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1. Introduction

Zero curvature equations on simple Lie algebras lay the foundation for constructing soliton hierarchies of evolution equa-
tions. Among the well-known soliton hierarchies are the KdV hierarchy, the AKNS hierarchy and the Kaup-Newell hierarchy
[1]. The trace identity is used to construct Hamiltonian structures of soliton equations [2].

More generally, zero curvature equations associated with non-simple Lie algebras generate integrable couplings [3,4], and
the variational identity provides the basic tool for finding the corresponding Hamiltonian structures, which often lead to
hereditary recursion operators [5,6].

Let us first recall the standard procedure for constructing soliton hierarchies (see, e.g., [2,7]). Usually, one starts from a
spectral problem

d)x = U¢7 U= U(uv)') € g, (11)

where / is the spectral parameter and g is a matrix loop algebra associated with a given matrix Lie algebra g, often being
simple. We take a solution of the form

W=W(ui) =Y Woii', Wpecg i>0, (12)

i>0
to the stationary zero curvature equation

Wy =[U,W]. (1.3)
Then, introduce the temporal spectral problems

¢y, =V™p, m=0, (1.4)
with the Lax matrices being defined by

VM = v i) = O"W), + Ameg, m =0, (1.5)

where P, denotes the polynomial part of P in /. The introduction of the modification terms A,, aims to guarantee that the
zero curvature equations

Uy, = Vi +[U,V™] =0, m >0, (16)
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generate a hierarchy of soliton equations with Hamiltonian structures:
0Hm

U, =Kn(u)=J S0 m > 0. (1.7)

The Hamiltonian functionals #,, in (1.7) are generally presented by using the trace identity [2,7]:
ou , 0 ou A d 2

5u/tr<8A >dx_ % <8uW>’ =34 In|tr(W*)], (1.8)
or the variational identity [6]:

6 [ /oU 3] ou

J— f— Y=Y

6u_/<8A >d = % A<au W> Y= 2d) 1n\<W Wy, (1.9)

where (-, -) is a non-degenerate, symmetric and ad-invariant bilinear form on the loop algebra g [6]. If g is non-semisimple,
the bilinear form (-, -) in the variational identity (1.9) must not be of the Killing type. If (A, A) is positive for every non-zero
matrix A € g, then the Lie algebra (g, (-,-)) becomes quadratic.

In this paper, we would like to form a spectral problem, based on the real Lie algebra g = so(3, R), to generate a hierarchy
of soliton equations from the associated zero curvature equations. The Hamiltonian structures will be furnished by applying
the corresponding trace identity and so all equations in the resulting soliton hierarchy are Liouville integrable, i.e., they pos-
sess infinitely many commuting symmetries and conservation laws. Two concrete examples will be computed, together with
their bi-Hamiltonian structures.

2. Matrix loop algebra and soliton equations
2.1. Matrix loop algebra so(3, R)

Let us consider the simple real Lie algebra of the special orthogonal group, g = so(3, R), the Lie algebra of 3 x 3 trace-free,
skew-symmetric real matrices. It has a basis

0 01 0 0O 0 10
ee=(0 0 0|, =0 0 -1, es=|-1 0 O}, (2.1)
-1 00 010 0 00
with which, the structure equations of so(3, R) are
ler1,ex] =e3, [ex,e3] =€y, [e3,er] =ea. (2.2)

The derived algebra [so(3, R), so(3, R)] is so(3, R) itself. This is one of the only two three-dimensional real Lie algebras with a
three-dimensional derived algebra The other one is sl(2, R), which has been frequently used to analyze soliton equations.
The matrix loop algebra we will adopt in our construction is

g =50(3,R) = {M € s0(3,R)|entries of M — Laurent series in A}, (2.3)
where /. is a spectral parameter. The algebra so(3, R) contains matrices of the form 2"e; + /"e, + A'e; with arbitrary integers
m, n, L. This matrix loop algebra gives a basis for us to generate soliton equations. Based on the perturbation-type loop alge-
bras of s0(3, R), we can also consider the problem of integrable couplings such as bi-integrable couplings and tri-integrable
couplings.

2.2. Soliton hierarchy

We are going to construct a soliton hierarchy from the matrix loop algebra so(3, R). Let us introduce a spectral problem

0 q 2 P ol
be=Us, U=Ulwd)=7er+petaes=|-g 0 —p|. u=|"] o= || 24)
- p 0 ¢3
Then, the stationary zero curvature equation
Wy = [U,W], (2.5)
becomes
ax = pc —qb,
by = —ic+qa, (2.6)

¢x = /b —pa,
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if we assume that W is of the form

0 ¢ a 0 o q
W =ae, +be;+ces=|-c 0 -b|= ZWo_ii’i, Woi=|-¢ 0 —bi|, i=0. (2.7)
—a b 0 iz0 —a; b,’ 0

Upon taking the initial values
ap=-1, bg=co=0,
the system (2.6) equivalently yields
bi1 = cix + paj,
Cir1 = —bix + qa;, i>0. (2.8)
iv1x = PCiay — qbiy,
We impose the integration conditions
ily—o = bily_g =Cil oo =0, =1,
to determine the sequence of {a;, b;,c;|i > 1} uniquely. Therefore, the first few sets can be computed as follows:
bi=-p, ci=-q, @ =0
by=-q, =p, @G=;0"+¢);
by = Pu +30° +3P0.  C3=qu+3P*q+34%, 03 =Ppg, — D4
bs = Qe +3P°4 +38°0ss €4 = —Pax —3P°Px — 3P4,
s = —PPy — GG +3P% +34x —3P* —3P°¢° — 304
bs = —Prox = 3P°Pa = 3PP — 3P’ — 3Px44x — P9Gsc + 3 P05 — 3P° — 1P°0° — 3P4,
€5 = Qoo = 390 — 3995 — 3P’ 0o = 3PPulx — PPl +3P39 —39° — 3P°¢° — 3P,
05 = P — Pl — P + Puloe +3P°P0 = 3P4°0y — 3P° G +3D,4°-

Now, taking

m
VM= ("W), =3 W™, m >0, (2.9)
i=0
the zero curvature equations
U, - V™ + U, V™ =0, m=>0, (2.10)
generate a hierarchy of soliton equations:
—C
utm:Km:{ m“}:qf“{q } m >0, 2.11)
bm+l -p
where the operator ® can be determined by the recursion relation (2.8):
—1 -1
o= |9P Oraal, 0 (2.12)
—0—-po~'p —po q OX

2.3. Hamiltonian structures
We use the trace identity [2] (or more generally the variational identity [6]):

5 ou o . ou
2 o _ 17 Y% oY
S /tr(W az) dx = 17 = tr(W au)’ (2.13)

where the constant y is determined as in (1.8).
It is direct to compute that

oy 0 01 oy 000 oy 0 10
—=|0 0 0|, —=|00 -1|, —=|-1 0 O
oA ap oq

-1 00 010 0 00

and so we obtain



120 W.X. Ma/Applied Mathematics and Computation 220 (2013) 117-122
ou ou ou
W—)=-2 W—) =-2b, W—)=-2c
tr( 02) a, tr( E)p) b, tr( 8q> c

Now the corresponding trace identity (1.8) becomes

) L0 b
9 v 9
M/adx A Ik L}

Balancing coefficients of each power of 4 in the above equality gives rise to

S [ bn
5 [omade=G-m[ "], m=0

Cm

The case of m =1 tells y = 0, and thus we have

4 A2 _ bm+1
@/<7m+1>dx_{cm+1} m=0. 2

Consequently, we obtain the following Hamiltonian structures for the soliton hierarchy (2.11):

—Cm41 (5Hm
u, =Kp= =]—, m=0, 2.15
" [bmﬂ } T 5 219
with the Hamiltonian operator
0 -1
= 2.16
= o (2.16)
and the Hamiltonian functionals
_ ' _ m2
Hm—/< 7m+]>dx, m > 0. (2.17)

These correspond to infinitely many conservation laws of each system in the soliton hierarchy (2.11), which can also be com-
puted directly by computer algebra systems (see, e.g., [8]).

2.4. Liouville integrability
It is direct but lengthy to show by computer algebra systems that the operator ® defined by (2.12) is hereditary (see [9]
for definition), i.e., it satisfies
@' (u)[OK]S — O (u)[K]S = @' (u)[DS|K — D' (u)[S]K (2.18)
for all vector fields K and S; and that J and

o+qd'q —qo'p

M= = ,
/ —-pd'q  0+pd'p

(2.19)

where J is defined by (2.16), constitute a Hamiltonian pair (see [10] for details), i.e., any linear combination N of | and M
satisfies

/ K"N'(u)[NS|T dx + cycle(K,S,T) = 0 (2.20)

for all vector fields K,S and T.
The hereditary property (2.18) is equivalent to
Log® = OLc D, (2.21)
where K is an arbitrary vector field. The Lie derivative Ly® above is defined by
(Lg®)S = @[K, S| — [K, DS],

where [-, ] is the Lie bracket of vector fields. It is known that an autonomous operator ® = ®(u, u,...) is a recursion operator
of an evolution equation u, = K iff the operator ® needs to satisfy

Ly® =0. (2.22)
Obviously, for the operator @ defined by (2.12), we have

L, ® = 0, Ko:{q }



W.X. Ma/Applied Mathematics and Computation 220 (2013) 117-122 121

and thus
Lg,® = Lok, , @ =PLg, , ®=0, m>=1, (2.23)

where the K,,’s are given by (2.11). This implies that the operator @ defined by (2.12) is a common hereditary recursion oper-
ator for the soliton hierarchy (2.11). We point out that there are also direct symbolic algorithms for computing recursion
operators of nonlinear partial differential equations by computer algebra systems (see, e.g., [11]).

Now, the soliton hierarchy (2.11) is bi-Hamiltonian (see, e.g., [10,12]):

= Ky = 20l gy T,

where J,M and H,, are defined by (2.16), (2.19) and (2.17) respectively, and so, the hierarchy is Liouville integrable, i.e., it
possesses infinitely many commuting symmetries and conservation laws. In particular, we have the Abelian symmetry
algebra:

m>1, (2.24)

Ky, K)) = K, (u)[K)] — Kj(u)[Ki] =0, k,1>0 (2.25)
and the Abelian algebras of conserved functionals:
{Hi, Hi}y = / <5H"> J@d =0, kl>0 (2.26)
and
_ OHy T OH,; _
(M Hoby = / ( - ) MT4x =0, kizo0 (2.27)

2.5. Two nonlinear examples

The first two nonlinear integrable systems in the hierarchy (2.11) read

(g _—1p2g_1g3

w, = |P| =k = | 2P0 (2.28)
2 113 1 2

q ty _pxx +§p +§pq

and

r 3.2 34 2

w, = | P =Ky = [P T2P PR (2.29)
3 32 342

q t3 _qxxx +§p qx +jq qx

They possess the following bi-Hamiltonian structures

oM oM
u, =K, ]72 = MTul (2.30)
and
Hs _ M
u, =K 173 Tuz (2.31)

where the Hamiltonian pair {J, M} is defined by (2.16) and (2.19), and the Hamiltonian functionals, H;, H, and H3, are given
by

= _% f pPqy — dX
:—%J( prx qqxx 3P +34z —3p* — 30’ )dx (2.32)
= =% J (Pxw — PG — Pl + Pxxe +3D°Pud — 2pq Gy —3P°q +3p,q°) dx.

3. Conclusions and remarks

We presented a hierarchy of soliton equations from zero curvature equations associated with the real loop algebra
s0(3,R). The Liouville integrability of the resulting soliton equations has been shown by establishing a bi-Hamiltonian
formulation.

The real Lie algebra of the special orthogonal group, so(3, R), is not isomorphic to the real Lie algebra sl(2, R) over the real
field R, and thus the soliton hierarchy (2.11) is not gauge equivalent to the AKNS soliton hierarchy [13] over the real field R.
But the two Lie algebras are isomorphic to each other over the complex filed C, which implies that the hierarchy (2.11) is
gauge equivalent to the AKNS hierarchy over the complex filed C.
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There is a growing interest in soliton equations generating from zero curvature equations associated with non-semisim-
ple Lie algebras. Bi-integrable couplings and tri-integrable couplings provide us with insightful thoughts about general struc-
tures of integrable systems with multi-components [14]. Multi-integrable couplings generate diverse recursion operators in
block matrix form. The mathematical structures behind integrable couplings are rich and interesting [6,14]. It is known that
Hamiltonian structures exist for the perturbation equations [15,16], but some non-semisimple matrix Lie algebras generat-
ing spectral matrices do not possess any non-degenerate bilinear forms required in the variational identities [17,18]. It is an
open question to us how to guarantee the existence of Hamiltonian structures for bi- or tri-integrable couplings, based on
zero curvature equations.
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