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1. Introduction

The Lax pair formulation is an important technique for constructing integrable equations [1]. It involves
finding a pair of linear partial differential equations, known as the Lax pair, which are compatible with a
given nonlinear equation. The Lax pair provides a bridge between linear and nonlinear equations, and the
integrability of the nonlinear equation is related to the spectral properties of the Lax pair of matrix spectral
problems. Many famous integrable equations, such as the Korteweg—de Vries equation and the nonlinear
Schrédinger equation, have been derived using the Lax pair formulation.

The general procedure of the Lax pair formulation to construct integrable equations is as follows. We
begin with a matrix spatial spectral problem with an appropriately chosen spectral matrix:

M = M(u,A) = urer(N) + - - + ugeq(X) + eo(A), (1.1)
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where A is the spectral parameter, u = (uq,... ,uq)T is the dependent variable, and ey, ..., e, are linear
independent elements and ey is a pseudo-regular element in a given loop algebra §. The pseudo-regular
conditions, Kerade, ® Imad,, = § and Kerad,, is commutative, guarantee that there exists a Laurent
series solution Y = > . A™*Vl¥] to the stationary zero curvature equation:

Ve =iM,)]. (1.2)
Based on this solution ), an integrable hierarchy can then be presented through zero curvature equations:
My = NI i M N =0, >0, (1.3)

where N1 = MWy + Alrl = E;:O N"—sy[s] + A[r], Alrl ¢ g, v > 0. Those zero curvature equations are
the compatibility conditions between the spatial and temporal matrix spectral problems:

— iy = Mo, —ig, = NTp, r>0. (1.4)

A basic tool to obtain Hamiltonian structures of the associated zero curvature equations is the trace

identity [2]: 5 oM 5 oM
= hdddd A haddd
éu/tr(:)) B\ ) dx = X 6)\)\ tr(Y 9 )

where 7 is a constant, independent of A. Bi-Hamiltonian structures can be often furnished with a recursion

(1.5)

operator, thereby exhibiting the Liouville integrability of the associated zero curvature equations [2,3].

Various integrable hierarchies are generated in this way, with the underlying matrix algebra being the
special linear algebras (see, e.g., [4-8]), or the special orthogonal algebras (see, e.g., [9,10]). The well-
known integrable hierarchies with two potentials include the Ablowitz—Kaup—Newell-Segur hierarchy, the
Heisengerg hierarchy, the Kaup—Newell hierarchy and the Wadati—-Konno—Ichikawa hierarchy.

This paper aims to present integrable hierarchies of bi-Hamiltonian equations with four potentials. The
Lax pair formulation and the trace identity are basic tools to present integrable hierarchies. Two illustrative
examples are a sort of integrable nonlinear Schrédinger type equations and integrable modified Korteweg—de
Vries type equations. The last section is devoted to concluding remarks.

2. Lax pairs and integrable hierarchies

Let m and n be two natural integers. We consider a matrix spectral problem of the form:

aA Pp1 P2
— iy = M¢p = M(u,\)p, M= | q1 aA\l, 0 , (2.1)
q2 0 OQ)\In

where A is the spectral parameter and u is the four-dimensional potential

u=u(z,t) = (p1,p2,q1,42)" (2.2)

In the above spectral matrix M, a3, as € C are two distinct constants, I is the kth-order identity matrix,
and

P1 = (pla""pl )’ q1 = (ql7"'7q1 )Ta P2 = (p27"'7p2)7 q2 = (qQa"'7q2 )T' (23)

—— — — —
m m n n

Those matrix spectral problems are specific reductions of the Ablowitz—Kaup—Newell-Segur (AKNS) spec-
tral problem with vector potentials (see, e.g., [4,11,12] for details). We would like to show that all those
reduced spectral problems will still yield integrable hierarchies.

2



W.-X. Ma Applied Mathematics Letters 145 (2023) 108775

To derive an associated integrable hierarchy for each pair of m and n, let us start to compute a Laurent
series solution to the stationary zero curvature Eq. (1.2):

a by by a[s] b[s] b[S]
Y = C1 dl,lEm,m dl,QEm,n = Z )\—sy[s], y[s] = [S] d[lg]lEm n d[;]QEm n ) (24)
ca doiEnm depBngn 520 [9] d[g] Enm d[Q]QEnn

where Fy; is the k£ x [ matrix of ones, and

blz(bl,...,bl), 01:(61,...,61)T, b2=(b2,...,b2), CQZ(CQ,...,CQ)T,
—— —— —— ——
bl = (bl by, el = (el YT Bl = (al el el = (el T
— ———— — ———

It is straightforward to observe that the corresponding stationary zero curvature equation leads to the
initial conditions on Y

a% =0, b =% =0, (&), =0, 1<k 1<2, (2.5)

and the recursion relations for determining Vil s> 1:

s 1 s s .
b; +1] _ a( b[ ] D 4 pia alsl — mpld[ sl npgd[Q,]j), 1<j<2, (2.6)
CE'SJrl] a( [S] z T 40 al* - mChd 1 TLQQd[S]) 1<j<2, (2.7)
(dei ) = i(abf ™ = pie ™), 1< k<2, (2:8)
ang] = i(—mmb[fH] - nCI2b[25H] + mp1C[1 b np2 C[SH]) (2.9)

where s > 0. To satisfy (2.5), let us take the initial values as follows:
d% =g, d =0 1<ki<2, (2.10)

where § € C is an arbitrary constant, and choose the constant of integration as zero,

g =0, df)luco =0, 1<k, 1<2, 5>1, (2.11)
so that we can determine all required differential polynomials a[s],b[él, ES],dEC ]l, 1 < 4kl <2 s>1,
uniquely. Under such conditions, we can obtain that

il = B by o = gqj, d=0,d} =0, 1<jkl1<2
. . B B :
bf] == 2Pia 05»2] = 3 al?l = —g(mmm + np2qz), di]l APk, 1<,k 1< 2
b = — 5 2 2mplq)), by = 2npdqs + 2
1 = —25(P1ax + 2np1paga + 2mpiqr), by = P22z + 2np3g2 + 2mp1paqi),

— 4 (
a3
i’ = =L (q1ue + 20p2q102 + 2mp163), [2] = L (g2 + 2np2q§ +2mp1g142),

Oé
all = Z5i(mp12q1 + np2.aqe — MP1G1 e — MP232.2), dL]l Lipigre — aupra), 1< k1< 2

=)
B

and
4
b[l = ﬁ 1(P1,zww + 3NP1D2,2G2 + 6MP1p1,5q1 + 3NP1 2D2G2),
% (P22 + 3MP1P2.2q1 + 3 MP1 P21 + 61P2p2 2q2),
3
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{ 0[14] = % (1,500 + 6MP1G1q1 2 + 3NP2G1G2, + 3NP2q1 242),
% (92,000 + 3MP1G1,2G2 + 3MP1¢1q2,2 + 6NP2G2G2.2),
al¥t = B [ mp1 aeqi + MP1G1,00 + MP2.0002 + NP202,20
—MPLaie — MP2,202,0 + 3(Mp1g1 + npag2)? |,
dL‘f]l = —%(3mp1qmlq;g + 3np2q2piQr + Plaei + Pidker — PlaQhe), 1 <k, 1<2;
which will be used to present examples of integrable Hamiltonian equations later.

Following the Lax pair formulation and based on the previous computations, we can take the following
temporal matrix spectral problems

— iy = NTp = N, N)p, NTT = (\"Y ZAS Yir=sl >0, (2.12)

to form appropriate other parts of Lax pairs. Now, the compatibility conditions (1.3) of the resulting Lax
pairs yield a four-component soliton hierarchy:
w, = Kl = (azb[TH] aib[;H},faz'c[lrﬂ],faic[;*_l])T, r>0. (2.13)

5] ]

Making use of the previous expressions of bJ and cj, we immediately work out the first two nonlinear

examples. The first one is the nonlinear Schrodinger type equations:

{ Pjta =
Wty =

where 1 < j < 2, and the second is the modified Korteweg-de Vries type equations:

ﬂ > [Pjze + 2(mp1g1 + nP2g2)p;j), (2.14)
10,00 + 2(mp1qr + np2g2)g;],

M\m

{ Djts = —ﬁs[??j,m + 3m(p1pj)=q1 + 3n(p2p;j)2q2) (2.15)
Qjts = = 23(qj 2ax + 3MmP1(q1¢5)x + 3np2(q24;))z]s

where 1 < j < 2. Those examples enrich the category of integrable coupled nonlinear Schrédinger equations
and modified Korteweg—de Vries equations (see, e.g., [13-15]).

3. Bi-Hamiltonian structures

To furnish bi-Hamiltonian structures for the presented soliton hierarchy (2.13), we apply the trace identity
(1.5) associated with the matrix spectral problem (2.1). By virtue of the solution ) determined by (2.4), we
can derive

oM oM
tr(yﬁ) = oia + ag(mdm + ndg)g), tr(ym) = (mcl, ncy, mby, nb2)T,

and consequently, we obtain
5 S S a S S S S
Su /[ala[SH] + O@(md[l,]1 + nd[QV] NASHde = A~ 78 AT S(mc[l],nc[Q],mb[l ],nb[Q])T, s> 0.

Checking the case with s = 2, we see v = 0. Therefore, we have

é s s s s aralst? 4 o mdlst2 +nd[s+2]
%H[S] (mc[l . nc[g 1 mb [s-+1] b[g H])T, Hlsl = —/ 1 2(s+11’1 2,2 )dx, (3.1)
where s > 0.

All these identities enable us to furnish the Hamiltonian structures for the obtained integrable hierarchy

(2.13): .
. SHI 0 J Lai 0
= ket = g ,J:[JO Oo] Jy— { o 104@]”"20’ (3.2)
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where the Hamiltonian functionals H["), » > 0, are given by (3.1). It is known that the Hamiltonian
structures establishes a connection from a conserved functional H to a symmetry S by S = J %.

A straightforward calculation tells that we can obtain an isospectral Lax operator algebra (see [16] for
details):

[['/\/'[51],./\/[52]]] = Nl () [Ks2]] — Als2l/ () [KTsu)] 4 (VI VT2l = 0, 5,85 > 0, (3.3)

which comes from the algebraic structure of isospectral zero curvature equations [16]. It follows from this
Lax operator algebra that we have the Abelian algebra of infinitely many symmetries {K [81}310:

[[K[Sl],K[S2]] — K[Sl]’(u)[[{[sﬂ} _ K[SZ]/(U)[K[SI]] =0, s1,82 > 0. (3.4)

Further, the Hamiltonian structures tell that the conserved functionals {#*1}2° form an Abelian algebra,

too:
SHI o sHlsal
(1] qlsaly J de — 0 > 0. 3.5
(e ey = ()T e =0, s 2 (35)
Moreover, from Kls+1] = @K[S], we can work out the recursion operator @ = (ij)4x4:

{ Py = *é(az + 2mp10; g1 + Tlpza;l(h), P12 = fénplaglqz, (3.6)

P13 = —L(2mp10; 'p1), Pra = —Ln(p10; 'p2 + p20;, 'p1), '
{ Dyy = _émp28;1q17 Pyy = —1(8, + mplagjlm + 2np20; 1q0), (3.7)

By3 = —Lm(p20; 'p1 + P10, 'p2), Pas = —L(2np20; 'p2), '
{ G31 = L(2mq10; ' q1), P30 = In(q10; ' 2 + 20, 1), (3.8)

P33 = L (0, + 2mq10; ' p1 + ng20; 'p2), P34 = Lngi0; 'po, '
{ Gy1 = Lm(q0; ' + 010, q2), Paz = L(2nq20; " q2), (3.9)

Pys = Lm0, 'p1, Pas = L(0x +mq10; 'p1 + 2nq20; 'pa). '

It is direct to see that a combination of J with the recursion operator @ [17], leads to bi-Hamiltonian

structures [3] for the hierarchy:

w, = K" =g =M L r>1, (3.10)

where the second Hamiltonian operator is M = &J.
All this implies that each equation in the resulting hierarchy (2.13) is Liouville integrable, or more

precisely, each possesses infinitely many commuting conserved densities {H[S] 122, and symmetries { K [s] 1%%,-

4. Concluding remarks

A set of integrable hierarchies with four potentials has been presented, from a class of AKNS reduced
special matrix spectral problems, within the Lax pair formulation. Bi-Hamiltonian structures have been
furnished for the resulting integrable equations through applying the trace identity and recursion operators.

Other generalizations could be generated by taking more potentials in matrix spatial spectral problems
to generate integrable Hamiltonian equations with six or more potentials. Nonlocal integrable counterparts
could also be formulated under similarity transformations of spectral matrices (see, e.g., [18-20] for novel
nonlocal nonlinear Schréodinger equations). The field of integrable equations is vast and continues to evolve,
with new approaches and techniques being developed. It requires a deep understanding of mathematical
methods and theories, as well as creativity and insight to construct new integrable equations.
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