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a b s t r a c t

The aim of this paper is to derive a kind of integrable hierarchies with four
potentials, which possess bi-Hamiltonian structures, from reduced AKNS matrix
spectral problems. The associated recursion operators are worked out explicitly.
The Lax pair formulation and the trace identity are basic tools in the analysis.
Two nonlinear examples in the resulting integrable hierarchies are integrable
nonlinear Schrödinger type equations and integrable modified Korteweg–de Vries
type equations.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The Lax pair formulation is an important technique for constructing integrable equations [1]. It involves
finding a pair of linear partial differential equations, known as the Lax pair, which are compatible with a
given nonlinear equation. The Lax pair provides a bridge between linear and nonlinear equations, and the
integrability of the nonlinear equation is related to the spectral properties of the Lax pair of matrix spectral
problems. Many famous integrable equations, such as the Korteweg–de Vries equation and the nonlinear
Schrödinger equation, have been derived using the Lax pair formulation.

The general procedure of the Lax pair formulation to construct integrable equations is as follows. We
begin with a matrix spatial spectral problem with an appropriately chosen spectral matrix:

M = M(u, λ) = u1e1(λ) + · · · + uqeq(λ) + e0(λ), (1.1)
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here λ is the spectral parameter, u = (u1, . . . , uq)T is the dependent variable, and e1, . . . , eq are linear
ndependent elements and e0 is a pseudo-regular element in a given loop algebra g̃. The pseudo-regular
onditions, Ker ade0 ⊕ Im ade0 = g̃ and Ker ade0 is commutative, guarantee that there exists a Laurent

series solution Y =
∑

s≥0 λ−sY [s] to the stationary zero curvature equation:

Yx = i[M, Y]. (1.2)

Based on this solution Y, an integrable hierarchy can then be presented through zero curvature equations:

Mt − N [r]
x + i[M, N [r]] = 0, r ≥ 0, (1.3)

where N [r] = (λrY)+ + ∆[r] =
∑r

s=0 λr−sY [s] + ∆[r], ∆[r] ∈ g̃, r ≥ 0. Those zero curvature equations are
the compatibility conditions between the spatial and temporal matrix spectral problems:

− iϕx = Mϕ, −iϕt = N [r]ϕ, r ≥ 0. (1.4)

A basic tool to obtain Hamiltonian structures of the associated zero curvature equations is the trace
identity [2]:

δ

δu

∫
tr

(
Y ∂M

∂λ

)
dx = λ−γ ∂

∂λ
λγtr

(
Y ∂M

∂u

)
, (1.5)

where γ is a constant, independent of λ. Bi-Hamiltonian structures can be often furnished with a recursion
operator, thereby exhibiting the Liouville integrability of the associated zero curvature equations [2,3].

Various integrable hierarchies are generated in this way, with the underlying matrix algebra being the
special linear algebras (see, e.g., [4–8]), or the special orthogonal algebras (see, e.g., [9,10]). The well-
known integrable hierarchies with two potentials include the Ablowitz–Kaup–Newell–Segur hierarchy, the
Heisengerg hierarchy, the Kaup–Newell hierarchy and the Wadati–Konno–Ichikawa hierarchy.

This paper aims to present integrable hierarchies of bi-Hamiltonian equations with four potentials. The
Lax pair formulation and the trace identity are basic tools to present integrable hierarchies. Two illustrative
examples are a sort of integrable nonlinear Schrödinger type equations and integrable modified Korteweg–de
Vries type equations. The last section is devoted to concluding remarks.

2. Lax pairs and integrable hierarchies

Let m and n be two natural integers. We consider a matrix spectral problem of the form:

− iϕx = Mϕ = M(u, λ)ϕ, M =

⎡⎣ α1λ p1 p2
q1 α2λIm 0
q2 0 α2λIn

⎤⎦ , (2.1)

here λ is the spectral parameter and u is the four-dimensional potential

u = u(x, t) = (p1, p2, q1, q2)T . (2.2)

In the above spectral matrix M, α1, α2 ∈ C are two distinct constants, Ik is the kth-order identity matrix,
nd

p1 = ( p1, . . . , p1  
m

), q1 = ( q1, . . . , q1  
m

)T , p2 = ( p2, . . . , p2  
n

), q2 = ( q2, . . . , q2  
n

)T . (2.3)

Those matrix spectral problems are specific reductions of the Ablowitz–Kaup–Newell–Segur (AKNS) spec-
tral problem with vector potentials (see, e.g., [4,11,12] for details). We would like to show that all those
reduced spectral problems will still yield integrable hierarchies.
2
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To derive an associated integrable hierarchy for each pair of m and n, let us start to compute a Laurent
eries solution to the stationary zero curvature Eq. (1.2):

Y =

⎡⎣ a b1 b2
c1 d1,1Em,m d1,2Em,n

c2 d2,1En,m d2,2En,n

⎤⎦ =
∑
s≥0

λ−sY [s], Y [s] =

⎡⎢⎣ a[s] b[s]
1 b[s]

2
c[s]

1 d
[s]
1,1Em,n d

[s]
1,2Em,n

c[s]
2 d

[s]
2,1En,m d

[s]
2,2En,n

⎤⎥⎦ , (2.4)

where Ek,l is the k × l matrix of ones, and

b1 = ( b1, . . . , b1  
m

), c1 = ( c1, . . . , c1  
m

)T , b2 = ( b2, . . . , b2  
n

), c2 = ( c2, . . . , c2  
n

)T ,

b[s]
1 = ( b

[s]
1 , . . . , b

[s]
1  

m

), c[s]
1 = ( c

[s]
1 , . . . , c

[s]
1  

m

)T , b[s]
2 = ( b

[s]
2 , . . . , b

[s]
2  

n

), c[s]
2 = ( c

[s]
2 , . . . , c

[s]
2  

n

)T .

It is straightforward to observe that the corresponding stationary zero curvature equation leads to the
nitial conditions on Y [0]:

a[0]
x = 0, b

[0]
j = c

[0]
j = 0, (d[0]

k,l)x = 0, 1 ≤ j, k, l ≤ 2, (2.5)

nd the recursion relations for determining Y [s], s ≥ 1:

b
[s+1]
j = 1

α
(−ib

[s]
j,x + pja[s] − mp1d

[s]
1,j − np2d

[s]
2,j), 1 ≤ j ≤ 2, (2.6)

c
[s+1]
j = 1

α
(ic[s]

j,x + qja[s] − mq1d
[s]
j,1 − nq2d

[s]
j,2), 1 ≤ j ≤ 2, (2.7)

(d[s+1]
k,l )x = i(qkb

[s+1]
l − plc

[s+1]
k ), 1 ≤ k, l ≤ 2, (2.8)

a[s+1]
x = i(−mq1b

[s+1]
1 − nq2b

[s+1]
2 + mp1c

[s+1]
1 + np2c

[s+1]
2 ), (2.9)

where s ≥ 0. To satisfy (2.5), let us take the initial values as follows:

a[0] = β, d
[0]
k,l = 0, 1 ≤ k, l ≤ 2, (2.10)

where β ∈ C is an arbitrary constant, and choose the constant of integration as zero,

a[s]|u=0 = 0, d
[s]
k,l|u=0 = 0, 1 ≤ k, l ≤ 2, s ≥ 1, (2.11)

so that we can determine all required differential polynomials a[s], b
[s]
j , c

[s]
j , d

[s]
k,l, 1 ≤ j, k, l ≤ 2, s ≥ 1,

uniquely. Under such conditions, we can obtain that

b
[1]
j = β

α
pj , c

[1]
j = β

α
qj , a[1] = 0, d

[1]
k,l = 0, 1 ≤ j, k, l ≤ 2;

b
[2]
j = − β

α2 ipj,x, c
[2]
j = β

α2 iqj,x, a[2] = − β

α2 (mp1q1 + np2q2), d
[2]
k,l = β

α2 plqk, 1 ≤ j, k, l ≤ 2;⎧⎪⎨⎪⎩
b

[3]
1 = − β

α3 (p1,xx + 2np1p2q2 + 2mp2
1q1), b

[3]
2 = − β

α3 (p2,xx + 2np2
2q2 + 2mp1p2q1),

c
[3]
1 = − β

α3 (q1,xx + 2np2q1q2 + 2mp1q2
1), c

[3]
2 = − β

α3 (q2,xx + 2np2q2
2 + 2mp1q1q2),

a[3] = β
α3 i(mp1,xq1 + np2,xq2 − mp1q1,x − np2q2,x), d

[3]
k,l = β

α3 i(plqk,x − qkpl,x), 1 ≤ k, l ≤ 2;

nd {
b

[4]
1 = β

α4 i(p1,xxx + 3np1p2,xq2 + 6mp1p1,xq1 + 3np1,xp2q2),
[4] β
b2 =

α4 i(p2,xxx + 3mp1p2,xq1 + 3 mp1,xp2q1 + 6np2p2,xq2),
3
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[4]
1 = − β

α4 i(q1,xxx + 6mp1q1q1,x + 3np2q1q2,x + 3np2q1,xq2),
c

[4]
2 = − β

α4 i(q2,xxx + 3mp1q1,xq2 + 3mp1q1q2,x + 6np2q2q2,x),⎧⎪⎨⎪⎩
a[4] = β

α4
[

mp1,xxq1 + mp1q1,xx + np2,xxq2 + np2q2,xx

−mp1,xq1,x − np2,xq2,x + 3(mp1q1 + np2q2)2 ]
,

d
[4]
k,l = − β

α4 (3mp1q1plqk + 3np2q2plqk + pl,xxqk + plqk,xx − pl,xqk,x), 1 ≤ k, l ≤ 2;
hich will be used to present examples of integrable Hamiltonian equations later.
Following the Lax pair formulation and based on the previous computations, we can take the following

emporal matrix spectral problems

− iϕt = N [r]ϕ = N [r](u, λ)ϕ, N [r] = (λrY)+ =
r∑

s=0
λsY [r−s], r ≥ 0, (2.12)

o form appropriate other parts of Lax pairs. Now, the compatibility conditions (1.3) of the resulting Lax
airs yield a four-component soliton hierarchy:

utr = K [r] = (αib
[r+1]
1 , αib

[r+1]
2 , −αic

[r+1]
1 , −αic

[r+1]
2 )T , r ≥ 0. (2.13)

Making use of the previous expressions of b
[s]
j and c

[s]
j , we immediately work out the first two nonlinear

xamples. The first one is the nonlinear Schrödinger type equations:{
ipj,t2 = β

α2 [pj,xx + 2(mp1q1 + np2q2)pj ],
iqj,t2 = − β

α2 [qj,xx + 2(mp1q1 + np2q2)qj ], (2.14)

where 1 ≤ j ≤ 2, and the second is the modified Korteweg–de Vries type equations:{
pj,t3 = − β

α3 [pj,xxx + 3m(p1pj)xq1 + 3n(p2pj)xq2],
qj,t3 = − β

α3 [qj,xxx + 3mp1(q1qj)x + 3np2(q2qj)x], (2.15)

here 1 ≤ j ≤ 2. Those examples enrich the category of integrable coupled nonlinear Schrödinger equations
nd modified Korteweg–de Vries equations (see, e.g., [13–15]).

. Bi-Hamiltonian structures

To furnish bi-Hamiltonian structures for the presented soliton hierarchy (2.13), we apply the trace identity
1.5) associated with the matrix spectral problem (2.1). By virtue of the solution Y determined by (2.4), we
an derive

tr
(
Y ∂M

∂λ

)
= α1a + α2(md1,1 + nd2,2), tr

(
Y ∂M

∂u

)
= (mc1, nc2, mb1, nb2)T ,

nd consequently, we obtain

δ

δu

∫
[α1a[s+1] + α2(md

[s]
1,1 + nd

[s]
2,2)]λ−s−1 dx = λ−γ ∂

∂λ
λγ−s(mc

[s]
1 , nc

[s]
2 , mb

[s]
1 , nb

[s]
2 )T , s ≥ 0.

Checking the case with s = 2, we see γ = 0. Therefore, we have

δ

δu
H[s] = (mc

[s+1]
1 , nc

[s+1]
2 , mb

[s+1]
1 , nb

[s+1]
2 )T , H[s] = −

∫
α1a[s+2] + α2(md

[s+2]
1,1 + nd

[s+2]
2,2 )

s + 1 dx, (3.1)

where s ≥ 0.
All these identities enable us to furnish the Hamiltonian structures for the obtained integrable hierarchy

(2.13):

utr = K [r] = J
δH[r]

, J =
[

0 J0
]

, J0 =
[ 1

m αi 0
1

]
, r ≥ 0, (3.2)
δu −J0 0 0 n αi

4
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here the Hamiltonian functionals H[r], r ≥ 0, are given by (3.1). It is known that the Hamiltonian
tructures establishes a connection from a conserved functional H to a symmetry S by S = J δH

δu .
A straightforward calculation tells that we can obtain an isospectral Lax operator algebra (see [16] for

details):

[[N [s1], N [s2]]] = N [s1]′(u)[K [s2]] − N [s2]′(u)[K [s1]] + [N [s1], N [s2]] = 0, s1, s2 ≥ 0, (3.3)

which comes from the algebraic structure of isospectral zero curvature equations [16]. It follows from this
Lax operator algebra that we have the Abelian algebra of infinitely many symmetries {K [s]}∞

s=0:

[[K [s1], K [s2]]] = K [s1]′(u)[K [s2]] − K [s2]′(u)[K [s1]] = 0, s1, s2 ≥ 0. (3.4)

Further, the Hamiltonian structures tell that the conserved functionals {H[s]}∞
s=0 form an Abelian algebra,

too:
{H[s1], H[s2]}J =

∫ (δH[s1]

δu

)T
J

δH[s2]

δu
dx = 0, s1, s2 ≥ 0. (3.5)

Moreover, from K [s+1] = ΦK [s], we can work out the recursion operator Φ = (Φjk)4×4:{
Φ11 = − i

α (∂x + 2mp1∂−1
x q1 + np2∂−1

x q2), Φ12 = − i
α np1∂−1

x q2,
Φ13 = − i

α (2mp1∂−1
x p1), Φ14 = − i

α n(p1∂−1
x p2 + p2∂−1

x p1), (3.6)

{
Φ21 = − i

α mp2∂−1
x q1, Φ22 = − i

α (∂x + mp1∂−1
x q1 + 2np2∂−1

x q2),
Φ23 = − i

α m(p2∂−1
x p1 + p1∂−1

x p2), Φ24 = − i
α (2np2∂−1

x p2), (3.7){
Φ31 = i

α (2mq1∂−1
x q1), Φ32 = i

α n(q1∂−1
x q2 + q2∂−1

x q1),
Φ33 = i

α (∂x + 2mq1∂−1
x p1 + nq2∂−1

x p2), Φ34 = i
α nq1∂−1

x p2,
(3.8){

Φ41 = i
α m(q2∂−1

x q1 + q1∂−1
x q2), Φ42 = i

α (2nq2∂−1
x q2),

Φ43 = i
α mq2∂−1

x p1, Φ44 = i
α (∂x + mq1∂−1

x p1 + 2nq2∂−1
x p2). (3.9)

t is direct to see that a combination of J with the recursion operator Φ [17], leads to bi-Hamiltonian
tructures [3] for the hierarchy:

utr = K [r] = J
δH[r]

δu
= M

δH[r−1]

δu
, r ≥ 1, (3.10)

here the second Hamiltonian operator is M = ΦJ .
All this implies that each equation in the resulting hierarchy (2.13) is Liouville integrable, or more

recisely, each possesses infinitely many commuting conserved densities {H[s]}∞
s=0 and symmetries {K [s]}∞

s=0.

. Concluding remarks

A set of integrable hierarchies with four potentials has been presented, from a class of AKNS reduced
pecial matrix spectral problems, within the Lax pair formulation. Bi-Hamiltonian structures have been
urnished for the resulting integrable equations through applying the trace identity and recursion operators.

Other generalizations could be generated by taking more potentials in matrix spatial spectral problems
o generate integrable Hamiltonian equations with six or more potentials. Nonlocal integrable counterparts
ould also be formulated under similarity transformations of spectral matrices (see, e.g., [18–20] for novel
onlocal nonlinear Schrödinger equations). The field of integrable equations is vast and continues to evolve,
ith new approaches and techniques being developed. It requires a deep understanding of mathematical
ethods and theories, as well as creativity and insight to construct new integrable equations.
5
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D 4 (1) (1981/82) 47–66.

[18] W.X. Ma, Soliton hierarchies and soliton solutions of type (-λ∗, -λ) reduced nonlocal integrable nonlinear Schröodinger
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