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functions. For even s (C. B. Ling, On summation of series of hyperbolic functions, SIAM J.
Math. Anal. 5 (1974) 551-561) and for all positive integral s (I. J. Zucker, The summation
of series of hyperbolic functions, SIAM J. Math. Anal. 10 (1979) 192-206), Z(s) can be
evaluated in terms of elliptic functions. In particular, fors = 1,0 < k < 1, and z =
K(WT—=k2)/K (k), we have Y"° __cosh™!(nz) = (X0 e ™92 = 2/n)K (k),
where K (k) is the complete elliptic integral of the first kind (see B.C. Berndt, Ramanujan’s
Notebooks, Part 111, Springer-Verlag, 1991, p. 102 and p. 138).

Solved also by D. Cantor, R. J. Chapman (U. K.), R. Holzsager, and the proposer.

A Matrix of Inequalities

10599 [1997, 566]. Proposed by Fred Galvin, University of Kansas, Lawrence, KS. Let
X1,...,%m and yji, ..., y» be nonnegative numbers and let (a;;) be an m x n matrix of
nonnegative numbers with at least one nonzero entry in each row. Suppose that the inequality
Y b1 GhjXn < Y p—; @ik Yk holds whenever a;; > 0. Show that ) -, x; < Z;;l Yj-

Solution by Frank Jelen and Eberhard Triesch, Der Rheinisch-Westfiilischen Technischen

Hochschule, Aachen, Germany. Let A be the specified matrix, with columns ¢y, .. ., ¢,. Let
x=0(1,...,xp) T andy = (1, ..., y,,)T, and let 1; denote the column vector of length &
with entries equal to 1.
Define b = (by, ..., bn)T by b; = max{c x: a;j > O}; this is well-defined since each
row contains a posmve entry. Consider the llnear programs
minimize l,fz subjectto Az >bandz >0 @)
and
maximize bTw subject to ATw < 1, and w > 0. 2)

These linear programs are duals of each other, and (1) has the feasible solution z = y. It
thus suffices to show that there exists a feasible solution u of (2) with bTu > 17 x, since the
Duality Theorem then yields 17y > bTu > 1T x.

Consider the nonnegative vector u = (uy, ..., um)T defined by u; = x;/b; if b; > 0
and u; = 0 otherwise. Clearly bTu = 17 x.

Forl < j <n,definel; = {i: a;; > Oandx; > 0}. Fori € I;, we have b; > chx > 0.
Feasibility of # now follows from

u = E ajju; = E a,,b T E aijxi = 1.
ielj ,' ielj
Solved also by the proposer.

A Complex Determinant

10601 [1997, 566]. Proposed by Wen-Xiu Ma, Universitit-GH Paderborn, Paderborn,

Germany. Letn > 1 be an integer and let ay, aa, . . ., a, be complex numbers. Show that
1 aj a% e 12n 1
1 a a% e a%" !
2 2n—1
an an e a ( —l)/2 4
=(=D"" (ai —aj)”.
2n—-2 j
1 2a; -+ (2n-1aq " \ SE <n
1 2a - @n-1a¥"?
0 1 2a --- (n=1)a"?
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Solution I by Robin J. Chapman, University of Exeter, Exeter, UK. Consider the Vander-

monde matrix for 2n complex numbers ay, ..., az,, in which the i, j-entry is a . The
determinant is [ ], <; <x<on(ak — ;). Subtractmg row j from row n + j turns row n + j
into

2n—2
2n—2—r a
(an+j _a]) 07 lvan+j +a]v o Z an+/ ] .

These row operations do not change the determinant. When ay, ; # a; for each j, we may
cancel ]_[7=1 (an+j — aj) from the two expressions for the determinant to obtain

1 a a% af” !
1 a a% a%” !
o @ . g1
2n— 2 2n—2—r = 1_[ (ar — aj). ()
0 1 ani+ar - 35740 a] 1sj<ks2n
2m-2 2n-2— kntj
0 1 apyr+a Z 10 aniz raz
0 1 antan - erioza%r’: a,

By continuity, (%) is also valid when a, 1 ; = a;. Setting a; = an; for each j in (x) yields
the desired result, since each difference a; —a; for j < k appears four times in the product
on the right side of (%), once in reverse order.

Solution Il by Joseph J. Rushanan, The MITRE Corporation, Bedford, MA. We use the
techniques from J. J. Rushanan, On the Vandermonde matrix, this MonTHLY 96 (1989) 921—
924. Let A be the matrix whose determinant is given in the problem statement. Given a

complex polynomial f defined by f(z) = Ziz;'al c;izt,let £=[co,...,com—1]1". Then
At =[f@D), f@), ..., flan), f'@), f'@), ..., f'@an]

Let fe(@) = [1Z} —a) for 1 < k < n, and let fi(2) = feen(@) [T/, (@ — a;) for
n+1 < k < 2n. Since f; is monic with degree k — 1, the matrix U = [f; ---£,,] is
upper-triangular with 1s on the diagonal. Furthermore, L = AU is lower-triangular, since
fil@j)) =0=f, . (@)if1 < j <k <nand fyix(a;) = 0forall j.

Thus det A is the product of the diagonal terms of L, which are fi(a) and f,, 4« (ax) for
1 < k < n. These terms consist only of factors of the form (a, — ay) with r # 5. A typical
term (a; — a,) with r < s appears in f;(a,) once, appears negated in f, . (a,), and appears
squared in f, (as). This shows that A has the desired determinant.

The technique generalizes to higher derivatives.

Editorial comment. David Callan and Wai Wah Lau observed that generalizations involving
higher derivatives have appeared in the literature, such as on page 400 of R. A. Horn and
C. R. Johnson, Topics in Matrix Algebra, Cambridge Univ. Press, 1991. Several others
noted that the formula holds for ay, ..., a, in an arbitrary commutative ring. Indeed, every
polynomial identity in Z[ay, ..., a,] holds over arbitrary commutative rings.

Solved also by M. Benedicty, J. C. Binz (Switzerland), G. L. Body (U. K.), D. Callan, L. L. Foster, J.-P. Grivaux (France), R
Holzsager, G. Keselman, N. Komanda, O. Kouba (Syria), W. W Lau, J. H. Lindsey II, G. R. Miller, M. McKee, J. H. Nieto
(Venezuela), G. Peng, C. Popescu (Belgium), R. Richberg (Germany), J. H. Smith, P. Szeptycki, A. Tissier (France), J. Van hamme
(Belgium), Wyoming Problems Circle, WMC Problems Group, and the proposer.
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