
Acta Mathematica Scientia, 2019, 39B(2): 509–523

https://doi.org/10.1007/s10473-019-0215-5

c©Wuhan Institute Physics and Mathematics,

Chinese Academy of Sciences, 2019
http://actams.wipm.ac.cn

RIEMANN-HILBERT PROBLEMS OF A

SIX-COMPONENT MKDV SYSTEM

AND ITS SOLITON SOLUTIONS∗

Wen-Xiu MA (ê©D)

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;

Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia;

Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA;

College of Mathematics and Systems Science, Shandong University of Science and Technology,

Qingdao 266590, China;

College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China;

International Institute for Symmetry Analysis and Mathematical Modelling, Department of

Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X2046,

Mmabatho 2735, South Africa

E-mail : mawx@cas.usf.edu

Abstract Based on a 4 × 4 matrix spectral problem, an AKNS soliton hierarchy with six

potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert

problems is formulated for a six-component system of mKdV equations in the resulting AKNS

hierarchy. Soliton solutions to the considered system of coupled mKdV equations are com-

puted, through a reduced Riemann-Hilbert problem where an identity jump matrix is taken.
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1 Introduction

It is known that the Riemann-Hilbert approach is one of the most powerful techniques to

generate integrable equations and their soliton solutions [1]. The approach starts with a kind

of matrix spectral problems, which possess bounded eigenfunctions analytically extendable to

the upper or lower half-plane. It is closely connected with the inverse scattering method in

soliton theory [2]. The normalization conditions at infinity on the real axis in constructing the

scattering coefficients is used in solving the corresponding Riemann-Hilbert problems [1]. Upon

taking the jump matrix to be the identity matrix, reduced Riemann-Hilbert problems generate
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soliton solutions, whose special limits can lead to rational solutions and periodic solutions.

Applications were made for a few integrable equations, including the multiple wave interaction

equations [1], the Harry Dym eqution [3], the generalized Sasa-Satsuma equation [4] and the

general coupled nonlinear Schrödinger equations [5].

We follow the standard procedure suited for Riemann-Hilbert problems, where the unit

imaginary number i is consistently used. We, therefore, start with a pair of matrix spectral

problems of the following form:

−iφx = Uφ, −iφt = V φ, U = A(λ) + P (u, λ), V = B(λ) +Q(u, λ),

where λ is a spectral parameter, u is a potential, φ is an n× n matrix eigenfunction, A,B are

constant commuting n×n matrices, and P,Q are trace-less n×n matrices. Their compatibility

condition is the zero curvature equation

Ut − Vx + i[U, V ] = 0,

where [·, ·] is the matrix commutator. To formulate a Riemann-Hilbert problem for this zero

curvature equation, we adopt the following pair of equivalent matrix spectral problems

ψx = i[A(λ), ψ] + P̌ (u, λ)ψ, ψt = i[B(λ), ψ] + Q̌(u, λ)ψ,

where ψ is an n× n matrix eigenfunction, P̌ = iP and Q̌ = iQ. The relation between φ and ψ

is

φ = ψEg, Eg = eiA(λ)x+iB(λ)t.

This provides us with a possibility to have two analytical matrix eigenfunctions with the asymp-

totic conditions

ψ± → In, when x, t → ±∞,

where In stands for the identity matrix of size n. Then we try to determine two analytical

related matrix functions P±(x, t, λ), which are analytical in the upper and lower half-planes

C± = {z ∈ C| ± Im(z) > 0} and continuous in the closed upper and lower half-planes C±
0 =

{z ∈ C| ± Im(z) ≥ 0}, respectively, to build a Riemann-Hilbert problem

G+(x, t, λ) = G−(x, t, λ)G(x, t, λ), λ ∈ R,

where

G+(x, t, λ) = P+(x, t, λ), λ ∈ C
+
0 , G

−(x, t, λ) = (P−)−1(x, t, λ), λ ∈ C
−
0 .

If we take the jump matrix G to be the identity matrix In, the corresponding Riemann-Hilbert

problem can be normally solved, and soliton solutions can be generated through observing

asymptotic behaviors of the matrix functions P± at infinity of λ. In this paper, we shall

present an application example by considering a six-component system of mKdV equations and

generate its soliton solutions by a special Riemann-Hilbert problem.

The rest of the paper is organized as follows. In Section 2, within the zero-curvature

formulation, we rederive the AKNS soliton hierarchy with six potentials and furnish its bi-

Hamiltonian structure, based on a new matrix spectral problem suited for the Riemann-Hilbert

theory. In Section 3, taking a system of coupled mKdV equations as an example, we analyze

analytical properties of matrix eigenfunctions for an equivalent spectral problem, and build

a kind of Riemann-Hilbert problems associated with the newly introduced spectral problem.
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In Section 4, we compute soliton solutions to the considered six-component system of coupled

mKdV equations from a specific Riemann-Hilbert problem on the real axis, in which the jump

matrix is taken as the identity matrix. In the last section, we give a summary of the results

and some discussions.

2 AKNS Soliton Hierarchy with Six Components

2.1 Zero Curvature Formulation

Let us first recall the zero curvature formulation to construct soliton hierarchies [6]. Let u

be a vector potential and λ, a spectral parameter. Choose a square spectral matrix U = U(u, λ)

from a given matrix loop algebra. Assume that

W = W (u, λ) =

∞
∑

k=0

Wkλ
−k =

∞
∑

k=0

Wk(u)λ−k (2.1)

solves the corresponding stationary zero curvature equation

Wx = i[U,W ]. (2.2)

Based on this solution W , we introduce a series of Lax matrices

V [r] = V [r](u, λ) = (λrW )+ + ∆r, r ≥ 0, (2.3)

where the subscript + denotes the operation of taking a polynomial part in λ, and ∆r, r ≥ 0,

are appropriate modification terms, and then generate a soliton hierarchy

ut = Kr(u) = Kr(x, t, u, ux, · · · ), r ≥ 0, (2.4)

from a series of zero curvature equations

Ut − V [r]
x + i[U, V [r]] = 0, r ≥ 0. (2.5)

The two matrices U and V [r] are called a Lax pair [7] of the r-th soliton equation in the hierarchy

(2.4). Obviously, the zero curvature equations in (2.5) are the compatibility conditions of the

spatial and temporal matrix spectral problems

−iφx = Uφ = U(u, λ)φ, −iφt = V [r]φ = V [r](u, λ)φ, r ≥ 0, (2.6)

where φ is the matrix eigenfunction.

To show the Liouville integrability of the soliton hierarchy (2.4), we normally furnish a

bi-Hamiltonian structure [8]

ut = Kr = J
δH̃r+1

δu
= M

δH̃r

δu
, r ≥ 1, (2.7)

where J and M form a Hamiltonian pair and δ
δu

denotes the variational derivative (see e.g.,

[9]). The Hamiltonian structures can be often achieved through the trace identity [6]

δ

δu

∫

tr(W
∂U

∂λ
)dx = λ−γ ∂

∂λ

[

λγtr(W
∂U

∂u
)
]

, γ = −
λ

2

d

dλ
ln |tr(W 2)|, (2.8)

or more generally, the variational identity [10]

δ

δu

∫

〈W,
∂U

∂λ
〉dx = λ−γ ∂

∂λ

[

λγ〈W,
∂U

∂u
〉
]

, γ = −
λ

2

d

dλ
ln |〈W,W 〉|, (2.9)
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where 〈·, ·〉 is a non-degenerate, symmetric and ad-invariant bilinear form on the underlying

matrix loop algebra [11]. The bi-Hamiltonian structure guarantees that there exist infinitely

many commuting Lie symmetries {Kn}
∞
n=0 and conserved quantities {H̃n}

∞
n=0:

[Kn1
,Kn2

] = K ′
n1

[Kn2
] −K ′

n2
[Kn1

] = 0,

{H̃n1
, H̃n2

}N =

∫

(δH̃n1

δu

)T

N
δH̃n2

δu
dx = 0,

where n1, n2 ≥ 0, N = J or M , and K ′ stands for the Gateaux derivative of K with respect to

u,

K ′(u)[S] =
∂

∂ε

∣

∣

∣

ε=0
K(u+ εS, ux + εSx, · · · ).

It is known that for an evolution equation with a vector potential u, H̃ =
∫

H dx is a

conserved functional iff δH̃
δu

is an adjoint symmetry [12], and thus, the Hamiltonian structures

links conserved functionals to adjoint symmetries and further symmetries.

When the underlying matrix loop algebra in the zero curvature formulation is simple, the

associated zero curvature equations engender classical soliton hierarchies [13]; when semisimple,

the associated zero curvature equations generate a collection of different soliton hierarchies; and

when non-semisimple, we get hierarchies of integrable couplings [14], which require extra care

in presenting soliton solutions.

2.2 AKNS Hierarchy with Six Components

Let us start with a 4 × 4 matrix spectral problem

−iφx = Uφ = U(u, λ)φ, U = (Ukl)4×4 =





















α1λ p1 p2 p3

q1 α2λ 0 0

q2 0 α2λ 0

q3 0 0 α2λ





















, (2.10)

where α1 and α2 are real constants, λ is a spectral parameter and u is a six-dimensional potential

u = (p, qT )T , p = (p1, p2, p3), q = (q1, q2, q3)
T . (2.11)

A special case of p2 = p3 = q2 = q3 = 0 transforms (2.10) into the AKNS spectral prob-

lem [15], and therefore it is called a six-component AKNS spectral problem. Since Λ =

diag(α1, α2, α2, α2) has a multiple eigenvalue, the spectral problem (2.10) is degenerate.

To derive the associated AKNS soliton hierarchy, we first solve the stationary zero curvature

equation (2.2) corresponding to (2.10). We suppose that a solution W is given by

W =





a b

c d



 , (2.12)

where a is a scalar, bT and c are three-dimensional columns, and d is a 3× 3 matrix. It is easy

to see that the stationary zero curvature equation (2.2) becomes

ax = i(pc− bq), bx = i(αλb + pd− ap), cx = i(−αλc+ qa− dq), dx = i(qb− cp), (2.13)
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where α = α1 − α2. We look for a formal series solution as

W =





a b

c d



 =

∞
∑

m=0

Wmλ
−m, Wm = Wm(u) =





a[m] b[m]

c[m] d[m]



 , m ≥ 0 (2.14)

with b[m], c[m] and d[m] being assumed to be

b[m] = (b
[m]
1 , b

[m]
2 , b

[m]
3 ), c[m] = (c

[m]
1 , c

[m]
2 , c

[m]
3 )T , d[m] = (d

[m]
kl )3×3, m ≥ 0. (2.15)

Then system (2.13) is equivalent to the following recursion relations

b[0] = 0, c[0] = 0, a[0]
x = 0, d[0]

x = 0, (2.16a)

b[m+1] =
1

α
(−ib[m]

x − pd[m] + a[m]p), m ≥ 0, (2.16b)

c[m+1] =
1

α
(ic[m]

x + qa[m] − d[m]q), m ≥ 0, (2.16c)

a[m]
x = i(pc[m] − b[m]q), d[m]

x = i(qb[m] − c[m]p), m ≥ 1. (2.16d)

Let us now choose the initial values as follows

a[0] = β1, d
[0] = β2I3, (2.17)

where β1, β2 are arbitrary real constants and I3 is the identity matrix of size 3, and take

constants of integration in (2.16d) to be zero, that is, require

Wm|u=0 = 0, m ≥ 1. (2.18)

Thus, with a[0] and d[0] given by (2.17), all matrices Wm, m ≥ 1, will be uniquely determined.

For example, a direct computation, based on (2.16), generates that

b
[1]
k =

β

α
pk, c

[1]
k =

β

α
qk, a

[1] = 0, d
[1]
kl = 0, (2.19a)

b
[2]
k = −

β

α2
ipk,x, c

[2]
k =

β

α2
iqk,x, a

[2] = −
β

α2

3
∑

l=1

plql, d
[2]
kl =

β

α2
plqk, (2.19b)

b
[3]
k = −

β

α3

[

pk,xx + 2

( 3
∑

l=1

plql

)

pk

]

, c
[3]
k = −

β

α3

[

qk,xx + 2

( 3
∑

l=1

plql

)

qk

]

, (2.19c)

a[3] = −
β

α3
i

3
∑

l=1

(plql,x − pl,xql), d
[3]
kl = −

β

α3
i(pl,xqk − plqk,x); (2.19d)

b
[4]
k =

β

α4
i

[

pk,xxx + 3

( 3
∑

l=1

plql

)

pk,x + 3

( 3
∑

l=1

pl,xql

)

pk

]

, (2.19e)

c
[4]
k = −

β

α4
i

[

qk,xxx + 3

( 3
∑

l=1

plql

)

qk,x + 3

( 3
∑

l=1

plql,x

)

qk

]

, (2.19f)

a[4] =
β

α4

[

3

( 3
∑

l=1

plql

)2

+
3

∑

l=1

(plql,xx − pl,xql,x + pl,xxql)

]

, (2.19g)

d
[4]
kl = −

β

α4

[

3pl

( 3
∑

l=1

plql

)

qk + pl,xxqk − pl,xqk,x + plqk,xx

]

, (2.19h)
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where β = β1−β2 and 1 ≤ k, l ≤ 3. Based on (2.16d), we can obtain, from (2.16b) and (2.16c),

a recursion relation for b[m] and c[m],






c[m+1]

b[m+1]T






= Ψ







c[m]

b[m]T






, m ≥ 1, (2.20)

where Ψ is a 6 × 6 matrix operator

Ψ =
i

α















(

∂ +
3

∑

k=1

qk∂
−1pk

)

I3 + q∂−1p −q∂−1qT − (q∂−1qT )T

pT∂−1p+ (pT ∂−1p)T −

(

∂ +
3

∑

k=1

pk∂
−1qk

)

I3 − pT∂−1qT















. (2.21)

To generate the AKNS soliton hierarchy with six components, we introduce, for all integers

r ≥ 0, the following Lax matrices

V [r] = V [r](u, λ) = (V
[r]

kl )4×4 = (λrW )+ =

r
∑

k=0

Wkλ
r−k, r ≥ 0, (2.22)

where the modification terms are taken as zero. The compatibility conditions of (2.6), i.e., the

zero curvature equations (2.5), lead to the AKNS soliton hierarchy with six components

ut =







pT

q







t

= Kr = i







αb[r+1]T

−αc[r+1]






, r ≥ 0. (2.23)

The first two nonlinear systems in the above soliton hierarchy (2.23) read

pk,t = −
β

α2
i

[

pk,xx + 2

( 3
∑

l=1

plql

)

pk

]

, 1 ≤ k ≤ 3, (2.24a)

qk,t =
β

α2
i

[

qk,xx + 2

( 3
∑

l=1

plql

)

qk

]

, 1 ≤ k ≤ 3, (2.24b)

and

pk,t = −
β

α3

[

pk,xxx + 3

( 3
∑

l=1

plql

)

pk,x + 3

( 3
∑

l=1

pl,xql

)

pk

]

, 1 ≤ k ≤ 3, (2.25a)

qk,t = −
β

α3

[

qk,xxx + 3

( 3
∑

l=1

plql

)

qk,x + 3

( 3
∑

l=1

plql,x

)

qk

]

, 1 ≤ k ≤ 3, (2.25b)

which are the six-component versions of the AKNS systems of coupled nonlinear Schrödinger

equations and coupled mKdV equations, respectively. Under a symmetric reduction, the six-

component AKNS systems (2.24) can be reduced to the Manokov system [16], for which a

decomposition into finite-dimensional integrable Hamiltonian systems was made in [17], whileas

the six-component AKNS systems (2.25) contain various systems of mKdV equations, for which

there exist different kinds of integrable decompositions under symmetry constraints (see e.g.,

[18, 19]).

The AKNS soliton hierarchy (2.23) with six components possesses a Hamiltonian structure

[12], which can be generated through the trace identity [6], or more generally, the variational
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identity [10]. Precisely, we have

−i tr

(

W
∂U

∂λ

)

= α1a+ α2tr(d) =

∞
∑

m=0

(α1a
[m] + α2d

[m]
11 + α2d

[m]
22 )λ−m

and

−i tr

(

W
∂U

∂u

)

=





c

bT



 =
∑

m≥0

Gm−1λ
−m.

Inserting these into the trace identity and considering the case of m = 2 tell γ = 0, and thus

δH̃m

δu
= iGm−1, H̃m = −

i

m

∫

(α1a
[m+1] +α2d

[m+1]
11 +α2d

[m+1]
22 ) dx, Gm−1 =





c[m]

b[m]T



 , m ≥ 1.

(2.26)

A bi-Hamiltonian structure of the six-component AKNS systems (2.23) then follows

ut = Kr = JGr = J
δH̃r+1

δu
= M

δH̃r

δu
, r ≥ 1, (2.27)

where the Hamiltonian pair (J,M = JΨ) is defined by

J =





0 αI3

−αI3 0



 , (2.28a)

M = i















pT∂−1p+ (pT∂−1p)T −

(

∂ +

3
∑

k=1

pk∂
−1qk

)

I3 − pT∂−1qT

−

(

∂ +

3
∑

k=1

pk∂
−1qk

)

I3 − q∂−1p q∂−1qT + (q∂−1qT )T















. (2.28b)

Adjoint symmetry constraints (or equivalently symmetry constraints) decompose the six-comp-

onent AKNS systems into two commuting finite-dimensional Liouville integrable Hamiltonian

systems [12]. In the next section, we’ll concentrate on the six-component system of coupled

mKdV equations (2.25).

3 Riemann-Hilbert Problems

The spectral problems of the six-component system of mKdV equations (2.25) are

−iφx = Uφ = U(u, λ)φ, −iφt = V [3]φ = V [3](u, λ)φ (3.1)

with

U = λΛ + P, V [3] = λ3Ω +Q, (3.2)

where Λ = diag(α1, α2, α2, α2), Ω = diag(β1, β2, β2, β2), and

P =





0 p

q 0



 , Q =





a[1]λ2 + a[2]λ+ a[3] b[1]λ2 + b[2]λ+ b[3]

c[1]λ2 + c[2]λ+ c[3] d[1]λ2 + d[2]λ+ d[3]



 , (3.3)

u, p, q being defined by (2.11), and a[m], b[m], c[m], d[m], 1 ≤ m ≤ 3, being defined in (2.19).

In this section, we discuss the scattering and inverse scattering for the six-component mKdV

system (2.25) using the Riemann-Hilbert formulation [1] (see also [20, 21]). The resulting
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results lay the groundwork for soliton solutions in the following section. Assume that all the

six potentials rapidly vanish when x→ ±∞ or t→ ±∞ and satisfy the integrable conditions

∫ ∞

−∞

∫ ∞

−∞

|x|m1 |t|m2

3
∑

k=1

(|pk| + |qk|) dxdt <∞, m1,m2 = 0, 1. (3.4)

For the sake of presentation, we also assume that

α = α1 − α2 < 0, β = β1 − β2 < 0. (3.5)

From the spectral problems in (3.1), we note, under (3.4), that when x, t → ±∞, we have

the asymptotic behavior: φ ∼ eiλΛx+iλ3Ωt. Therefore, upon making the variable transformation

φ = ψEg, Eg = eiλΛx+iλ3Ωt, (3.6)

we have the canonical normalization

ψ → I4, when x, t → ±∞, (3.7)

where I4 is the identity matrix of size 4. The equivalent pair of spectral problems to (3.1) reads

ψx = iλ[Λ, ψ] + P̌ψ, (3.8)

ψt = iλ3[Ω, ψ] + Q̌ψ, (3.9)

where P̌ = iP and Q̌ = iQ. Noting tr(P̌ ) = tr(Q̌) = 0, we have

detψ = 1 (3.10)

by a generalized Liouville’s formula [22].

Let us now formulate an associated Riemann-Hilbert problem with the variable x. In the

scattering problem, we first introduce the matrix solutions ψ±(x, λ) of (3.8) with the asymptotic

conditions

ψ± → I4, when x→ ±∞, (3.11)

respectively. The above superscripts refers to which end of the x-axis the boundary conditions

are required. Then, by (3.10), we see detψ± = 1 for all x ∈ R. Since φ± = ψ±E,E = eiλΛx are

both solutions of (3.1), they are linearly dependent, and therefore, one can have

ψ−E = ψ+ES(λ), λ ∈ R, (3.12)

where

S(λ) =















s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44















, λ ∈ R (3.13)

is the scattering matrix. Note that detS(λ) = 1 due to detψ± = 1.

Applying the method of variation in parameters and using the boundary condition (3.11),

we can turn the x-part of (3.1) into the following Volterra integral equations for ψ± [1]:

ψ−(λ, x) = I4 +

∫ x

−∞

eiλΛ(x−y)P̌ (y)ψ−(λ, y)eiλΛ(y−x) dy, (3.14)
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ψ+(λ, x) = I4 −

∫ ∞

x

eiλΛ(x−y)P̌ (y)ψ+(λ, y)eiλΛ(y−x) dy. (3.15)

Therefore, ψ± allows analytical continuations off the real axis λ ∈ R provided that the integrals

on their right hand sides converge. Based on the diagonal form of Λ, we can directly see that

the integral equation for the first column of ψ− contains only the exponential factor e−iαλ(x−y),

which decays because of y < x in the integral, when λ is in the closed upper half-plane, and the

integral equation for the last three columns of ψ+ contains only the exponential factor eiαλ(x−y),

which also decays because of y > x in the integral, when λ is in the closed upper half-plane.

Thus, these four columns can be analytically continued to the closed upper half-plane. In a

similar manner, we can find that the last three columns of ψ− and the first column of ψ+ can

be analytically continued to the closed lower half-plane. Upon expressing

ψ± = (ψ±
1 , ψ

±
2 , ψ

±
3 , ψ

±
4 ), (3.16)

that is, ψ±
k stands for the kth column of φ± (1 ≤ k ≤ 4), the matrix solution

P+ = P+(x, λ) = (ψ−
1 , ψ

+
2 , ψ

+
3 , ψ

+
4 ) = ψ−H1 + ψ+H2 (3.17)

is analytic in λ ∈ C+ and continuous in λ ∈ C
+
0 , and the matrix solution

(ψ+
1 , ψ

−
2 , ψ

−
3 , ψ

−
4 ) = ψ+H1 + ψ−H2 (3.18)

is analytic in λ ∈ C− and continuous in λ ∈ C
−
0 , where

H1 = diag(1, 0, 0, 0), H2 = diag(0, 1, 1, 1). (3.19)

In addition, from the Volterra integral equation (3.14), we see that

P+(x, λ) → I4, when λ ∈ C
+
0 → ∞ (3.20)

and

(ψ+
1 , ψ

−
2 , ψ

−
3 , ψ

−
4 ) → I4, when λ ∈ C

−
0 → ∞. (3.21)

Next we construct the analytic counterpart of P+ in the lower half-plane C−. Note that

the adjoint equation of the x-part of (3.1) and the adjoint equation of (3.8) read as

iφ̃x = φ̃U (3.22)

and

iψ̃x = λ[ψ̃,Λ] + ψ̃P. (3.23)

It is easy to see that the inverse matrices φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1 solve these adjoint

equations, respectively. If we express ψ̃± as follows

ψ̃± =















ψ̃±,1

ψ̃±,2

ψ̃±,3

ψ̃±,4















, (3.24)
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that is, ψ̃±,k stands for the kth row of ψ̃± (1 ≤ k ≤ 4), then we can verify by similar arguments

that the adjoint matrix solution

P− =















ψ̃−,1

ψ̃+,2

ψ̃+,3

ψ̃+,4















= H1ψ̃
− +H2ψ̃

+ = H1(ψ
−)−1 +H2(ψ

+)−1 (3.25)

is analytic in λ ∈ C
− and continuous in λ ∈ C

−
0 , and the other matrix solution















ψ̃+,1

ψ̃−,2

ψ̃−,3

ψ̃−,4















= H1ψ̃
+ +H2ψ̃

− = H1(ψ
+)−1 +H2(ψ

−)−1 (3.26)

is analytic in λ ∈ C+ and continuous in λ ∈ C
+
0 . In the same way, we see that

P−(x, λ) → I4, when λ ∈ C
−
0 → ∞ (3.27)

and














ψ̃+,1

ψ̃−,2

ψ̃−,3

ψ̃−,4















→ I4, when λ ∈ C
+
0 → ∞. (3.28)

Now we have built the two matrix functions P+ and P−, which are analytic in C+ and C−

and continuous in C
+
0 and C

−
0 , respectively. We can directly see that on the real line, the two

matrix functions P+ and P− are related by

P−(x, λ)P+(x, λ) = G(x, λ), λ ∈ R, (3.29)

where

G(x, λ) = E(H1 +H2S)(H1 + S−1H2)E
−1 = E















1 ŝ12 ŝ13 ŝ14

s21 1 0 0

s31 0 1 0

s41 0 0 1















E−1, λ ∈ R (3.30)

in which S−1 = (ŝij)4×4. Therefore, the associated matrix Riemann-Hilbert problem we wanted

to build reads

G+(x, λ) = G−(x, λ)G(x, λ), λ ∈ R, (3.31)

where G is defined by (3.30) and

G+(x, λ) = P+(x, λ), λ ∈ C
+
0 , G

−(x, λ) = (P−)−1(x, λ), λ ∈ C
−
0 . (3.32)

The asymptotic properties

G±(x, λ) → I4, when λ ∈ C
±
0 → ∞, (3.33)

provide the canonical normalization conditions for the presented Riemann-Hilbert problem.
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To complete the direct scattering transform, let us now take the derivative of (3.12) with

time t and use the vanishing conditions of the potentials. This way, we can show that S satisfies

St = iλ3[Ω, S], (3.34)

which gives the time evolution of the scattering coefficients























s11,t = s22,t = s33,t = s44,t = s23,t = s24,t = s32,t = s34,t = s42,t = s43,t = 0,

s12 = s12(0, λ)e
iβλ3t, s13 = s13(0, λ)e

iβλ3t, s14 = s14(0, λ)e
iβλ3t,

s21 = s21(0, λ)e
−iβλ3t, s31 = s31(0, λ)e

−iβλ3t, s41 = s41(0, λ)e
−iβλ3t.

(3.35)

4 Soliton Solutions

The Riemann-Hilbert problems with zeros generate soliton solutions and can be solved by

transforming into the ones without zeros [1]. The uniqueness of the associated Riemann-Hilbert

problem (3.31) does not hold unless the zeros of detP+ and detP− in the upper and lower

half-planes are specified and the kernel structures of P± at these zeros are determined [23, 24].

From the definitions of P± and the scattering relation between ψ+ and ψ−, we find, using

detψ± = 1, that

detP+(x, λ) = s11(λ), detP−(x, λ) = ŝ11(λ), (4.1)

where, based on detS = 1, we have

ŝ11 = (S−1)11 =

∣

∣

∣

∣

∣

∣

∣

∣

s22 s23 s24

s32 s33 s34

s42 s43 s44

∣

∣

∣

∣

∣

∣

∣

∣

. (4.2)

Assume that s11 has zeros {λk ∈ C+, 1 ≤ k ≤ N}, and ŝ11 has zeros {λ̂k ∈ C−, 1 ≤ k ≤ N}.

To get soliton solutions, we also assume that these zeros, λk and λ̂k, 1 ≤ k ≤ N, are simple.

Then, each of kerP+(λk), 1 ≤ k ≤ N , contains only a single column vector, denoted by vk,

1 ≤ k ≤ N ; and each of kerP−(λ̂k), 1 ≤ k ≤ N , a row vector, denoted by v̂k, 1 ≤ k ≤ N ,

P+(λk)vk = 0, v̂kP
−(λ̂k) = 0, 1 ≤ k ≤ N. (4.3)

The Riemann-Hilbert problem (3.31) with the canonical normalization conditions in (3.33)

and the zero structures in (4.3) can be solved explicitly [1, 25], and thus one can readily work

out the matrix P determining the potentials as follows. Note that P+ is a solution to the

spectral problem (3.8). Therefore, as long as we expand P+ at large λ as

P+(x, λ) = I4 +
1

λ
P+

1 (x) +O(
1

λ2
), λ→ ∞, (4.4)

inserting this series expansion into (3.8) and balancing O(1) terms generate

P̌ = −i[Λ, P+
1 ], (4.5)
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which tells that

P = −[Λ, P+
1 ] =















0 −α(P+
1 )12 −α(P+

1 )13 −α(P+
1 )14

α(P+
1 )21 0 0 0

α(P+
1 )31 0 0 0

α(P+
1 )41 0 0 0















, (4.6)

where P+
1 = ((P+

1 )kl)1≤k,l≤4. Furthermore, the six potentials pi and qi, 1 ≤ i ≤ 3, can be

computed as follows










p1 = −α(P+
1 )12, p2 = −α(P+

1 )13, p3 = −α(P+
1 )14,

q1 = α(P+
1 )21, q2 = α(P+

1 )31, q3 = α(P+
1 )41.

(4.7)

To compute soliton solutions, we set G = I4 in the above Riemann-Hilbert problem (3.31).

This can be achieved if we assume s12 = s13 = s14 = s21 = s31 = s41 = 0, which means that

no reflection exists in the scattering problem. The solutions to this specific Riemann-Hilbert

problem can be obtained by (see e.g., [1, 25])

P+(x, λ) = I4 −

N
∑

k,l=1

vk(M−1)klv̂l

λ− λ̂l

, P−(x, λ) = I4 +

N
∑

k,l=1

vk(M−1)klv̂l

λ− λl

, (4.8)

where M = (mkl)N×N is a square matrix whose entries are defined by

mkl =
v̂kvl

λl − λ̂k

, 1 ≤ k, l ≤ N. (4.9)

Note that the zeros λk and λ̂k are constants, i.e., space and time independent, and thus, we

can easily determine the spatial and temporal evolutions for the vectors, vk(x, t) and v̂k(x, t),

1 ≤ k ≤ N . For instance, let us compute the x-derivative of both sides of the equations

P+(λk)vk = 0, 1 ≤ k ≤ N. (4.10)

By using (3.8) first and then (4.10), we obtain

P+(λk)
(dvk

dx
− iλkΛvk

)

= 0, 1 ≤ k ≤ N,

which implies that dvk

dx
− iλkΛvk belongs to kerP+(λk). Without loss of generality, we assume

that
dvk

dx
= iλkΛvk, 1 ≤ k ≤ N. (4.11)

The time dependence of vk,
dvk

dt
= iλ3

kΩvk, 1 ≤ k ≤ N (4.12)

can be determined similarly through the t-part of the matrix spectral problem in (3.9). To

conclude, we have

vk(x, t) = eiλkΛx+iλ3

k
Ωtwk, 1 ≤ k ≤ N, (4.13)

v̂k(x, t) = ŵke−iλ̂kΛx−iλ̂3

k
Ωt, 1 ≤ k ≤ N, (4.14)

where wk and ŵk, 1 ≤ k ≤ N , are arbitrary constant column and row vectors, respectively.
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Finally, from the solutions in (4.8), we get

P+
1 = −

N
∑

k,l=1

vk(M−1)klv̂l, (4.15)

and thus further through the presentations in (4.7), the N -soliton solution to the six-component

system of coupled mKdV equations (2.25)






























p1 = α

N
∑

k,l=1

vk,1(M
−1)klv̂l,2, p2 = α

N
∑

k,l=1

vk,1(M
−1)klv̂l,3, p3 = α

N
∑

k,l=1

vk,1(M
−1)klv̂l,4,

q1 = −α

N
∑

k,l=1

vk,2(M
−1)klv̂l,1, q2 = −α

N
∑

k,l=1

vk,3(M
−1)klv̂l,1, q3 = −α

N
∑

k,l=1

vk,4(M
−1)klv̂l,1,

(4.16)

where vk = (vk,1, vk,2, vk,3, vk,4)
T and v̂k = (v̂k,1, v̂k,2, v̂k,3, v̂k,4), 1 ≤ k ≤ N , are defined by

(4.13) and (4.14), respectively.

5 Concluding Remarks

The paper is dedicated to formulation of Riemann-Hilbert problems and generation of

associated soliton solutions to integrable equations. A crucial step is to take a kind of equivalent

spectral problems, which guarantee the existence of analytical eigenfunctions in the upper or

lower half-plane. We considered a 4 × 4 degenerate AKNS matrix spatial spectral problem

and generated its soliton hierarchy possessing a bi-Hamiltonian structure. Taking the system

of coupled mKdV equations as an example, we built its associated Riemann-Hilbert problems

and presented an explicit formula for jump matrices. Upon taking the identity jump matrix

in the presented Riemann-Hilbert problems, we computed soliton solutions to the considered

six-component system of coupled mKdV equations.

The Riemann-Hilbert approach is very effective in generating soliton solutions (see also,

e.g. [3–5]). Moreover, it was generalized to solve initial-boundary value problems of integrable

equations on the half-line [26]. There are many other approaches to soliton solutions in the field

of integrable equations, which include the Hirota direct method [27], the generalized bilinear

technique [28], the Wronskian technique [29, 30] and the Darboux transformation [31]. Connec-

tions between different approaches would be interesting. About coupled mKdV equations, there

were many other studies such as integrable couplings [32, 33], super hierarchies [34] and frac-

tional analogous equations [35], and an important topic for further study is a Riemann-Hilbert

formulation for solving those generalized integrable counterparts.

It would be also particularly interesting to study other kinds of exact solutions to inte-

grable equations, including positon and complexiton solutions [36, 37], lump solutions [38–42],

involutive solutions [43–46], and algebro-geometric solutions [47, 48], using Riemann-Hilbert

techniques. It is hoped that our results could be helpful in recognizing those exact solutions

from the perspective of Riemann-Hilbert problems.
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