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Abstract Based on a 4 x 4 matrix spectral problem, an AKNS soliton hierarchy with six
potentials is generated. Associated with this spectral problem, a kind of Riemann-Hilbert
problems is formulated for a six-component system of mKdV equations in the resulting AKNS
hierarchy. Soliton solutions to the considered system of coupled mKdV equations are com-
puted, through a reduced Riemann-Hilbert problem where an identity jump matrix is taken.
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1 Introduction

It is known that the Riemann-Hilbert approach is one of the most powerful techniques to
generate integrable equations and their soliton solutions [1]. The approach starts with a kind
of matrix spectral problems, which possess bounded eigenfunctions analytically extendable to
the upper or lower half-plane. It is closely connected with the inverse scattering method in
soliton theory [2]. The normalization conditions at infinity on the real axis in constructing the
scattering coefficients is used in solving the corresponding Riemann-Hilbert problems [1]. Upon

taking the jump matrix to be the identity matrix, reduced Riemann-Hilbert problems generate
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soliton solutions, whose special limits can lead to rational solutions and periodic solutions.
Applications were made for a few integrable equations, including the multiple wave interaction
equations [1], the Harry Dym eqution [3], the generalized Sasa-Satsuma equation [4] and the
general coupled nonlinear Schrodinger equations [5].

We follow the standard procedure suited for Riemann-Hilbert problems, where the unit
imaginary number i is consistently used. We, therefore, start with a pair of matrix spectral

problems of the following form:

where A is a spectral parameter, u is a potential, ¢ is an n X n matrix eigenfunction, A, B are
constant commuting n X n matrices, and P, () are trace-less n x n matrices. Their compatibility

condition is the zero curvature equation
U —V, +i[U, V] =0,

where [-, -] is the matrix commutator. To formulate a Riemann-Hilbert problem for this zero

curvature equation, we adopt the following pair of equivalent matrix spectral problems

e = ILAN), ¢+ Plu, oo, o = (BN, 9] + Q(u, M,
where ¢ is an n x n matrix eigenfunction, P = iP and Q = iQ. The relation between ¢ and 1
is
(b _ wEtp Eq _ eiA()\)w-i-iB()\)t'
This provides us with a possibility to have two analytical matrix eigenfunctions with the asymp-

totic conditions

z/Ji — I, when x,t — +o0,

where I, stands for the identity matrix of size n. Then we try to determine two analytical
related matrix functions P¥(z,¢,\), which are analytical in the upper and lower half-planes
C* = {2z € C| £ Im(z) > 0} and continuous in the closed upper and lower half-planes Ci =
{z € C| £ Im(z) > 0}, respectively, to build a Riemann-Hilbert problem

G (z,t,\) = G (2,t,\)G(x,t,\), A €R,

where
Gt (z,t,\) = PY(z,t,\), A€ Cf, G (x,t,\) = (P7) " Ha,t,\), A€ Cy.

If we take the jump matrix G to be the identity matrix I,,, the corresponding Riemann-Hilbert
problem can be normally solved, and soliton solutions can be generated through observing
asymptotic behaviors of the matrix functions P* at infinity of A\. In this paper, we shall
present an application example by considering a six-component system of mKdV equations and
generate its soliton solutions by a special Riemann-Hilbert problem.

The rest of the paper is organized as follows. In Section 2, within the zero-curvature
formulation, we rederive the AKNS soliton hierarchy with six potentials and furnish its bi-
Hamiltonian structure, based on a new matrix spectral problem suited for the Riemann-Hilbert
theory. In Section 3, taking a system of coupled mKdV equations as an example, we analyze
analytical properties of matrix eigenfunctions for an equivalent spectral problem, and build
a kind of Riemann-Hilbert problems associated with the newly introduced spectral problem.
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In Section 4, we compute soliton solutions to the considered six-component system of coupled
mKdV equations from a specific Riemann-Hilbert problem on the real axis, in which the jump
matrix is taken as the identity matrix. In the last section, we give a summary of the results

and some discussions.

2 AKNS Soliton Hierarchy with Six Components

2.1 Zero Curvature Formulation

Let us first recall the zero curvature formulation to construct soliton hierarchies [6]. Let u
be a vector potential and )\, a spectral parameter. Choose a square spectral matrix U = U (u, \)

from a given matrix loop algebra. Assume that
W=W(u,X) =Y Wid™* =Y Wi(ur™* (2.1)
k=0 k=0

solves the corresponding stationary zero curvature equation
W, =i[U, W]. (2.2)
Based on this solution W, we introduce a series of Lax matrices
VI = VI, ) = AW) L + A, >0, (2.3)

where the subscript 4+ denotes the operation of taking a polynomial part in A, and A,., r > 0,

are appropriate modification terms, and then generate a soliton hierarchy
up = Kp(u) = Ky (2, t,u, ug, -+ ), >0, (2.4)
from a series of zero curvature equations
U, —vinyio, vl =0, r>o0. (2.5)

The two matrices U and VIl are called a Lax pair [7] of the 7-th soliton equation in the hierarchy
(2.4). Obviously, the zero curvature equations in (2.5) are the compatibility conditions of the

spatial and temporal matrix spectral problems
~igs = U = Ulu, N, —igy = Vg = VI(u,\)g, r 20, (2:6)

where ¢ is the matrix eigenfunction.
To show the Liouville integrability of the soliton hierarchy (2.4), we normally furnish a

bi-Hamiltonian structure [8]

6H, 11 6H,
= > .
S =Mt >, (2.7)

where J and M form a Hamiltonian pair and % denotes the variational derivative (see e.g.,

ut:KT:J

[9]). The Hamiltonian structures can be often achieved through the trace identity [6]

1) oU 0 oU A d
- W—=—")dx = \™7 = [ \"tr(W — =-_ w32
5u /tr( B3\ Ydx = A X [)\ tr( 5 )}, % 5 I In [tr(W=)|, (2.8)
or more generally, the variational identity [10]
) ou 0 ou A d
2 e = 7 LIy & - _2Z
= o s = 2 v ] 4 = =5 S|, (2.9
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where (-,-) is a non-degenerate, symmetric and ad-invariant bilinear form on the underlying
matrix loop algebra [11]. The bi-Hamiltonian structure guarantees that there exist infinitely

many commuting Lie symmetries {K,,}5° ; and conserved quantities { H,,}5% :

[Knvinz] = KI [an] - Krlzg [Knl] = 07

ni

- - SHp \T - 6Hp,
{Hm’Hm}N_/( ou ) N ou dz =0,

where ny,ns > 0, N = J or M, and K’ stands for the Gateaux derivative of K with respect to

u,

0

K'()[S] = —

K(u+eS uy+eSz,- ).
e=0

It is known that for an evolution equation with a vector potential wu, H = [Hdz is a
conserved functional iff % is an adjoint symmetry [12], and thus, the Hamiltonian structures
links conserved functionals to adjoint symmetries and further symmetries.

When the underlying matrix loop algebra in the zero curvature formulation is simple, the
associated zero curvature equations engender classical soliton hierarchies [13]; when semisimple,
the associated zero curvature equations generate a collection of different soliton hierarchies; and
when non-semisimple, we get hierarchies of integrable couplings [14], which require extra care

in presenting soliton solutions.

2.2 AKNS Hierarchy with Six Components

Let us start with a 4 x 4 matrix spectral problem

1A p1 p2 p3

q1 012)\ O O
—ipy =U¢ =U(u,\)p, U = (Ugi)axa = , (2.10)
q2 0 042)\ 0

L q3 0 0 042/\_

where o7 and «as are real constants, A is a spectral parameter and u is a six-dimensional potential

u=(p,q")", p=(p1,p2,p3), ¢= (q1,q2,43)" (2.11)

A special case of ps = p3 = g2 = g3 = 0 transforms (2.10) into the AKNS spectral prob-
lem [15], and therefore it is called a six-component AKNS spectral problem. Since A =
diag(aq, g, ag, a2) has a multiple eigenvalue, the spectral problem (2.10) is degenerate.

To derive the associated AKNS soliton hierarchy, we first solve the stationary zero curvature
equation (2.2) corresponding to (2.10). We suppose that a solution W is given by

b
W = , (2.12)
c d

where a is a scalar, b” and c are three-dimensional columns, and d is a 3 x 3 matrix. It is easy

to see that the stationary zero curvature equation (2.2) becomes

a; =i(pc — bq), by =i(aAb+ pd — ap), ¢, = i(—aXc+ qa — dq), d, =i(gb— cp), (2.13)
@ Springer
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where o = a1 — ag. We look for a formal series solution as

wo|® Y= i W A, Wi = Wi (u) = all o L m>0 (2.14)
c a5 i g
with bl™, [™ and dl™ being assumed to be

piml = (pbm! plmd plmdy - clml = (cbml clml T gtm) — (gl om0, (2.15)

Then system (2.13) is equivalent to the following recursion relations
bl =0, % =0, ol =0, d% =0, (2.16a)
plm 1 = é(—ibgml — pd™ + al™p), m >0, (2.16b)
cmr] é(icgg’” +gal™ — dmlg) m >0, (2.16¢)
al™ = i(pcl™ — pmlq), dlml = i(gbl™ — cl™lp), m > 1. (2.16d)

Let us now choose the initial values as follows

all = 8y, d = 3,15, (2.17)

where (31,32 are arbitrary real constants and I3 is the identity matrix of size 3, and take

constants of integration in (2.16d) to be zero, that is, require
Winlueo = 0, m > 1. (2.18)

Thus, with al% and dl% given by (2.17), all matrices W,,,, m > 1, will be uniquely determined.

For example, a direct computation, based on (2.16), generates that

ol = B B g gl — g, (2.19a)
« «
3
B B B p
b2 = — 5P, ol = 2k all = 3 S . df = 3Pk, (2.19Db)
=1
B - 8 3
bf] = -3 [pk,m + 2<ZPIQZ)pk:| ) CES] ) |:qk*:”x + 2<Zplql>qk:| ’ (219(3)
« =1 @ =1
3
B B
al¥ = —512@1% — praar), dij = =31 (Pred = Pz ); (2.19d)
=1
g_ 0 : :
bL] = Ji Pkzaz + 3<sztn)pk,m + 3(21&,:&1)%} 5 (2.19¢)
=1 1=1
8 : S
= —Ji[qk,m - 3<ZPZQZ>Qk,m - 3(2Pl¢]l,x)‘]k] , (2.19f)
=1 =1
ﬁ 3 2 3
a[4] = g [3<ZPlQl> + Z(plql,mm — Plzql,x +pl,m;ﬂql):| ) (219g)
1= =1
6 3
dgjl] = _J |:3pl ( Zplql) gk +pl,mmqk — Pl,zlk,x + plqk,:c:c:| 5 (219h)

=1
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where § = 01 — B2 and 1 < k,l < 3. Based on (2.16d), we can obtain, from (2.16b) and (2.16¢),
a recursion relation for b and ¢l™,

clm+1] clml
=y , m>1, (2.20)

plm+1T plmIT

where VU is a 6 X 6 matrix operator
3
(8 +) Qkalpk> Is+q07'p —q07'q" — (g0~ 1q")"
i k=1
U= - . . (2.21)
prolp+ (o) - (3 + Zma‘lqk> I—p"o7'q"
k=1

To generate the AKNS soliton hierarchy with six components, we introduce, for all integers

r > 0, the following Lax matrices
vl = ylrl (u, \) = (Vk[lT])4><4 =\NW); = ZWkAT7k7 r >0, (2.22)
k=0

where the modification terms are taken as zero. The compatibility conditions of (2.6), i.e., the

zero curvature equations (2.5), lead to the AKNS soliton hierarchy with six components

T ab[rJrl]T
uy = =K, =1 , r>0. (2.23)

q —aclr 1 -
t

The first two nonlinear systems in the above soliton hierarchy (2.23) read

3
Dkt = —%i[pk,m + 2<;plql)pk} 1<k <3, (2.24a)

3
8.
Gt = 51| koo +2 ;plfﬂ ar|, 1 <k <3, (2.24b)

and

3 3
p
Pkt = =5 |Pkoas + 3 > v ) pra +3( D pred |pr|, 1<k <3, (2.25a)

=1 =1

3 3
B
Gt = =3 |dkwos +3 D ona ke +3( Y pae Jar|, 1<k <3, (2.25b)

1=1 1=1
which are the six-component versions of the AKNS systems of coupled nonlinear Schrodinger
equations and coupled mKdV equations, respectively. Under a symmetric reduction, the six-
component AKNS systems (2.24) can be reduced to the Manokov system [16], for which a
decomposition into finite-dimensional integrable Hamiltonian systems was made in [17], whileas
the six-component AKNS systems (2.25) contain various systems of mKdV equations, for which
there exist different kinds of integrable decompositions under symmetry constraints (see e.g.,
[18, 19]).
The AKNS soliton hierarchy (2.23) with six components possesses a Hamiltonian structure

[12], which can be generated through the trace identity [6], or more generally, the variational
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identity [10]. Precisely, we have

oU — m m
—itr( W— | = aqa + astr(d) = Z (ala[m] + agd[ll] + agd[22]))\_m
o\ =

and
. ou c m
_m(wa)_ . _mszm_l)\ .

Inserting these into the trace identity and considering the case of m = 2 tell v = 0, and thus

5Hm . 7 i m m—+1 m—+1 C[m]
= iGr, Hin = —E/(ala[ U 4 apd T 4 apd Y dey Gy = i |21
(2.26)
A bi-Hamiltonian structure of the six-component AKNS systems (2.23) then follows
H, H,
w =K, =JG, = J—L — M0 >, (2.27)
ou ou
where the Hamiltonian pair (J, M = J¥) is defined by
0 1,
J= “Bl (2.284)
—CYI3 0
3
pTo~p+ (pTo7'p)" —(3+ Zpkal%>[3 ~pT07¢"
M =i ; b=t . (2.28b)
- <3 + Zpka_IQk)IB —q07'p g0~ 'q" + (g0~ '¢")"

k=1
Adjoint symmetry constraints (or equivalently symmetry constraints) decompose the six-comp-
onent AKNS systems into two commuting finite-dimensional Liouville integrable Hamiltonian
systems [12]. In the next section, we’ll concentrate on the six-component system of coupled
mKdV equations (2.25).

3 Riemann-Hilbert Problems

The spectral problems of the six-component system of mKdV equations (2.25) are
—igy =U¢ = U(u, o, —igy = V¥ = VI (u,N)op (3.1)
with
U=M+P, VB =)0+, (3.2)
where A = diag(aq, ag, ag, ), Q = diag(f1, B2, B2, f2), and

0 p alIN2 £ a2+ a8 plUN2 1 pl2) 4 3]
P= ) Q = ) (33)
q 0 N2 clPIX 4 B qllIN2 4 gl 4 gl3]
u, p, q being defined by (2.11), and al™l, pl™l clml gl™l 1 <m <3, being defined in (2.19).
In this section, we discuss the scattering and inverse scattering for the six-component mKdV
system (2.25) using the Riemann-Hilbert formulation [1] (see also [20, 21]). The resulting
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results lay the groundwork for soliton solutions in the following section. Assume that all the

six potentials rapidly vanish when x — +o0o or ¢ — +o00 and satisfy the integrable conditions

o) 0o 3
/ / || ¢ ™2 Z(|pk| + |gx|) dzdt < oo, my,me =0, 1. (3.4)
—00J—00 k=1

For the sake of presentation, we also assume that
azal—a2<0,ﬁ:ﬁ1—ﬁg<0. (35)

From the spectral problems in (3.1), we note, under (3.4), that when x,t — +o00, we have

IMAZHIN3Qt

the asymptotic behavior: ¢ ~ e . Therefore, upon making the variable transformation

¢ =E,, E,= eiAAseriA?’m7 (3.6)
we have the canonical normalization

1 — Iy, when z,t — do0, (3.7)
where I is the identity matrix of size 4. The equivalent pair of spectral problems to (3.1) reads
Y = IA[A, 9] + Py, (3.8)
e = 1IN[Q, 9] + QY (3.9)

where P = iP and Q = iQ. Noting tr(P) = tr(Q) = 0, we have
dety =1 (3.10)

by a generalized Liouville’s formula [22].

Let us now formulate an associated Riemann-Hilbert problem with the variable . In the
scattering problem, we first introduce the matrix solutions ¢* (z, A) of (3.8) with the asymptotic
conditions

YT — I, when z — oo, (3.11)

respectively. The above superscripts refers to which end of the z-axis the boundary conditions
are required. Then, by (3.10), we see det )™ = 1 for all z € R. Since ¢ = »*E, E = ¢M? are

both solutions of (3.1), they are linearly dependent, and therefore, one can have
v E=9TES(\), A €R, (3.12)

where
S11 S12 S13 S14

S() = S21 S22 S23  S24 AER (3.13)

531 532 533 534

S41 542 543 544

is the scattering matrix. Note that det S(A\) = 1 due to det* = 1.
Applying the method of variation in parameters and using the boundary condition (3.11),

we can turn the z-part of (3.1) into the following Volterra integral equations for ¢* [1]:

x

V(N x) = Iy + / @) Py)p— (N, y)e M=) dy, (3.14)

— 00
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YT\ ) =1y — / MEY) Pyt (A, y)e A=) dy, (3.15)

x

Therefore, 9% allows analytical continuations off the real axis A € R provided that the integrals
on their right hand sides converge. Based on the diagonal form of A, we can directly see that
the integral equation for the first column of 1)~ contains only the exponential factor e 1A (@=v)
which decays because of y < z in the integral, when A is in the closed upper half-plane, and the
integral equation for the last three columns of ©) contains only the exponential factor el* = =)
which also decays because of y > z in the integral, when A is in the closed upper half-plane.
Thus, these four columns can be analytically continued to the closed upper half-plane. In a
similar manner, we can find that the last three columns of ¥~ and the first column of ¥* can

be analytically continued to the closed lower half-plane. Upon expressing
v = (W, v, 65 1), (3.16)
that is, w,f stands for the kth column of ¢i (1 <k <4), the matrix solution
Pt =PH(a,A) = (Y1, ¥5 ¥3, 00 ) =y  Hi + ¢ Hy (3.17)
is analytic in A € CT and continuous in A € C{, and the matrix solution
(W1 ¥y g,y ) =T Hy + 7 Hy (3.18)
is analytic in A € C~ and continuous in A € C;, where
H, = diag(1,0,0,0), Hy = diag(0,1,1,1). (3.19)
In addition, from the Volterra integral equation (3.14), we see that
Pt (x,)\) — I, when A\ € Cf — oo (3.20)

and

(i 05,03 ,9; ) — Ly, when A € Cy — 0. (3.21)

Next we construct the analytic counterpart of P+ in the lower half-plane C~. Note that
the adjoint equation of the z-part of (3.1) and the adjoint equation of (3.8) read as

iy = GU (3.22)

and

ithy = N[, A] + YP. (3.23)

It is easy to see that the inverse matrices ¢+ = (¢)~! and oF = ()~ solve these adjoint

equations, respectively. If we express ﬁi as follows

gt = , (3.24)
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that is, =% stands for the kth row of = (1 < k < 4), then we can verify by similar arguments

that the adjoint matrix solution

1;—,1
P2 ~ _
S T Hyy™ = Hy($7) "' + Ha(v") ™! (3.25)
1jj+,4
is analytic in A € C™ and continuous in A € C, and the other matrix solution
12)4-,1
U - -
= = Hypt + Hop™ = Hi() ™t 4+ Ho(p™) ! (3.26)
12)7,4
is analytic in A € C* and continuous in A € C{. In the same way, we see that
P~ (z,A\) — L4, when A € Cj — o0 (3.27)
and
J)Jr,l
1/3—72
S I, when \ € Cf — oo. (3.28)
v
1/;7,4

Now we have built the two matrix functions P™ and P~, which are analytic in C* and C~
and continuous in (C(J)r and Cy, respectively. We can directly see that on the real line, the two

matrix functions PT and P~ are related by
P (z, )P (2,)\) = G(z,)), N €R, (3.29)
where

1 3512 513 514

1 1 S21 1 0 O _1
G(x,\) = E(H, + HyS)(H, + ST'H,)E™' = E E7' MeR (3.30)
531 0 1 0
S41 0 O 1

in which S—! = (8ij)axa. Therefore, the associated matrix Riemann-Hilbert problem we wanted
to build reads

G (z,\) =G (z,\)G(x,\), X €R, (3.31)
where G is defined by (3.30) and
Gt (z,\) = P (z,\), A€ CT, G (x,\) = (P7) H(z,\), A€ Cy . (3.32)
The asymptotic properties
GF(x,\) — Iy, when A € C& — o0, (3.33)

provide the canonical normalization conditions for the presented Riemann-Hilbert problem.
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To complete the direct scattering transform, let us now take the derivative of (3.12) with

time ¢ and use the vanishing conditions of the potentials. This way, we can show that .S satisfies
Sy =i\3[Q, S, (3.34)
which gives the time evolution of the scattering coefficients

S11,t = S22t = 533,t = S44,t = S23,;t = S24,t = S532,t = S34,t = S42,t = 543t = 0,
_ 1823t _ iBA3t _ iBA3L
s12 = 512(0, \)ePX 515 = 513(0, \)ePMt, 514 = 514(0, N)ePA Y (3.35)

s91 = 521 (0, /\)efiw‘st, 531 = 531(0, /\)efiw‘st, sa1 = s41(0, /\)efimst-

4 Soliton Solutions

The Riemann-Hilbert problems with zeros generate soliton solutions and can be solved by
transforming into the ones without zeros [1]. The uniqueness of the associated Riemann-Hilbert
problem (3.31) does not hold unless the zeros of det P* and det P~ in the upper and lower
half-planes are specified and the kernel structures of P* at these zeros are determined [23, 24].
From the definitions of P* and the scattering relation between ¢t and ¢, we find, using
dety* =1, that

det PT(z,\) = s11()), det P~ (x,)) = 311(\), (4.1)
where, based on det .S = 1, we have

522 523 524
S11 = (571)11 — | 832 S33 S34 | - (42)

542 543 544

Assume that s1; has zeros {\; € CT, 1 < k < N}, and §1; has zeros {5\;C eC, 1<k<N}
To get soliton solutions, we also assume that these zeros, \; and j\k, 1 < k < N, are simple.
Then, each of ker PT()\;), 1 < k < N, contains only a single column vector, denoted by vy,
1 <k < N; and each of kerP*(j\k), 1 <k < N, arow vector, denoted by 0, 1 <k < N,

PtO)ve =0, 0xP~ (M) =0, 1 <k < N. (4.3)

The Riemann-Hilbert problem (3.31) with the canonical normalization conditions in (3.33)
and the zero structures in (4.3) can be solved explicitly [1, 25], and thus one can readily work
out the matrix P determining the potentials as follows. Note that P is a solution to the

spectral problem (3.8). Therefore, as long as we expand PT at large A as

1 1
PH@,N) = i+ £ P (2) + O(55), A — o0, (4.4)

inserting this series expansion into (3.8) and balancing O(1) terms generate

P = —ilA, Py, (4.5)
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which tells that

0  —a(P)iz —a(P )13 —a(P)i
P 0 0 0
P=—[A P = (P2 , (4.6)
(P a1 0 0 0
(P ) 0 0 0

where Pl+ = ((Pr)kl)lgk,lgzl' Furthermore, the six potentials p; and ¢;, 1 < ¢ < 3, can be

computed as follows

p1 = —Oé(Pfr)u, b2 = —Oé(Pfr)w, b3 = —Q(Pfr)m, (4 7)

q1 = (P21, g2 = a(P )31, g3 = a(P ).

To compute soliton solutions, we set G = I in the above Riemann-Hilbert problem (3.31).
This can be achieved if we assume s13 = $13 = S14 = S21 = S31 = S41 = 0, which means that
no reflection exists in the scattering problem. The solutions to this specific Riemann-Hilbert

problem can be obtained by (see e.g., [1, 25])
N N
Uk(M_l)k[ﬁl _ 'Uk(M_l)klﬁl
PraN=L- Y ——2—= P (z =L+ Y ——>—, (4.8)
him1 AN k=1 A=A
where M = (my;)nNxn is a square matrix whose entries are defined by
ﬁkvl

mg; = —, 1 <Ek,I<N. (4.9)
Al — Ak

Note that the zeros A, and \j, are constants, i.e., space and time independent, and thus, we
can easily determine the spatial and temporal evolutions for the vectors, vk (x,t) and Ok (z, 1),

1 <k < N. For instance, let us compute the x-derivative of both sides of the equations
PT(A\)vg =0, 1<k < N. (4.10)

By using (3.8) first and then (4.10), we obtain

d
P*()\k)(% - i/\kAvk) -0, 1<k<N,

which implies that ddiz" — id\gAvg belongs to ker PT(\;). Without loss of generality, we assume
that

d
% i\pAvg, 1 <k <N. (4.11)
dz
The time dependence of vy,
d
% —iNQu, 1<k<N (4.12)

can be determined similarly through the ¢-part of the matrix spectral problem in (3.9). To

conclude, we have
vg(z,t) = AT ALY ) < k< N, (4.13)
b, t) = e MATTINQ ] < k< N, (4.14)
where wy and wg, 1 < k < N, are arbitrary constant column and row vectors, respectively.
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Finally, from the solutions in (4.8), we get
N

Pl =— Z o (M) g, (4.15)
k=1

and thus further through the presentations in (4.7), the N-soliton solution to the six-component
system of coupled mKdV equations (2.25)

N N N
—1y oA 1y o “1y A
P =« Z k1 (M ™ )k, p2 =« Z V1 (M ™ )ti 3, p3 =« Z vp1 (M)t a,
k=1 k,l=1 k=1
N N N
—1\ s —1\ - —1\ s
G =—a E Ve2(M ™ ki1, g2 = —« g Ve 3s(M ™ mtin, g3 = —a E Ok a(M ™) 011,
k=1 k=1 k=1

(4.16)

where vy = (Vk1,Vk2,Vk3,Vk4)" and Op = (Vk1, k2,03, 0k4), 1 < k < N, are defined by

(4.13) and (4.14), respectively.

5 Concluding Remarks

The paper is dedicated to formulation of Riemann-Hilbert problems and generation of
associated soliton solutions to integrable equations. A crucial step is to take a kind of equivalent
spectral problems, which guarantee the existence of analytical eigenfunctions in the upper or
lower half-plane. We considered a 4 x 4 degenerate AKNS matrix spatial spectral problem
and generated its soliton hierarchy possessing a bi-Hamiltonian structure. Taking the system
of coupled mKdV equations as an example, we built its associated Riemann-Hilbert problems
and presented an explicit formula for jump matrices. Upon taking the identity jump matrix
in the presented Riemann-Hilbert problems, we computed soliton solutions to the considered
six-component system of coupled mKdV equations.

The Riemann-Hilbert approach is very effective in generating soliton solutions (see also,
e.g. [3-5]). Moreover, it was generalized to solve initial-boundary value problems of integrable
equations on the half-line [26]. There are many other approaches to soliton solutions in the field
of integrable equations, which include the Hirota direct method [27], the generalized bilinear
technique [28], the Wronskian technique [29, 30] and the Darboux transformation [31]. Connec-
tions between different approaches would be interesting. About coupled mKdV equations, there
were many other studies such as integrable couplings [32, 33], super hierarchies [34] and frac-
tional analogous equations [35], and an important topic for further study is a Riemann-Hilbert
formulation for solving those generalized integrable counterparts.

It would be also particularly interesting to study other kinds of exact solutions to inte-
grable equations, including positon and complexiton solutions [36, 37], lump solutions [38-42],
involutive solutions [43-46], and algebro-geometric solutions [47, 48], using Riemann-Hilbert
techniques. It is hoped that our results could be helpful in recognizing those exact solutions

from the perspective of Riemann-Hilbert problems.
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