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a b s t r a c t

A kind of novel reduced nonlocal integrable mKdV equations of odd order is
presented by taking two group reductions of the AKNS matrix spectral problems.
One reduction is local, replacing the spectral parameter with its negative and
the other is nonlocal, replacing the spectral parameter with its negative complex
conjugate. Based on distribution of eigenvalues, soliton solutions are generated
from the corresponding reflectionless Riemann–Hilbert problems.
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1. Introduction

Nonlocal integrable equations have become a new hot research area in soliton theory [1,2]. Group
reductions of matrix spectral problems play an essential role in exploring their integrable structures [3,4].
The traditional methods, including the inverse scattering transform, Darboux transformation and the Hirota
bilinear method, can be used to construct their soliton solutions (see, e.g., [2,5–7]).

It is known that the Riemann-Hilbert technique is one of powerful approaches to integrable equations,
both local and nonlocal, and particularly to their soliton solutions [8]. Various integrable equations have
been studied via their associated Riemann-Hilbert problems (see, e.g., [9–11] in the nonlocal case). In this
letter, we would like to construct a kind of novel reduced nonlocal integrable mKdV equations and their
soliton solutions.

The rest of this letter is organized as follows. In Section 2, we make two group reductions to generate type
(−λ, −λ∗) reduced nonlocal integrable mKdV equations of odd order. In Section 3, based on distribution of
eigenvalues, we formulate solutions to the corresponding special Riemann-Hilbert problems with the identity
jump matrix, and construct soliton solutions for the resulting reduced nonlocal integrable mKdV equations.
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. Reduced nonlocal integrable mKdV equations

The matrix AKNS integrable hierarchies revisited: Let us recall the AKNS hierarchies of matrix
ntegrable equations. As usual, let λ denote the spectral parameter, and assume that m, n ≥ 1 are two given
ntegers, and p and q are two matrix potentials of sizes m × n and n × m, respectively. The matrix AKNS
pectral problems are defined as follows:

− iϕx = Uϕ = U(u, λ)ϕ = (λΛ + P )ϕ, − iϕt = V [r]ϕ = V [r](u, λ)ϕ = (λrΩ + Q[r])ϕ, (2.1)

here r ≥ 0. The constant matrices Λ and Ω are given by

Λ = diag(α1Im, α2In), Ω = diag(β1Im, β2In), (2.2)

here α1, α2 and β1, β2 are two arbitrary pairs of distinct real constants, Is denotes the identity matrix of
ize s, and the other two involved square matrices of size m + n are defined by

P = P (u) =
[

0 p
q 0

]
, Q[r] =

r−1∑
s=0

λs

[
a[r−s] b[r−s]

c[r−s] d[r−s]

]
, (2.3)

here a[s], b[s], c[s] and d[s], s ≥ 0, are defined recursively as follows:

b[0] = 0, c[0] = 0, a[0] = β1Im, d[0] = β2In, (2.4a)

b[s+1] = 1
α

(−ib[s]
x − pd[s] + a[s]p), s ≥ 0, (2.4b)

c[s+1] = 1
α

(ic[s]
x + qa[s] − d[s]q), s ≥ 0, (2.4c)

a[s]
x = i(pc[s] − b[s]q), d[s]

x = i(qb[s] − c[s]p), s ≥ 1, (2.4d)

ith zero constants of integration being taken. Particularly, we can have

Q[1] = β

α
P, Q[2] = β

α
λP − β

α2 Im,n(P 2 + iPx),

and
Q[3] = β

α
λ2P − β

α2 λIm,n(P 2 + iPx) − β

α3 (i[P, Px] + Pxx + 2P 3),

here α = α1 − α2, β = β1 − β2 and Im,n = diag(Im, −In). The compatibility conditions of the two matrix
pectral problems in (2.1), i.e., the zero curvature equations

Ut − V [r]
x + i[U, V [r]] = 0, r ≥ 0, (2.5)

ead to one so-called matrix AKNS integrable hierarchy:

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0. (2.6)

he second set of nonlinear integrable equations in the hierarchy gives us the AKNS matrix mKdV equations:

pt = − β

α3 (pxxx + 3pqpx + 3pxqp), qt = − β

α3 (qxxx + 3qxpq + 3qpqx), (2.7)

here p and q are two matrix potentials of sizes m × n and n × m, respectively.
Reduced nonlocal integrable mKdV equations: Let us now construct a kind of novel reduced

nonlocal integrable mKdV equations of odd order by taking two group reductions for the matrix AKNS
spectral problems in (2.1).
2
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Let Σ1,Σ2 and ∆1,∆2 be a pair of constant invertible symmetric matrices and another pair of constant
nvertible Hermitian matrices, respectively. We consider two group reductions for the spectral matrix U :

UT (x, t, −λ) = (U(x, t, −λ))T = −ΣU(x, t, λ)Σ−1, (2.8)

nd
U†(−x, −t, −λ∗) = (U(−x, −t, −λ∗))† = −∆U(x, t, λ)∆−1, (2.9)

here T denotes the matrix transpose, † stands for the Hermitian transpose, and the two constant invertible
atrices, Σ and ∆, are defined by

Σ =
[

Σ1 0
0 Σ2

]
, ∆ =

[
∆1 0
0 ∆2

]
. (2.10)

These two group reductions in (2.8) and (2.9) lead precisely to

P T (x, t) = −ΣP (x, t)Σ−1, (2.11)

and
P †(−x, −t) = −∆P (x, t)∆−1, (2.12)

respectively, and enable us to make the reductions for the matrix potentials:

q(x, t) = −Σ−1
2 pT (x, t)Σ1, (2.13)

and
q(x, t) = −∆−1

2 p†(−x, −t)∆1, (2.14)

respectively. Therefore, to satisfy both group reductions, we need to impose an additional constraint:

Σ−1
2 pT (x, t)Σ1 = ∆−1

2 p†(−x, −t)∆1. (2.15)

Moreover, we notice that the group reductions in (2.8) and (2.9) guarantee{
V [2s+1]T (x, t, −λ) = (V [2s+1](x, t, −λ))T = −ΣV [2s+1](x, t, λ)Σ−1,

V [2s+1]†(−x, −t, −λ∗) = (V [2s+1](−x, −t, −λ∗))† = −∆V [2s+1](x, t, λ)∆−1,
(2.16)

where s ≥ 0. Consequently, under the potential reductions in (2.13) and (2.14), the integrable matrix AKNS
equations in (2.6) with r = 2s + 1, s ≥ 0, become a hierarchy of reduced nonlocal integrable matrix mKdV
equations of odd order:

pt = iαb[2s+2]|
q=−Σ−1

2 pT Σ1=−∆−1
2 p†(−x,−t)∆1

, s ≥ 0, (2.17)

where p is an m × n matrix potential, which satisfies (2.15). Each equation in the hierarchy (2.17) possesses
a Lax pair of the reduced spatial and temporal matrix spectral problems in (2.1) with r = 2s + 1, s ≥ 0,
and infinitely many symmetries and conservation laws reduced from those for the integrable matrix AKNS
equations in (2.6) with r = 2s + 1, s ≥ 0.

Let us now fix s = 1, i.e., r = 3. The reduced matrix integrable mKdV equations in (2.17) with s = 1
give a kind of novel reduced nonlocal integrable matrix mKdV equations:

pt = − β

α3 (pxxx − 3pΣ−1
2 pTΣ1px − 3pxΣ

−1
2 pTΣ1p)

= − β

α3 (pxxx − 3p∆−1
2 p†(−x, −t)∆1px − 3px∆

−1
2 p†(−x, −t)∆1p), (2.18)
3
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here p is an m × n matrix potential satisfying (2.15). Let us below compute a few examples of these novel
educed nonlocal integrable matrix mKdV equations, by taking different values for m, n and different choices
or Σ ,∆.

If we consider m = 1 and n = 2, and take

Σ1 = 1, Σ−1
2 =

[
σ 0
0 σ

]
, ∆1 = 1, ∆−1

2 =
[

0 δ
δ 0

]
, (2.19)

here σ and δ are real constants and satisfy σ2 = δ2 = 1, then the potential constraint (2.15) tells

p2 = σδp∗
1(−x, −t), (2.20)

here p = (p1, p2), and further, the corresponding potential matrix P reads

P =

⎡⎢⎣ 0 p1 σδp∗
1(−x, −t)

−σp1 0 0

−δp∗
1(−x, −t) 0 0

⎤⎥⎦ . (2.21)

n this way, the corresponding reduced nonlocal integrable mKdV equations in (2.18) become

p1,t = − β

α3 [p1,xxx − 6σp2
1p1,x − 3σp∗

1(−x, −t)(p1p∗
1(−x, −t))x], (2.22)

here σ = ±1. In the same manner, a choice of

Σ1 = 1, Σ−1
2 =

[
0 σ
σ 0

]
, ∆1 = 1, ∆−1

2 =
[

δ 0
0 δ

]
, (2.23)

here σ and δ are real constants satisfying σ2 = δ2 = 1, leads to another pair of scalar nonlocal integrable
KdV equations:

p1,t = − β

α3 [p1,xxx − 6δp1p∗
1(−x, −t)p1,x − 3δp1(p1p∗

1(−x, −t))x], (2.24)

here δ = ±1. All these are a different kind of nonlocal integrable equations from the one studied in [12–14].
e point out that if we take the complex field into consideration, the two equations in (2.22), and the two

quations in (2.24), can be changed into each other, under the dependent variable transformation p1 → ip1,
nd the independent variable transformation (x, t) → (ix, −it), respectively.

Next, if we consider m = 1 and n = 4, and take

Σ1 = 1, Σ−1
2 =

⎡⎢⎢⎣
σ1 0 0 0
0 σ1 0 0
0 0 σ2 0
0 0 0 σ2

⎤⎥⎥⎦ , ∆1 = 1, ∆−1
2 =

⎡⎢⎢⎣
0 δ1 0 0
δ1 0 0 0
0 0 0 δ2
0 0 δ2 0

⎤⎥⎥⎦ , (2.25)

where σj and δj are real constants and satisfy σ2
j = δ2

j = 1, j = 1, 2, then the potential constraint (2.15)
generates

p2 = σ1δ1p∗
1(−x, −t), p4 = σ2δ2p∗

3(−x, −t), (2.26)

where p = (p1, p2, p3, p4), and further, the corresponding potential matrix P is given by

P =

⎡⎢⎢⎢⎢⎢⎢⎣
0 p1 σ1δ1p∗

1(−x, −t) p3 σ2δ2p∗
3(−x, −t)

−σ1p1 0 0 0 0

−δ1p∗
1(−x, −t) 0 0 0 0

−σ2p3 0 0 0 0
∗

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.27)
−δ2p3(−x, −t) 0 0 0 0
4
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his enables us to obtain a set of two-component novel reduced nonlocal integrable mKdV equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p1,t = − β

α3 [p1,xxx − 6σ1p2
1p1,x − 3σ1p∗

1(−x, −t)(p1p∗
1(−x, −t))x

−3σ2p3(p1p3)x − 3σ2p∗
3(−x, −t)(p1p∗

3(−x, −t))x],

p3,t = − β

α3 [p3,xxx − 3σ1p1(p1p3)x − 3σ1p∗
1(−x, −t)(p∗

1(−x, −t)p3)x

−6σ2p2
3p3,x − 3σ2p∗

3(−x, −t)(p3p∗
3(−x, −t))x],

(2.28)

here σj are real constants and satisfy σ2
j = 1, j = 1, 2.

. Soliton solutions

Distribution of eigenvalues: Note that based on the group reduction in (2.8) (or (2.9)), we can show
hat λ is an eigenvalue of the matrix spectral problems in (2.1) if and only if λ̂ = −λ (or λ̂ = −λ∗) is an

adjoint eigenvalue, i.e., it satisfies the adjoint matrix spectral problems:

iϕ̃x = ϕ̃U = ϕ̃U(u, λ̂), iϕ̃t = ϕ̃V [r] = ϕ̃V [r](u, λ̂), (3.1)

here r = 2s+1, s ≥ 0. Accordingly, we can assume to have eigenvalues λ : µ, µ∗, ν, and adjoint eigenvalues
ˆ : −µ, −µ∗, −ν, where µ ̸∈ R and ν ∈ R. Moreover, if ϕ(λ) is an eigenfunction of the matrix spectral
roblems associated with an eigenvalue λ, then

ϕ̃(x, t, λ) = ϕT (x, t, −λ)Σ , ϕ̃(x, t, λ) = ϕ†(−x, −t, −λ∗)∆, (3.2)

present two adjoint eigenfunctions associated with the same original eigenvalue λ.
General solutions to reflectionless Riemann-Hilbert problems: Let N1, N2 ≥ 0 be two integers

such that N = 2N1 +N2 ≥ 1. To present a general formulation of solutions to reflectionless Riemann-Hilbert
problems, we take two different sets of eigenvalues and adjoint eigenvalues as follows:

λk, 1 ≤ k ≤ N : µ1, · · · , µN1 , µ∗
1, · · · , · · · , µ∗

N1 , ν1, · · · , νN2 , (3.3)

and
λ̂k, 1 ≤ k ≤ N : −µ1, · · · , −µN1 , −µ∗

1, · · · , −µ∗
N1 , −ν1, · · · , −νN2 , (3.4)

where µi ̸∈ R, 1 ≤ i ≤ N1, and νi ∈ R, 1 ≤ i ≤ N2, and their corresponding eigenfunctions and adjoint
eigenfunctions: vk, v̂k, 1 ≤ k ≤ N, respectively. Let us further introduce

G+(λ) = Im+n −
N∑

k,l=1

vk(M−1)klv̂l

λ − λ̂l

, (G−)−1(λ) = Im+n +
N∑

k,l=1

vk(M−1)klv̂l

λ − λk
, (3.5)

where M is a square matrix M = (mkl)N×N with its entries determined by

mkl = v̂kvl

λl − λ̂k

, 1 ≤ k, l ≤ N. (3.6)

t is direct to show that these two matrices G+(λ) and G−(λ) solve the corresponding reflectionless
iemann-Hilbert problem:

(G−)−1(λ)G+(λ) = Im+n, λ ∈ R. (3.7)

Solving the matrix spectral problems with zero potentials leads to

v (x, t) = eiλkΛx+iλ2s+1
k

Ωtw , 1 ≤ k ≤ N, (3.8)
k k

5
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nd
v̂k(x, t) = ŵke−iλ̂kΛx−iλ̂2s+1

k
Ωt, 1 ≤ k ≤ N, (3.9)

here wk and ŵk, 1 ≤ k ≤ N , are constant column and row vectors, respectively. Also, by making an
symptotic expansion

G+(λ) = Im+n + 1
λ

G+
1 + O( 1

λ2 ), (3.10)

as λ → ∞, we obtain

G+
1 = −

N∑
k,l=1

vk(M−1)klv̂l, (3.11)

and further, plugging it into the matrix spatial spectral problem, we arrive at

P = −[Λ, G+
1 ] = lim

λ→∞
λ[G+(λ),Λ]. (3.12)

This gives the N -soliton solution to the matrix AKNS equations in (2.6):

p = α

N∑
k,l=1

v1
k(M−1)klv̂

2
l , q = −α

N∑
k,l=1

v2
k(M−1)klv̂

1
l , (3.13)

where for each 1 ≤ k ≤ N , we have made the splittings, vk = ((v1
k)T , (v2

k)T )T and v̂k = (v̂1
k, v̂2

k), where v1
k

and v̂1
k are column and row vectors of dimension m, respectively, while v2

k and v̂2
k are column and row vectors

of dimension n, respectively.
To present soliton solutions for the reduced nonlocal matrix integrable mKdV equations in (2.17), one

needs to check if G+
1 determined by (3.11) possesses the involution properties:

(G+
1 )† = ΣG+

1 Σ
−1, (G+

1 )†(−x, −t) = ∆G+
1 ∆

−1. (3.14)

These mean that the resulting potential matrix P determined by (3.12) will satisfy the group reduction
conditions in (2.11) and (2.12). In this way, the above N -soliton solution for the matrix AKNS equations in
(2.6) reduces to the N -soliton solution:

p = α

N∑
k,l=1

v1
k(M−1)klv̂

2
l , (3.15)

for the reduced nonlocal matrix integrable mKdV equations in (2.17).
Realization: Following the preceding analysis, all adjoint eigenfunctions can be determined by

v̂k = v̂k(x, t, λ̂k) = vT
k (λk)Σ = v†

N1+k(−x, −t, λN1+k)∆, 1 ≤ k ≤ N1, (3.16)

v̂N1+k = v̂N1+k(x, t, λ̂N1+k) = vT
N1+k(λN1+k)Σ = v†

k(−x, −t, λk)∆, 1 ≤ k ≤ N1, (3.17)

and
v̂k = v̂k(x, t, λ̂k) = vT

k (λk)Σ = v†
k(−x, −t, λ∗

k)∆, 2N1 + 1 ≤ k ≤ N, (3.18)

respectively. It is direct to see that the choices in (3.16), (3.17) and (3.18) require the selections on
wk, 1 ≤ k ≤ N : ⎧⎨⎩

wT
k (Σ∆−1 − ∆∗Σ∗−1) = 0, 1 ≤ k ≤ N1,

wk = Σ∗−1∆w∗
k−N1 , N1 + 1 ≤ k ≤ 2N1,

wT
k Σ = w†

k∆, 2N1 + 1 ≤ k ≤ N,

(3.19)

where ∗ denotes the complex conjugate of a matrix. We emphasize that all these selections aim to satisfy
the reduction conditions in (2.11) and (2.12), which are consequences of the group reductions in (2.8) and
6
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2.9). To sum up, when the selections in (3.19) are made, the formula (3.15), together with (3.5), (3.6),
3.8), (3.16), (3.17) and (3.18), gives rise to N -soliton solutions to the reduced nonlocal integrable mKdV
quations in (2.17).

When m = n/2 = s = N = 1, let us take λ1 = iν, λ̂1 = −iν, ν ∈ R. Based on the last condition in
(3.19), we can choose w1 = (w1,1, w1,2, −σw1,2)T , where w1,1, w1,2 are real constants and σ = ±1 as involved
n (2.22). In this way, we obtain the following one-soliton solution to the reduced nonlocal integrable mKdV
quations in (2.22):

p1 = 2iσν(α1 − α2)w1,1w1,2

w2
1,1e−(α1−α2)νx+(β1−β2)ν3t + 2σw2

1,2e(α1−α2)νx−(β1−β2)ν3t
, (3.20)

where ν ∈ R is arbitrary, and w1,1, w1,2 are arbitrary but satisfy w2
1,1 = 2w2

1,2, which is a consequence of
the involution properties in (3.14). This traveling wave solution is analytic when σ = 1 but has a singularity
line on the (x, t)-plane when σ = −1. The speed of the wave is α−1βν2.

We remark that it would also be interesting to search for other kinds of reduced nonlocal integrable
mKdV equations by different kinds of group reductions, both local and nonlocal, and to explore dynamic
properties of exact solutions to the resulting reduced nonlocal integrable mKdV equations, including lump
solutions [15], solitonless solutions [16] and algebro–geometric solutions [17]. All this will greatly enrich the
theory of nonlocal integrable equations.
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