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Abstract Taking a class of linear (4+1)-dimensional partial differential equations as ex-

amples, we would like to show that there exist lump solutions and interaction solutions in

(4+1)-dimensions. We will compute abundant lump solutions and interaction solutions to the

considered linear (4+1)-dimensional partial differential equations via symbolic computations,

and plot three specific solutions with Maple plot tools, which supplements the existing liter-

ature on lump, rogue wave and breather solutions and their interaction solutions in soliton

theory.
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1 Introduction

Differential equations played a prominent role in a bunch of disciplines including engineer-

ing, physics, chemistry, economics and biology; and they were studied from different perspec-

tives, mostly concerned with their solutions – functions that satisfy the differential equations

[1, 2]. One of the fundamental problems in the theory of differential equations, called the

Cauchy problem, is to find a solution of a differential equation satisfying what are known as

initial data. Laplace’s method and the Fourier transform method are established for solving

Cauchy problems for linear ordinary and partial differential equations, respectively. Soliton
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scientists had thought about nonlinearity innovatively and developed novel solution techniques

– the isomonodromic transform method and the inverse scattering transform method – for deal-

ing with Cauchy problems for nonlinear ordinary and partial differential equations, respectively

[3, 4].

Only the simplest differential equations, often linear, are solvable by explicit formulas.

However, soliton theory does bring many different approaches for finding explicit solutions to

nonlinear differential equations. Recently, some systematical studies were made on a kind of

interesting explicit solutions called lumps, originated from the study on formulation of solitons

[5–7]. Mathematically, lumps are a kind of rational function solutions that are localized in

all directions in space, historically found for nonlinear integrable equations, and solitons are

analytic solutions exponentially localized in all directions in space and time. Particular lumps

can be generated from solitons by taking long wave limits [8]. There also exist positons and

complexitons to nonlinear integrable equations, enriching the diversity of solitons [9, 10]. Fur-

thermore, interaction solutions between two different kinds of solutions are found to exist in

soliton theory [11], and they can explain various nonlinear phenomena in sciences.

Within the Hirota bilinear formulation, solitons can be usually generated as follows

u = 2(ln f)xx, f =
∑

µ=0,1

exp(

N
∑

i=1

µiξi +
∑

i<j

µiµjaij), (1.1)

where














ξi = kix − ωit + ξi,0, 1 ≤ i ≤ N,

eaij = −
P (ki − kj , ωj − ωi)

P (ki + kj , ωj + ωi)
, 1 ≤ i < j ≤ N

(1.2)

with ki and ωi satisfying the so-called dispersion relation and ξi,0 being arbitrary phase shifts.

The polynomial P determines a Hirota bilinear form

P (Dx, Dt)f · f = 0, (1.3)

where Dx and Dt are Hirota’s bilinear derivatives, for a partial differential equation with the

dependent variable u. As an example of lumps, we point out that the KPI equation

(ut + 6uux + uxxx)x − uyy = 0 (1.4)

possesses a class of lump solutions [12]

u = 2(ln f)xx, f =
(

a1x + a2y + a3t + a4

)2
+

(

a5x + a6y + a7t + a8

)2
+ a9, (1.5)

where two wave frequencies and a positive position shift are given by

a3 =
a1a2

2 − a1a6
2 + 2 a2a5a6

a1
2 + a5

2
, a7 =

2a1a2a6 − a2
2a5 + a5a6

2

a1
2 + a5

2
, a9 =

3(a1
2 + a5

2)3

(a1a6 − a2a5)2
, (1.6)

and four wave numbers and two translation shifts are arbitrary but need to satisfy a1a6−a2a5 6=

0, which guarantees rational localization in all directions in the (x, y)-plane. Other integrable

equations that possess lump solutions contain the three-dimensional three-wave resonant inter-

action [13], the BKP equation [14, 15], the Davey-Stewartson equation II [8], the Ishimori-I

equation [16] and many others (see e.g., [5, 7, 17]).

It is recognized through symbolic computations that many nonintegrable equations possess

lump solutions as well, which include (2+1)-dimensional generalized KP, BKP, KP-Boussinesq
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and Sawada-Kotera equations [18–21]. Moreover, many recent works exhibited interaction

solutions between lumps and other kinds of exact solutions to nonlinear integrable equations in

(2+1)-dimensions, including lump-kink interaction solutions (see e.g., [22–25]) and lump-soliton

interaction solutions (see e.g., [26–29]). In the (3+1)-dimensional case, lump-type solutions,

which are rationally localized in almost all directions in space, were worked out for the integrable

Jimbo-Miwa equations. Abundant such solutions were generated for the (3+1)-dimensional

Jimbo-Miwa equation [30–32] and the (3+1)-dimensional Jimbo-Miwa like equation [33]. It is

definitely interesting to search for lump and interaction solutions to partial differential equations

in (4+1)-dimensions or higher dimensions.

This paper aims at exploring lump solutions and their interaction solutions to a class of lin-

ear partial differential equations in (4+1)-dimensions. Concrete examples of (4+1)-dimensional

linear equations will be presented to show lump solution phenomena. Both lump solutions and

interaction solutions, including lump-periodic, lump-kink and lump-soliton solutions, will be

computed explicitly through Maple symbolic computations. Sufficient conditions which guar-

antee the existence of lump and interaction solutions will be acquired, and three-dimensional

plots and contour plots of specific examples of the presented solutions will be made via Maple

plot tools. A few concluding remarks will be presented in the last section.

2 Abundant Lump and Interaction Solutions

Let u = u(x1, x2, x3, x4, t) be a real function of the variables x1, x2, x3, x4, t ∈ R. We

consider a class of linear (4+1)-dimensional partial differential equations (PDEs)

α1ux1x2
+ α2ux1x3

+ α3ux1x4
+ α4utx1

+ α5ux2x3

+α6ux2x4
+ α7utx2

+ α8ux3x4
+ α9utx3

+ α10utx4
= 0,

(2.1)

where the subscripts denote partial differentiation and αi, 1 ≤ i ≤ 10, are real constants.

We look for a kind of exact solutions

u = v(ξ1, ξ2, ξ3, ξ4.ξ5), (2.2)

where v is an arbitrary real function, and ξi, 1 ≤ i ≤ 5, are five linear functions of the dependent

variables

ξi = ai1x1 + ai2x2 + ai3x3 + ai4x4 + ai5t + ai6, 1 ≤ i ≤ 5 (2.3)

in which aij , 1 ≤ i ≤ 5 and 1 ≤ j ≤ 6, are real constants to be determined. Then, the above

class of linear PDEs (2.1) becomes

5
∑

i=1

5
∑

j=i

wijvξiξj
= 0, (2.4)

where wij , 1 ≤ i ≤ j ≤ 5, are quadratic functions of the parameters aij , 1 ≤ i, j ≤ 5. By

equating all coefficients of the second partial derivatives of v to zero, we get a system of fifteen
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equations on the parameters aij , 1 ≤ i, j ≤ 5, and the coefficients αi, 1 ≤ i ≤ 10,






















































α1ai1ai2 + α2ai1ai3 + α3ai1ai4 + α4ai1ai5 + α5ai2ai3

+α6ai2ai4 + α7ai2ai5 + α8ai3ai4 + α9ai3ai5 + α10ai4ai5 = 0, 1 ≤ i ≤ 5,

α1(ai1aj2 + aj1ai2) + α2(ai1aj3 + aj1ai3) + α3(ai1aj4 + aj1ai4) + α4(ai1aj5 + aj1ai5)

+α5(ai2aj3 + aj2ai3) + α6(ai2aj4 + aj2ai4) + α7(ai2aj5 + aj2ai5)

+α8(ai3aj4 + aj3aj4) + α9(ai3aj5 + aj3ai5) + α10(ai4aj5 + aj4ai5) = 0, 1 ≤ i < j ≤ 5.

(2.5)

The arbitrariness of the parameters ai6, 1 ≤ i ≤ 5, is due to the translation invariance of the

equations in (2.1).

Through Maple direct symbolic computations, we can determine many solutions to this

system of cubic equations. We classify the solutions we obtain into the following three categories
{

a13 = a14 = a15 = 0, a21 = a23 = a24 = a25 = 0, a34 = a35 = 0, a55 =
a45a54

a44
,

α1 = α2 = 0, α3 = −
a45α4

a44
, α5 = 0, α6 = −

a45α7

a44
, α8 = −

a45α9

a44
, α10 = 0

}

,

(2.6)

{

a13 = a14 = a15 = 0, a21 = a23 = a24 = a25 = 0, a34 = 0, a53 =
p

a35a44
,

α1 = 0, α2 = −
a35α4

a33
, α3 = −

(a33a45 − a35a43)α4

a33a44
, α5 = −

a35α7

a33
,

α6 = −
(a33a45 − a35a43)α7

a33a44
, α8 = α9 = α10 = 0

}

,

(2.7)

and
{

a13 = a14 = 0, a21 = a23 = a24 = a25 = 0, a34 = 0, a51 =
q

a15a33a44
,

α1 = −
a15α7

a11
, α2 = α3 = α4 = 0, α5 = −

(a11a35 − a15a31)α7

a11a33
,

α6 = −
(a11a33a45 − a11a35a43 + a15a31a43 − a15a33a41)α7

a11a33a44
, α8 = α9 = α10 = 0

}

,

(2.8)

where

p = a33a44a55 − a33a45a54 + a35a43a54,

q = a11a33a44a55 − a11a33a45a54 + a11a35a43a54 − a11a35a44a53

−a15a31a43a54 + a15a31a44a53 + a15a33a41a54.

In each set of the three solutions above, the constants not determined in the set are arbitrary

provided that all expressions in the set will make sense. Those three categories of the constants

will present lumps and their interaction solutions, since a sufficient condition for u to be a lump

det(aij)4×4 6= 0 (2.9)

can be achieved, though all the three categories of the constants satisfy a determinant equation

det(aij)5×5 = 0. (2.10)
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Specifically, we can generate the corresponding three examples on lump and interaction solutions

as follows.

Example 1 Upon taking a45 = −a44 and a55 = −a54, the first solution (2.6) shows that

the following linear (4+1)-dimensional PDE

ux1x4
+ utx1

+ ux2x4
+ utx2

+ ux3x4
+ utx3

= 0 (2.11)

possesses a kind of exact and explicit solutions

u = 2(ln f)xx, f = ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 + g(ξ5), (2.12)

where ξi, 1 ≤ i ≤ 5, are defined by






















































ξ1 = a11x1 + a12x2 + a16,

ξ2 = a22x2 + a26,

ξ3 = a31x1 + a32x2 + a33x3 + a36,

ξ4 = a41x1 + a42x2 + a43x3 + a44x4 − a44t + a46,

ξ5 = a51x1 + a52x2 + a53x3 + a54x4 − a54t + a56,

(2.13)

and the function g is arbitrary.

Example 2 Upon taking a35 = −a33 and a45 = −(a43 +a44), solution (2.7) tells that the

following linear (4+1)-dimensional PDE

ux1x3
+ ux1x4

+ utx1
+ ux2x3

+ ux2x4
+ utx2

= 0 (2.14)

possesses a kind of exact and explicit solutions

u = 2(ln f)xx, f = ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 + g(ξ5), (2.15)

where ξi, 1 ≤ i ≤ 5, are defined by






















































ξ1 = a11x1 + a12x2 + a16,

ξ2 = a22x2 + a26,

ξ3 = a31x1 + a32x2 + a33x3 − a33t + a36,

ξ4 = a41x1 + a42x2 + a43x3 + a44x4 − (a43 + a44)t + a46,

ξ5 = a51x1 + a52x2 − (a54 + a55)x3 + a54x4 + a55t + a56,

(2.16)

and the function g is again arbitrary.

Example 3 Upon taking a15 = −a11, a35 = −(a31 + a33) and a45 = −(a41 + a43 + a44),

solution (2.8) implies that the following linear (4+1)-dimensional PDE

ux1x2
+ ux2x3

+ ux2x4
+ utx2

= 0 (2.17)

possesses a kind of exact and explicit solutions

u = 2(ln f)xx, f = ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 + g(ξ5), (2.18)
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where ξi, 1 ≤ i ≤ 5, are defined by























































ξ1 = a11x1 + a12x2 − a11t + a16,

ξ2 = a22x2 + a26,

ξ3 = a31x1 + a32x2 + a33x3 − (a31 + a33)t + a36,

ξ4 = a41x1 + a42x2 + a43x3 + a44x4 − (a41 + a43 + a44)t + a46,

ξ5 = −(a53 + a54 + a55)x1 + a52x2 + a53x3 + a54x4 + a55t + a56,

(2.19)

and the function g is once again arbitrary.

Now, further taking

g(ξ5) = β1, β2 + β3 cos ξ5, β4e
ξ5 , or β5 cosh ξ5, (2.20)

where βi, 1 ≤ i ≤ 5, are proper constants which need to ensure the positivity of the generating

function f , we can obtain lump solutions, and interaction solutions: lump-periodic, lump-kink

and lump-soliton solutions to the above three linear (4+1)-dimensional PDEs, (2.11), (2.14)

and (2.17), as follows

u =
2(fxxf − f2

x)

f2
=

2[2a2
11 + 2a2

22 + 2a2
33 + 2a2

44 + a2
55g

′′(ξ5)]

f

−
2[2a11ξ1 + 2a22ξ2 + 2a33ξ3 + 2a44ξ4 + a55g

′(ξ5)]
2

f2
.

(2.21)

All solutions obtained above provide supplements to the theories available on soliton so-

lutions and dromion-type solutions, formulated through basic approaches such as the Hirota

perturbation technique and symmetry constraints (see e.g., [34–39]).

Particularly taking























































a11 = 1, a12 = −2, a16 = 5, a22 = −2, a26 = −3,

a31 = −1, a32 = 2, a33 = −5, a36 = 2,

a41 = 1, a42 = −3, a43 = −1, a44 = 6, a45 = −1, a46 = −2,

a51 = 1, a52 = 2, a53 = 1, a54 = −3, a55 = 6, a56 = 1,

β1 = 1, β2 = 2, β3 = 1
15 , β5 = 50,

(2.22)

we get the three specific solutions to (2.17)



























u1 =
12f1 − 8(3x1 − 7x2 + 4x3 + 6x4 − 13t + 1)2

f2
1

,

f1 = (x1 − 2x2 − t + 5)2 + (2x2 + 3)2 + (−x1 + 2x2 − 5x3 + 6t + 2)2

+(x1 − 3x2 − x3 + 6x4 − 6t − 2)2 + 1,

(2.23)
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





























u2 =
(12 − 32

15 cos ξ5)f2 − 8(3x1 − 7x2 + 4x3 + 6x4 − 13t + 1 + 2
15 sin ξ5)

2

f2
2

,

f2 = (x1 − 2x2 − t + 5)2 + (2x2 + 3)2 + (−x1 + 2x2 − 5x3 + 6t + 2)2

+(x1 − 3x2 − x3 + 6x4 − 6t − 2)2 + 1
15 cos ξ5 + 2,

(2.24)

and



























u3 =
(12 + 1600 coshξ5)f3 − 8(3x1 − 7x2 + 4x3 + 6x4 − 13t + 1 − 100 sinh ξ5)

2

f2
3

,

f3 = (x1 − 2x2 − t + 5)2 + (2x2 + 3)2 + (−x1 + 2x2 − 5x3 + 6t + 2)2

+(x1 − 3x2 − x3 + 6x4 − 6t − 2)2 + 50 cosh ξ5,

(2.25)

where ξ5 = −4x1 + 2x2 + x3 − 3x4 + 6t + 1. The first solution is a lump, and the second and

third ones are lump-periodic and lump-soliton solutions, respectively. Three three-dimensional

plots and contour plots of those three solutions are made, to shed light on the characteristics

of lump and interaction solutions, in Figure 1, Figure 2, and Figure 3.

Figure 1 Profiles of u1 when t = 0, 1, 2 and x3 = 2, x4 = 1: 3d plots (top)

and contour plots (bottom)
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Figure 2 Profiles of u2 when t = 0, 3, 5 and x3 = 1, x4 = −2: 3d plots (top)

and contour plots (bottom)

Figure 3 Profiles of u3 when t = 0, 1.5, 3 and x3 = 1, x4 = 3: 3d plots (top)

and contour plots (bottom)
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3 Concluding Remarks

We studied a class of linear (4+1)-dimensional partial differential equations to exhibit

abundant lump and interaction solutions, including lump-periodic, lump-kink and lump-soliton

solutions, via Maple symbolic computations. The results amend the existing soliton theory

on nonlinear integrable equations and the recent studies on lumps and interaction solutions

to linear partial differential equations in (2+1)- and (3+1)-dimensions (see e.g., [40]). Three

concrete examples which possess lump and interaction solutions were explicitly presented, and

three-dimensional plots and contour plots of three specially chosen solutions were made via

Maple plot tools.

We remark that the obtained lump and interaction solutions also provide supplements to

exact solutions generated from different kinds of combinations [41–43]. Moreover, it will be

interesting to look for lump and interaction solutions to other generalized bilinear and tri-linear

differential equations involving generalized bilinear derivatives [44]. The corresponding interac-

tion solutions will generally not be resonant solutions generated through the linear superposition

principle [41, 43]. Though lump solutions generated from quadratic functions remain the same

as in the Hirota case, integrable equations determined by generalized bilinear derivatives [44]

can possess different interaction solutions (see [6] for a detailed discussion).

It is direct to formulate models in (n + 1)-dimensions and their lump and interaction

solutions following the pattern in the examples presented above. Diverse interaction solutions

also imply that there exist the corresponding Lie-Bäcklund symmetries, thereby supplementing

symmetry theories on partial differential equations. It is known that the Wronskian technique

can solve nonlinear integrable equations, and therefore, our study brings up a new question:

how can we formulate novel Wronskian solutions by adopting matrix entries of new type? It

is also absolutely important to establish a basic theory of lumps and interaction solutions to

difference-differential equations, and to see if such solutions can be constructed via Riemann-

Hilbert problems [45]. All those problems deserve further studies.
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