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Abstract Taking a class of linear (4+1)-dimensional partial differential equations as ex-
amples, we would like to show that there exist lump solutions and interaction solutions in
(4+1)-dimensions. We will compute abundant lump solutions and interaction solutions to the
considered linear (4+1)-dimensional partial differential equations via symbolic computations,
and plot three specific solutions with Maple plot tools, which supplements the existing liter-
ature on lump, rogue wave and breather solutions and their interaction solutions in soliton
theory.
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1 Introduction

Differential equations played a prominent role in a bunch of disciplines including engineer-
ing, physics, chemistry, economics and biology; and they were studied from different perspec-
tives, mostly concerned with their solutions — functions that satisfy the differential equations
[1, 2]. One of the fundamental problems in the theory of differential equations, called the
Cauchy problem, is to find a solution of a differential equation satisfying what are known as
initial data. Laplace’s method and the Fourier transform method are established for solving

Cauchy problems for linear ordinary and partial differential equations, respectively. Soliton

*Received January 24, 2018. The work was supported in part by NSFC (11301331, 11371086, 11571079 and
51771083), NSF under the grant DMS-1664561, Shanghai Pujiang Program (14PJD007), the Natural Science
Foundation of Shanghai (14ZR1403500), Natural Science Fund for Colleges and Universities of Jiangsu Province
under the grant 17KJB110020, Emphasis Foundation of Special Science Research on Subject Frontiers of CUMT
under Grant No. 2017XKZD11, and the Distinguished Professorships by Shanghai University of Electric Power,
China and North-West University, South Africa.

@ Springer



No.2 W.X. Ma: LUMP AND INTERACTION SOLUTIONS 499

scientists had thought about nonlinearity innovatively and developed novel solution techniques
— the isomonodromic transform method and the inverse scattering transform method — for deal-
ing with Cauchy problems for nonlinear ordinary and partial differential equations, respectively
3, 4].

Only the simplest differential equations, often linear, are solvable by explicit formulas.
However, soliton theory does bring many different approaches for finding explicit solutions to
nonlinear differential equations. Recently, some systematical studies were made on a kind of
interesting explicit solutions called lumps, originated from the study on formulation of solitons
[5-7]. Mathematically, lumps are a kind of rational function solutions that are localized in
all directions in space, historically found for nonlinear integrable equations, and solitons are
analytic solutions exponentially localized in all directions in space and time. Particular lumps
can be generated from solitons by taking long wave limits [8]. There also exist positons and
complexitons to nonlinear integrable equations, enriching the diversity of solitons [9, 10]. Fur-
thermore, interaction solutions between two different kinds of solutions are found to exist in
soliton theory [11], and they can explain various nonlinear phenomena in sciences.

Within the Hirota bilinear formulation, solitons can be usually generated as follows

N
w=200f)ar, f= Y exp(d_pi&i + 3 pitai;), (1.1)

pn=0,1 i=1 i<j
where
& = kiz —wit + &0, 1<i<N,
L e — s (1.2)
eaij:_P(kl kjﬂw] wl) 1§Z<]§N

P(k; + kj,w; + w;)’
with k; and w; satisfying the so-called dispersion relation and ;¢ being arbitrary phase shifts.

The polynomial P determines a Hirota bilinear form

where D, and D; are Hirota’s bilinear derivatives, for a partial differential equation with the
dependent variable u. As an example of lumps, we point out that the KPI equation
(ug 46Uty 4+ Upgy )z — Uyy = 0 (1.4)
possesses a class of lump solutions [12]
2 2
u=2(nf)pe, f= (alx + asy + ast + a4) + (a5x + agy + art + ag) + ag, (1.5)
where two wave frequencies and a positive position shift are given by
CL1(L22 - a1a62 + 2&2&50,6 = 20,10,2&6 - a22a5 + CL5CL62 . 3(0,12 + a52)3
a1? 4 as? 0T a1? + as? - (a1a6 — a2a5)2’

and four wave numbers and two translation shifts are arbitrary but need to satisty aja¢ —asas #

az = 5 (16)

0, which guarantees rational localization in all directions in the (x,y)-plane. Other integrable
equations that possess lump solutions contain the three-dimensional three-wave resonant inter-
action [13], the BKP equation [14, 15], the Davey-Stewartson equation II [8], the Ishimori-I
equation [16] and many others (see e.g., [5, 7, 17]).

It is recognized through symbolic computations that many nonintegrable equations possess
lump solutions as well, which include (2+41)-dimensional generalized KP, BKP, KP-Boussinesq
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and Sawada-Kotera equations [18-21]. Moreover, many recent works exhibited interaction
solutions between lumps and other kinds of exact solutions to nonlinear integrable equations in
(241)-dimensions, including lump-kink interaction solutions (see e.g., [22-25]) and lump-soliton
interaction solutions (see e.g., [26-29]). In the (3+1)-dimensional case, lump-type solutions,
which are rationally localized in almost all directions in space, were worked out for the integrable
Jimbo-Miwa equations. Abundant such solutions were generated for the (3+1)-dimensional
Jimbo-Miwa equation [30-32] and the (3+1)-dimensional Jimbo-Miwa like equation [33]. Tt is
definitely interesting to search for lump and interaction solutions to partial differential equations

in (4+1)-dimensions or higher dimensions.

This paper aims at exploring lump solutions and their interaction solutions to a class of lin-
ear partial differential equations in (44-1)-dimensions. Concrete examples of (4+1)-dimensional
linear equations will be presented to show lump solution phenomena. Both lump solutions and
interaction solutions, including lump-periodic, lump-kink and lump-soliton solutions, will be
computed explicitly through Maple symbolic computations. Sufficient conditions which guar-
antee the existence of lump and interaction solutions will be acquired, and three-dimensional
plots and contour plots of specific examples of the presented solutions will be made via Maple

plot tools. A few concluding remarks will be presented in the last section.

2 Abundant Lump and Interaction Solutions

Let u = u(x1,x2,23,24,t) be a real function of the variables x1,xo,xz3,24,t € R. We

consider a class of linear (4+1)-dimensional partial differential equations (PDEs)

alumle + 0521141113 + a3u11I4 + a4u’t11 + 0551141213

(2.1)
F Uy + QTUL, + A8ULsz, + AUty + Q10ULEL, = 0,
where the subscripts denote partial differentiation and «a;, 1 <7 < 10, are real constants.
We look for a kind of exact solutions
u:v(§17§27§37§4-€5)7 (22)

where v is an arbitrary real function, and &, 1 < ¢ < 5, are five linear functions of the dependent

variables

& = a1 + 4222 + 4373 + a4 + ast +ap, 1< <5 (2.3)

in which a;;, 1 <7 <5 and 1 < j <6, are real constants to be determined. Then, the above

class of linear PDEs (2.1) becomes

5 5
DD wijvee; =0, (24)

i=1 j=i

where w;;, 1 < ¢ < j < 5, are quadratic functions of the parameters a;;, 1 < 4,5 < 5. By

equating all coeflicients of the second partial derivatives of v to zero, we get a system of fifteen
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equations on the parameters a;;, 1 <i,j <5, and the coefficients a;, 1 <7 <10,
Q1041052 + Q2041043 + 341044 + Q4041 Q35 + Q502043

+06ai2ai4 + Q7042045 + Q8A;3044 + Q9a;3a;5 + Q10aiaas = 0, 1 <1 <5,
a1 (anaje + ajai2) + ag(anas + a1a:3) + as(anaa + a10:4) + ca(anass + ajiais)

+as(aiea;s + ajoais) + ap(aizaja + ajoaia) + ar(aizajs + ajoags)

—|—ozg(ai3aj4 + CngCLj4) + Oég(aigaﬁ + ajgam) + alo(ai4aj5 + aj4al-5) =0,1<i<j3<5.
(2.5)
The arbitrariness of the parameters a;, 1 < i < 5, is due to the translation invariance of the
equations in (2.1).
Through Maple direct symbolic computations, we can determine many solutions to this
system of cubic equations. We classify the solutions we obtain into the following three categories

_ _ _ _ _ _ _ _ _ Q45054
a13 =a14 = a5 =0, a2 = asg3 = azq4 = az5 =0, azq4 = az5 =0, ass = PR
44

(2.6)
o - Q45014 7 _ Gag507 Q4509 7
ap =as =0, a3 = — , a5 =0, g = ————, ag = — , ao =0y,
Q44 Q44 a44
{043 =a1s = a15 =0, ag1 = a3 = agq = ass =0, az4 =0, as3 = ——,
(35044
B _azsay _ (azzass — azsasz)oy _assar
a1 =0, asg =— , a3 = — , Q5 = — , (2.7)
ass (33044 ass
_ (azzass — azsasz)oy o
ag = — , ag =ag = aig=0r,
(33044
and
=14 =0, g1 = Gg3 = ags = a5 = 0, agy =0, a5 = —
a13 =a14 =0, a21 = ag3 = agg = ag5 =0, az4 =0, as51 = ———,
15033044
_aisar S _ (a11a3s — a15a31)7
ap = — s =03 =04 =0, a5 =— ; (2.8)
a1 (11033
(a11a33045 — 411035043 + A15031043 — Q15033041 )7
o = — , ag =g = o = 0,
(111033044
where

D = (33044055 — (33045054 + 435043054,
q = 011033044055 — A110433A45054 + Q11035043054 — A11G35044053

—015031043054 + (15031044053 + 015033041054

In each set of the three solutions above, the constants not determined in the set are arbitrary
provided that all expressions in the set will make sense. Those three categories of the constants

will present lumps and their interaction solutions, since a sufficient condition for u to be a lump
det(a;)axa # 0 (2.9)
can be achieved, though all the three categories of the constants satisfy a determinant equation

det(aij)5x5 =0. (210)
@ Springer
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Specifically, we can generate the corresponding three examples on lump and interaction solutions
as follows.

Example 1 Upon taking as5 = —aqq4 and ass = —as4, the first solution (2.6) shows that
the following linear (4+1)-dimensional PDE

uzlm4 + utzl + U’IQI4 + ut:EQ + uI3I4 + utxs = O (2]‘]‘)
possesses a kind of exact and explicit solutions

u=2(nf)ea, =G +E+E+E +9(5), (2.12)

where §;, 1 < i <5, are defined by

&1 = anz1 + a12x2 + ags,

§2 = a12 + ase,

§3 = az171 + az2T2 + azzrs + ase, (2.13)

§4 = aq1®1 + 4272 + 04373 + A44%4 — a4t + age,

&5 = as1%1 + asaT2 + 45373 + 5474 — asat + ase,

and the function g is arbitrary.
Example 2 Upon taking ags = —ass and ag5 = —(a43 + aq4), solution (2.7) tells that the
following linear (4+41)-dimensional PDE

Ugq s + Ugqiay + Utz + Ugoxs + Uggay + Utgy = 0 (214)
possesses a kind of exact and explicit solutions

u=2(nf)oo, f =6+ +E +& +9(5), (2.15)

where §;, 1 < i <5, are defined by

§1 = anz1 + a12x2 + ass,

§2 = a2x2 + ase,

§3 = as1w1 + asew2 + aszws — asst + ase, (2.16)

&1 = an1®1 + Ga2T2 + Aa3T3 + A4aTa — (43 + Qaa)t + Gae,

s = as171 + asa®2 — (asa + as5)T3 + asava + asst + ase,

and the function g is again arbitrary.
Example 3 Upon taking a15 = —a11, azs = —(asz1 + ass) and ags = —(a41 + a43 + a44),
solution (2.8) implies that the following linear (4+1)-dimensional PDE

Ugy oy + Ugozs T Uzoz, + Utz =0 (2.17)
possesses a kind of exact and explicit solutions

u=2(Inf)ox, f =€ +& +& +E& +9(8), (2.18)
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where &;, 1 < i <5, are defined by

§1 = a1171 + 41222 — a1t + ae,

§2 = a2272 + agg,

§3 = az101 + azaw2 + azzwz — (a31 + ass)t + ase, (2.19)
&4 = 00171 + a42%2 + a4373 + 4474 — (aa1 + a3 + a44)t + age,

& = —(as3 + asa + as5)x1 + ase®2 + 45373 + 5424 + as5t + ase,

and the function ¢ is once again arbitrary.

Now, further taking

9(&) = Br, Ba + Bscos&s, Bae®®, or PBscoshés, (2.20)

where §;, 1 < ¢ <5, are proper constants which need to ensure the positivity of the generating
function f, we can obtain lump solutions, and interaction solutions: lump-periodic, lump-kink
and lump-soliton solutions to the above three linear (4+1)-dimensional PDEs, (2.11), (2.14)
and (2.17), as follows

_ 2foaf — £3) _ 2[20%, + 203y + 2035 + 203, + aZ59"(§5)]
f? f
 2[2a11&1 + 2a2282 + 23383 + 204464 + as59' (65)]
f? '

u

(2.21)

All solutions obtained above provide supplements to the theories available on soliton so-
lutions and dromion-type solutions, formulated through basic approaches such as the Hirota

perturbation technique and symmetry constraints (see e.g., [34-39]).

Particularly taking

a1 =1, a12 = =2, a16 =9, age = —2, az = —3,

az1 = —1, aszs =2, azz = =5, azs = 2,

aq1 =1, as2 = =3, as3 = —1, a4a =6, as5s = -1, a6 = -2, (2:22)
as1 =1, as2 =2, as3 =1, asa = =3, as5 =6, ase = 1,

br=1, B2=2, fs= 7, B5 =50,

we get the three specific solutions to (2.17)

_12f1 — 8(3xy — Twy + 4wz 4 624 — 13t + 1)2
- 7 7

fi = (z1 — 2z — t +5)% + (222 + 3)* + (—x1 + 220 — Sz + 6t + 2)?

U1

(2.23)

+(w1 — 3x9 — 3 + 614 — 6t — 2)% + 1,
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(12 — 22 cos &) fo — 8(3wy — Twg + 4wz + 624 — 13t + 1+ Z sings)?

U2 = )
13
fo= (1 — 29 — t +5)% + (222 + 3)% + (—a1 + 229 — 5as + 6t + 2)° (224)
+(JJ1 — 3x9 — x3 + 624 — 61 — 2)2 + 1—15 COS§5 + 2,
and
" (12 4+ 1600 cosh &) f3 — 8(3x1 — Tag + 4w + 624 — 13t + 1 — 100 sinh &5)?
3 = )
3
(2.25)

fs = (21 — 2wy —t +5)% + (222 + 3)% + (=21 + 229 — Saz + 6t + 2)?

+(21 — 329 — 23 + 624 — 6 — 2)% 4 50 cosh &,

where &5 = —4x1 + 229 + x3 — 314 + 6t + 1. The first solution is a lump, and the second and
third ones are lump-periodic and lump-soliton solutions, respectively. Three three-dimensional
plots and contour plots of those three solutions are made, to shed light on the characteristics
of lump and interaction solutions, in Figure 1, Figure 2, and Figure 3.

Figure 1 Profiles of u1 when ¢t =0,1,2 and x3 = 2,24 = 1: 3d plots (top)

and contour plots (bottom)
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N
Figure 2 Profiles of up when ¢ = 0,3,5 and z3 = 1,24 = —2: 3d plots (top)

and contour plots (bottom)

Figure 3 Profiles of ug when ¢t =0,1.5,3 and z3 = 1,24 = 3: 3d plots (top)

and contour plots (bottom)
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3 Concluding Remarks

We studied a class of linear (4+1)-dimensional partial differential equations to exhibit
abundant lump and interaction solutions, including lump-periodic, lump-kink and lump-soliton
solutions, via Maple symbolic computations. The results amend the existing soliton theory
on nonlinear integrable equations and the recent studies on lumps and interaction solutions
to linear partial differential equations in (2+1)- and (3+1)-dimensions (see e.g., [40]). Three
concrete examples which possess lump and interaction solutions were explicitly presented, and
three-dimensional plots and contour plots of three specially chosen solutions were made via
Maple plot tools.

We remark that the obtained lump and interaction solutions also provide supplements to
exact solutions generated from different kinds of combinations [41-43]. Moreover, it will be
interesting to look for lump and interaction solutions to other generalized bilinear and tri-linear
differential equations involving generalized bilinear derivatives [44]. The corresponding interac-
tion solutions will generally not be resonant solutions generated through the linear superposition
principle [41, 43]. Though lump solutions generated from quadratic functions remain the same
as in the Hirota case, integrable equations determined by generalized bilinear derivatives [44]
can possess different interaction solutions (see [6] for a detailed discussion).

It is direct to formulate models in (n + 1)-dimensions and their lump and interaction
solutions following the pattern in the examples presented above. Diverse interaction solutions
also imply that there exist the corresponding Lie-Backlund symmetries, thereby supplementing
symmetry theories on partial differential equations. It is known that the Wronskian technique
can solve nonlinear integrable equations, and therefore, our study brings up a new question:
how can we formulate novel Wronskian solutions by adopting matrix entries of new type? It
is also absolutely important to establish a basic theory of lumps and interaction solutions to
difference-differential equations, and to see if such solutions can be constructed via Riemann-
Hilbert problems [45]. All those problems deserve further studies.
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