\), d*(z,—t,—\) = =Xd(z,t, )2}, (2.7)
where a and d are the other two entries of W. Therefore, we have
(al™) (@, 1) = (=1 el 1),
(BT (2, —t) = (1) Scl™ (2, 1), (2.8)
(dr)T (2, —t) = (=)™ 8d™ (@, )27,
where m > 1. This implies that for all m > 1, we have
(VYT (g —t, —\) = V™ (2, ¢, YO 7L, (2.9)
VI2m] being defined as in (1.10).

Now, based on (2.1) and (2.9), it is direct to see that the nonlocal reductions in (2.2) do
not raise any additional conditions on the compatibility of the previous spatial and temporal
matrix spectral problems, when r = 2m. Therefore, under the nonlocal reductions in (2.1), the
half hierarchy of the equations in the AKNS integrable hierarchy (1.12) with » = 2m reduces

to the following nonlocal reverse-time NLS hierarchies
Pt = Xm = KZm,1|q:72*1pT(z,7t)7 m > 07 (210)

where K, = (K, KI,)T = i(ab™D, —ac+UT)T p > 0. Those hierarchies are associated

the matrix spectral problems:

—ige =U¢ =U(u, A)o,

m >0, (2.11)
—igy = VEmg = VEm(u, N)g,
in which the Lax pairs read
U=+ P, VE™ = \2"Q 4 Q,,,, (2.12)
with A = diag(aq, ael,), Q = diag(f1, B21,), and
Qam = Z Azm-t Lol : (2.13)
1 g

Obviously, each system in (2.10) possesses an infinite hierarchy of commuting symmetries
{X}?2, and an infinite hierarchy of commuting conserved functionals
{f{QkJrl|q:72*1pT(z,7t)};o:O'
Moreover, if p(z,t) is a solution to any member in (2.10), so are p*(x, —t) and p(—=z,t). Hence,
(2.10) is PT-symmetric.
When m = 1, we obtain the multicomponent nonlocal reverse-time NLS equations [6]:

ipe(2,0) = 25 e 1) — 200,659 (&, ~1)p(a ), 2.14)
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in which ¥ is an arbitrary invertible constant symmetric matrix. Further, when n = 1, we can

obtain two well-known scalar examples:
ips(2,1) = pea(z,t) + 20p% (z, t)p(x, —t), (2.15)

where 0 = +1, and when n = 2, we can get a system consisting of two nonlocal reverse-time

NLS equations:

ip1¢(x,t) = preq(2,t) + [capr(z, t)p1(z, —t) + copa(x, t)p2(z, —t)|p1 (2, 1), (2.16)
ipa,i(z,t) = p2,ae(x,t) + [c1p1(x, t)p1 (z, —t) + copa (@, t)p2(x, —1t)|p2 (2, t),

where ¢; and ¢ are arbitrary nonzero complex constants.

3 Riemann-Hilbert Problems

Let ¢ be determined by (2.5). In what follows, we formulate a class of Riemann-Hilbert
problems associated with the matrix spectral problems of the nonlocal reverse-time NLS hier-
archies, which will be the basis for inverse scattering transforms and soliton solutions.

3.1 Property of eigenfunctions

Let us assume that all the potentials sufficiently rapidly vanish when x — 400 or t — 4o0.
Upon setting P = iP and Qaymm = iQaym,, the equivalent pair of matrix spectral problems to
(2.11) reads

Ve = 1IA[A, Y] + Py, (3.1)
Yy = INQ, U] + Qam. (3.2)

Applying a generalized Liouville’s formula, we can obtain (detv), = 0, due to tr(P) =
tr(Q2m) = 0. The adjoint equation of the z-part of (2.11) and the adjoint equation of (3.1) are
determined by

ig. = U, (3.3)
i, = A, A] + ¢ P. (3.4)
There are links among the eigenfunctions ¢, ¥ and the adjoint eigenfunctions b, 1):
W= ¢e—iAm—i)\2mQt7 q3= o1, zﬁ =L (3.5)
Let t()\) be a matrix eigenfunction of the spatial spectral problem (3.1) associated with an
eigenvalue A\. Then, Cy~!(z,t,)\) is a matrix adjoint eigenfunction associated with the same
eigenvalue A. Moreover, under the nonlocal reductions in (2.2), we can compute that
NIA, ¢, —t, =N)] + Pz, —t)y(z, —t, —A)} C
N (@, —t, =A), Al + o7 (z, —t, = A\) P (2, —1)}C
z,—t,—N)C, Al + ¢" (z,—t,—\)C[-C ' PT(z,—t)C]
z,—t, =N C, Al + ¢T (2, —t, = \)CP(x, 1),

i (z, —t, = \)C], = i{i

(_
i{i(—

—_ o~

and so we find that
1/;($, ta A) = wT(Ia _tv _)\)C (36)
@ Springer
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gives another matrix adjoint eigenfunction associated with the same original eigenvalue A, i.e.,
T (2, —t, —\)C solves the adjoint spectral problem (3.4).

Therefore, upon noting the asymptotic behaviours for ¢, the uniqueness of solutions deter-
mines that

VT (2, —t, —N\) = CY~(a, t,\)C !, (3.7)

if p — I,41 when z or t — oo or — oco. It then follows that if A is an eigenvalue of (3.1) (or
(3.4)), then —\ will be another eigenvalue of (3.1) (or (3.4)), and the property (3.7) holds.

3.2 Riemann-Hilbert problems

We now formulate a class of associated Riemann-Hilbert problems with the variable z. In

order to express the computation below, let us also assume that
a=a1—ax <0, =0 —02<0. (38)

In the scattering problem, we first introduce the two matrix eigenfunctions ¢* (x, \) of (3.1)

with the asymptotic conditions
Y — I,41, when 2 — 400, (3.9)
respectively. It follows from (det ), = 0 that det )" = 1 for all z € R. Since both
ot =yTE, E =M (3.10)
solve (2.11), they must be linearly dependent, and as a consequence, we have
vE=4¢TES(N), SOA) = (sj1)nt1)x(nr1), AER, (3.11)

where S(A) is traditionally called the scattering matrix. We point out that det S(A\) = 1 because
of det p* = 1.

Through the method of variation in parameters, we point out that we can turn the z-part
of (2.11) into the following Volterra integral equations for 1% [17]:

B (A2) = L + / M@ Py ) (A, )0 dy, (3.12)
P Ong) = Lyt — / M=) Py )t (A, )P gy, (3.13)

where the asymptotic conditions (3.9) have been imposed. Now, the theory of Volterra integral
equations can show that the eigenfunctions ¢* could exist and allow analytical continuations
off the real line A € R provided that the integrals on the right hand sides converge. It can
be seen that the first column of 9~ and the last n columns of 1" are analytical in the upper
half-plane C* and continuous in the closed upper half-plane C*, and that the last n columns
of ¥~ and the first column of ¥+ are analytical in the lower half-plane C~ and continuous in
the closed lower half-plane C~.

Then, on one hand, to determine two generalized matrix Jost solutions (a kind of combi-
nations of matrix Jost solutions), T and T, which are analytic in C* and C~ (the upper
and lower half-planes) and continuous in C* and C~ (the closed upper and lower half-planes),

respectively, we state
¥F = (WY Y, (3.14)
@ Springer
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where 1/in denotes the j-th column of #*. Then we can take the generalized matrix Jost solution
Tt as

T+ = T+($, )‘) = (w;aq/};7 e a¢;§+1) = 1/}7H1 + 1/)+H27 (315)
which is analytic in A € C* and continuous in A € C*. Here we denote H; = diag(1,0,---,0)
———
and Hy = diag(0,1,---,1).
——

On the other hang, to determine the other generalized matrix Jost solution 7'~ , we construct
the analytic counterpart of T in the lower half-plane C~ from the adjoint matrix spectral
problems. It is known that the inverse matrices ¢+ = ()~ and PF = ()~ solve those
two adjoint equations, respectively. Therefore, similarly, upon stating 1/3* as

J)i = (12):‘:115 1/;:b27 e ,1/;:|:,n+1)T, (316)

where 1/~)i*j denotes the j-th row of 1/~)i, we can take the generalized matrix Jost solution 7'~

as the adjoint matrix solution of (3.4), i.e.,
T~ = (1/;_71712)-"_727 e ,1/;+,71+1)T = H11/~)_ + H21Z)+ = Hl(‘/’_)_l + H2(¢+)_15 (317)

which is analytic for A € C~ and continuous for A € C~.
Let us now construct two unimodular generalized matrix Jost solutions from 7T and T~
Based on det)* = 1 and the scattering relation (3.11) between )+ and ¢, we can derive

det TH(x,\) = s11(N), det T~ (2, A) = 811(N), (3.18)
where STH(A) = (S(A) ™ = (51) (n41) x (n+-1)- 1t then follows that

A) 0O _ s11(A) O
lim T+ (z,)) = s11(A) AeCH lim T (2, )\) = $11(\)

,AeC.  (3.19)

Therefore, two unimodular generalized matrix Jost solutions can be taken as

A0 _
G =T+ | TV O ee
0o I,
1 (3.20)
571\ 0 i
@) 1w = | ), aec)
0o I,

which formulate the associated matrix Riemann-Hilbert problems on the real line for the non-
local reverse-space multicomponent NLS equations (2.14). Those required matrix Riemann-
Hilbert problems read:

Gt (z,)\) = G™ (2, \)Go(x, ), X €R, (3.21)

where by (3.11), the jump matrix Gy is given by

TN 0| gy [ 0

S11 1
Go(z,\) =F E~. (3.22)
0o I, 0o I,

In the above jump matrix G, the matrix S(\) has the factorization:

S(\) = (Hy + HyS(\)(Hy + S™HN\) Hy), (3.23)
@ Springer
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which can be explicitly computed as follows:

1 312 813 S1,n+1
S921 1 0 0
SO = Gi)minxmin = | s 0 1 . 1 |. (3.24)
0
_Sn+171 O e O 1 ]

Again from the Volterra integral equations (3.12) and (3.13), we can obtain the canonical

normalization conditions:
G*(x,\) — I,41, when A € C* — oo, (3.25)

for the presented Riemann-Hilbert problems on the real line.

4 Inverse Scattering Transforms

We analyze inverse scattering transforms for the nonlocal reverse-time NLS hierarchies
(2.10) through the associated Riemann-Hilbert problems established above.
4.1 Time evolution of the scattering data

To complete direct scattering transforms, we compute the derivative of (3.11) with time ¢
to obtain
U E =g BSON + 0t ES (M),

and take use of the temporal matrix problems that ¢+ satisfy:
v =N, F] + Qv

It then follows that the scattering matrix S needs to satisfy an evolution law:

Si(A) = iX2"[Q, S(\)]. (4.1)
This yields the time evolution of the time-dependent scattering coefficients:
812 = 812(07)\)€i6’\2mt, s13 = s13(0, /\)eiﬁ’\mta oy St = S1n41(0, /\)eiﬁ’\mt,
so1 = s21(0, \)e N sy = s1.(0, e AT sy = sp40,1(0, M)e TN,

but all other scattering coefficients do not depend on the time variable ¢.

4.2 Relations of the reflection coefficients

The jump matrix G carries basic scattering data from the scattering matrix S()). By the

property of eigenfunctions in (3.7), one has
(T+)T(Ia _ta _)\) = OTi(:E, ta A)Oilv (42)

or

(G (z, —t, =) = C(G™) Mz, t,\)C 7, (4.3)
Therefore, the jump matrix G satisfies the following involution property
G¥(x,—t,—\) = CGo(z,t,\)C . (4.4)
This exhibits relations between the reflection coefficients.
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4.3 Gelfand-Levitan-Marchenko type equations

To obtain Gelfand-Levitan-Marchenko type integral equations for the generalized matrix

Jost solutions, we transform the associated Riemann-Hilbert problems in (3.21) into

+_ T = - = _
{G G~ =G v, v=Co—In1, on R, 45)

Gi—>In+1 as A € C* — .

Let G(\) = G*()\) if A € C*. Suppose that G has simple poles off the real line R: {piHiey,
and thus there is no spectral singularity, where R is an arbitrary natural number. Introduce

R

- G, _
Gi)\:Gi/\—E: I AeCHt,

2 ) S (4.6)

G(\) =GE(N), A e,

where G is the residue of G at A = yj, ie., G; = )\lim (A — p)G(X). Then, we obtain
—
Gt—G =Gt -G~ =G v, onR,
Gt - I, as A e CF — .

By applying the Sokhotski-Plemelj formula [25], we get the solutions

~ L[ (Gv)(E)
G\ =1, d¢. 4.8

() +1+27Ti/_oo E—-A ¢ (48)
Then, taking the limit as A — p; generates the required Gelfand-Levitan-Marchenko type

integral equations:

R

. 1 oo — 1 oo —

i -rieY Gy L [ OO LT E B 1cicn @)
Ty 2m) e & 2mi ) oo € —

where
F = lim [\ = m)GO) = Gil/(A — ).

A—p
These equations are used to determine solutions to the associated Riemann-Hilbert problems,
and hence, the generalized matrix Jost solutions. The general theory of existence and uniqueness
of solutions is yet to be developed. In the following section, we will present a formulation of
solutions to specific Riemann-Hilbert problems with the identity jump matrix, which can be

applied to nonlocal integrable equations.

4.4 Recovery of the potential

In order to recover the potential matrix P from the generalized matrix Jost solutions, we
make an asymptotic expansion
€
22
Plugging this into the matrix spectral problem (3.1) and comparing O(1) terms engenders

1
G (2, t,\) = Iy + XGf(:v,t) +0(=), A — oc. (4.10)

P = lim A[G*(\),A] = —[A, GY). (4.11)

A—00

One needs to check an involution property for G :
(GHT(z,~t) = CGT (z,t)C~ . (4.12)
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Then, solutions to the nonlocal reverse-time NLS hierarchies (2.10) will be determined by
pj=—o(G{ )11, 1< j<m, (4.13)

where G = ((GY)j1) (n+1)x (n+1)-
Those constitute an inverse scattering procedure from the scattering matrix S(A) through
the jump matrix Go(\) to the potential matrix P. The final resulting potential P determines

solutions to the nonlocal reverse-time NLS hierarchies (2.10).

5 Soliton Solutions

Let N € N be arbitrary. Suppose that det T (x, \) = s11 has zeros {\; € C, 1 < k < N},
and det T~ (x, A) = 511 has zeros {5\;C € C, 1 <k < N}. We also assume that all these zeros
are geometrically simple. Thus, each ker T+ (\x) contains only a single basis column vector,
denoted by vg; and each ker T*(;\k), a single basis row vector, denoted by ¢. This way, one
has

T (Mo =0, 0T~ (M) =0, 1 <k < N. (5.1)

Soliton solutions are associated with Gy = I,,4+1 in the Riemann-Hilbert problems, achieved
under zero reflection coefficients: s;; = §1;, =0, 2 <4 <n+ 1. Solutions to this kind of special
Riemann-Hilbert problems can be formulated in the case of local integrable equations (see, e.g.,
[17, 26, 27]). However, in the case of nonlocal integrable equations, we often do not have the
condition

Ml <E<SNIN{AN<ES N} =0, (5.2)

and thus we need a new formulation of solutions to the above special Riemann-Hilbert problems.
A direct check shows that the solutions can be presented as follows:

vk (M) gty

N
,(G)TMN) =T + kgl Ty (5.3)

N 1 ~

Vg M kLUl

G =T = 3 &7;
— Al

k=1
where M = (my)Nx N is a square matrix whose entries are determined by

U iE N # A,
i =4 N — Ak 1<kI<N, (5.4)

0, if N =\,

for which an additional orthogonal condition is required:
e =0, if \y =\, 1<k, <N. (5.5)

which ensures that

(G)TT NG = Lnga- (5.6)

To satisfy the involution property (4.12), we take zeros of det T ()\) and det T~ (\) as
follows:
M€EC, Mpg=-M\€C, 1<k<N. (5.7)

Then, ker T (\;) and ker T~ (), 1 < k < N, are determined by

vg(z,t) = vz, t, Ag) = eM’“AHMimQtwk, 1<k<N, (5.8)
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op(2,t) = O, t, k) = of (z, —t, =\ )C = wkTe_i;\kAm_i;\imQtC, 1<k<N, (5.9)
respectively. Here wg, 1 < k < N, are arbitrary constant column vectors but need to satisfy
w] Cwy =0, if \y + X\, =0, 1 <k,l<N, (5.10)

which follows from the orthogonal condition (5.5).

Finally, we see under (5.7), (5.8), (5.9) and (5.10) that the solutions to the special Riemann-
Hilbert problems, determined by (5.3) and (5.4), satisfy (4.3), which implies that G satisfies
(4.12). Therefore, N-soliton solutions to the nonlocal reverse-time NLS hierarchies (2.10) are
given by

N
pi=a Y ver(M b, 1<) <n, (5.11)
k=1
where M is determined by (5.4), and
vk = (Vk 1, Vk2s » Vking1)? and O = (0.1, On2, > Okns1)
are defined by (5.8) and (5.9), respectively.

When m = N = 1, upon denoting ¥ = diag(vy1, - ,vn), (5.11) presents the following

one-soliton solution to the nonlocal reverse-time NLS equations (2.14):

20w 1w 4175
2 i —Bx2 2 2 . ER
w? 1€1(o~\m BATE) 1 (wl,ﬂl 4+t wl,n+1%)e i(aXi1z+BA%t)

)

pj(z,t) = 1<j<n, (5.12)
where w; = (wi1,w19, -, w1 1)’ € C*1and Ay € C are arbitrary, and 71, ,v, € C
are arbitrary but nonzero. This solution is analytic on the real line of x at any time when the
factor w%leio"\lw + (winl + -4 w%nﬂvn)e_io‘)‘” of the denominator is either positive or
negative, but it has time-independent singularity otherwise and so it has analytic solutions if
the problem is restricted to an interval which excludes that singularity point.

6 Concluding Remarks

We considered a class of higher-order degenerate AKNS spatial matrix spectral problems,
generated the corresponding nonlocal reverse-time multicomponent NLS hierarchies, and an-
alyzed their inverse scattering transforms and soliton solutions. The analysis is based on
Riemann-Hilbert problems generated from the associated matrix spectral problems. The
Sokhotski-Plemelj formula was used to transform the Riemann-Hilbert problems into Gelfand-
Levitan-Marchenko type integrable equations to determine unimodular generalized matrix Jost
solutions, and soliton solutions of the multicomponent nonlocal reverse-time NLS hierarchies
were constructed from the reflectionless inverse scattering transforms.

We remark that it would be interesting to see how to construct different kinds of exact solu-
tions in nonlinear dispersive waves, for example, lump solutions [28-30], Rossby wave solutions
[31], solitonless solutions [32-34], algebro-geometric solutions [35, 36] and dromions [37, 38],
through the Riemann-Hilbert technique. Any connection from Darboux transformations to ex-
plicit solutions to special Riemann-Hilbert problems with the identity jump matrix should be
important. It is also expected that we could have a clear picture about soliton solutions to
local and nonlocal integrable counterparts, such as integrable couplings, super hierarchies and

fractional analogous equations, from a perspective of the Riemann-Hilbert technique.
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