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We generate a hierarchy of soliton equations from zero curvature equations associated
with the real Lie algebra soð3;RÞ and show that each equation in the resulting hierarchy
has a bi-Hamiltonian structure and thus integrable in the Liouville sense.
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1. Introduction

Zero curvature equations on simple Lie algebras lay the foundation for constructing soliton hierarchies of evolution equa-
tions. Among the well-known soliton hierarchies are the KdV hierarchy, the AKNS hierarchy and the Kaup–Newell hierarchy
[1]. The trace identity is used to construct Hamiltonian structures of soliton equations [2].

More generally, zero curvature equations associated with non-simple Lie algebras generate integrable couplings [3,4], and
the variational identity provides the basic tool for finding the corresponding Hamiltonian structures, which often lead to
hereditary recursion operators [5,6].

Let us first recall the standard procedure for constructing soliton hierarchies (see, e.g., [2,7]). Usually, one starts from a
spectral problem
/x ¼ U/; U ¼ Uðu; kÞ 2 ~g; ð1:1Þ
where k is the spectral parameter and ~g is a matrix loop algebra associated with a given matrix Lie algebra g, often being
simple. We take a solution of the form
W ¼Wðu; kÞ ¼
X
iP0

W0;ik
�i; W0;i 2 g; i P 0; ð1:2Þ
to the stationary zero curvature equation
Wx ¼ ½U;W�: ð1:3Þ
Then, introduce the temporal spectral problems
/tm
¼ V ½m�/; m P 0; ð1:4Þ
with the Lax matrices being defined by
V ½m� ¼ V ½m�ðu; kÞ ¼ ðkmWÞþ þ Dm 2 ~g; m P 0; ð1:5Þ
where Pþ denotes the polynomial part of P in k. The introduction of the modification terms Dm aims to guarantee that the
zero curvature equations
Utm � V ½m�x þ ½U;V
½m�� ¼ 0; m P 0; ð1:6Þ
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generate a hierarchy of soliton equations with Hamiltonian structures:
utm ¼ KmðuÞ ¼ J
dHm

du
; m P 0: ð1:7Þ
The Hamiltonian functionals Hm in (1.7) are generally presented by using the trace identity [2,7]:
d
du

Z
tr

@U
@k

W
� �

dx ¼ k�c @

@k
kc tr

@U
@u

W
� �

; c ¼ k
2

d
dk

ln jtrðW2Þj; ð1:8Þ
or the variational identity [6]:
d
du

Z
@U
@k

;W
� �

dx ¼ k�c @

@k
kc @U

@u
;W

� �
; c ¼ k

2
d

dk
ln jhW;Wij; ð1:9Þ
where h�; �i is a non-degenerate, symmetric and ad-invariant bilinear form on the loop algebra ~g [6]. If ~g is non-semisimple,
the bilinear form h�; �i in the variational identity (1.9) must not be of the Killing type. If hA;Ai is positive for every non-zero
matrix A 2 ~g, then the Lie algebra ð~g; h�; �iÞ becomes quadratic.

In this paper, we would like to form a spectral problem, based on the real Lie algebra g ¼ soð3;RÞ, to generate a hierarchy
of soliton equations from the associated zero curvature equations. The Hamiltonian structures will be furnished by applying
the corresponding trace identity and so all equations in the resulting soliton hierarchy are Liouville integrable, i.e., they pos-
sess infinitely many commuting symmetries and conservation laws. Two concrete examples will be computed, together with
their bi-Hamiltonian structures.

2. Matrix loop algebra and soliton equations

2.1. Matrix loop algebra fsoð3;RÞ

Let us consider the simple real Lie algebra of the special orthogonal group, g ¼ soð3;RÞ, the Lie algebra of 3� 3 trace-free,
skew-symmetric real matrices. It has a basis
e1 ¼
0 0 1
0 0 0
�1 0 0

264
375; e2 ¼

0 0 0
0 0 �1
0 1 0

264
375; e3 ¼

0 1 0
�1 0 0
0 0 0

264
375; ð2:1Þ
with which, the structure equations of soð3;RÞ are
½e1; e2� ¼ e3; ½e2; e3� ¼ e1; ½e3; e1� ¼ e2: ð2:2Þ
The derived algebra ½soð3;RÞ; soð3;RÞ� is soð3;RÞ itself. This is one of the only two three-dimensional real Lie algebras with a
three-dimensional derived algebra. The other one is slð2;RÞ, which has been frequently used to analyze soliton equations.

The matrix loop algebra we will adopt in our construction is
~g ¼ fsoð3;RÞ ¼ fM 2 soð3;RÞjentries of M � Laurent series in kg; ð2:3Þ
where k is a spectral parameter. The algebra fsoð3;RÞ contains matrices of the form kme1 þ kne2 þ kle3 with arbitrary integers
m;n; l. This matrix loop algebra gives a basis for us to generate soliton equations. Based on the perturbation-type loop alge-
bras of fsoð3;RÞ, we can also consider the problem of integrable couplings such as bi-integrable couplings and tri-integrable
couplings.

2.2. Soliton hierarchy

We are going to construct a soliton hierarchy from the matrix loop algebra fsoð3;RÞ. Let us introduce a spectral problem
/x ¼ U/; U ¼ Uðu; kÞ ¼ ke1 þ pe2 þ qe3 ¼
0 q k

�q 0 �p

�k p 0

264
375; u ¼

p

q

� �
; / ¼

/1

/2

/3

264
375: ð2:4Þ
Then, the stationary zero curvature equation
Wx ¼ ½U;W�; ð2:5Þ
becomes
ax ¼ pc � qb;

bx ¼ �kc þ qa;

cx ¼ kb� pa;

8><>: ð2:6Þ
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if we assume that W is of the form
W ¼ ae1 þ be2 þ ce3 ¼
0 c a

�c 0 �b

�a b 0

264
375 ¼X

iP0

W0;ik
�i; W0;i ¼

0 ci ai

�ci 0 �bi

�ai bi 0

264
375; i P 0: ð2:7Þ
Upon taking the initial values
a0 ¼ �1; b0 ¼ c0 ¼ 0;
the system (2.6) equivalently yields
biþ1 ¼ ci;x þ pai;

ciþ1 ¼ �bi;x þ qai;

aiþ1;x ¼ pciþ1 � qbiþ1;

8><>: i P 0: ð2:8Þ
We impose the integration conditions
aiju¼0 ¼ biju¼0 ¼ ciju¼0 ¼ 0; i P 1;
to determine the sequence of fai; bi; ciji P 1g uniquely. Therefore, the first few sets can be computed as follows:
b1 ¼ �p; c1 ¼ �q; a1 ¼ 0;

b2 ¼ �qx; c2 ¼ px; a2 ¼ 1
2 ðp2 þ q2Þ;

b3 ¼ pxx þ 1
2 p3 þ 1

2 pq2; c3 ¼ qxx þ 1
2 p2qþ 1

2 q3; a3 ¼ pqx � pxq;

b4 ¼ qxxx þ 3
2 p2qx þ 3

2 q2qx; c4 ¼ �pxxx � 3
2 p2px � 3

2 pxq2;

a4 ¼ �ppxx � qqxx þ 1
2 p2

x þ 1
2 q2

x � 3
8 p4 � 3

4 p2q2 � 3
8 q4;

b5 ¼ �pxxxx � 5
2 p2pxx � 5

2 pp2
x � 3

2 pxxq2 � 3pxqqx � pqqxx þ 1
2 pq2

x � 3
8 p5 � 3

4 p3q2 � 3
8 pq4;

c5 ¼ �qxxxx � 5
2 q2qxx � 5

2 qq2
x � 3

2 p2qxx � 3ppxqx � ppxxqþ 1
2 p2

x q� 3
8 q5 � 3

4 p2q3 � 3
8 p4q;

a5 ¼ pxxxq� pqxxx � pxxqx þ pxqxx þ 3
2 p2pxq� 3

2 pq2qx � 3
2 p3qx þ 3

2 pxq3:
Now, taking
V ½m� ¼ ðkmWÞþ ¼
Xm

i¼0

W0;ik
m�i; m P 0; ð2:9Þ
the zero curvature equations
Utm � V ½m�x þ ½U;V
½m�� ¼ 0; m P 0; ð2:10Þ
generate a hierarchy of soliton equations:
utm ¼ Km ¼
�cmþ1

bmþ1

� �
¼ Um q

�p

� �
; m P 0; ð2:11Þ
where the operator U can be determined by the recursion relation (2.8):
U ¼ q@�1p @ þ q@�1q

�@ � p@�1p �p@�1q

" #
; @ ¼ @

@x
: ð2:12Þ
2.3. Hamiltonian structures

We use the trace identity [2] (or more generally the variational identity [6]):
d
du

Z
tr W

@U
@k

� �
dx ¼ k�c @

@k
kc tr W

@U
@u

� �
; ð2:13Þ
where the constant c is determined as in (1.8).
It is direct to compute that
@U
@k
¼

0 0 1
0 0 0
�1 0 0

264
375; @U

@p
¼

0 0 0
0 0 �1
0 1 0

264
375; @U

@q
¼

0 1 0
�1 0 0
0 0 0

264
375
and so we obtain
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tr W
@U
@k

� �
¼ �2a; tr W

@U
@p

� �
¼ �2b; tr W

@U
@q

� �
¼ �2c:
Now the corresponding trace identity (1.8) becomes
d
du

Z
adx ¼ k�c @

@k
kc b

c

� �
:

Balancing coefficients of each power of k in the above equality gives rise to
d
du

Z
amþ1 dx ¼ ðc�mÞ

bm

cm

� �
; m P 0:
The case of m ¼ 1 tells c ¼ 0, and thus we have
d
du

Z
� amþ2

mþ 1

� �
dx ¼

bmþ1

cmþ1

� �
; m P 0: ð2:14Þ
Consequently, we obtain the following Hamiltonian structures for the soliton hierarchy (2.11):
utm ¼ Km ¼
�cmþ1

bmþ1

� �
¼ J

dHm

du
; m P 0; ð2:15Þ
with the Hamiltonian operator
J ¼
0 �1
1 0

� �
ð2:16Þ
and the Hamiltonian functionals
Hm ¼
Z
� amþ2

mþ 1

� �
dx; m P 0: ð2:17Þ
These correspond to infinitely many conservation laws of each system in the soliton hierarchy (2.11), which can also be com-
puted directly by computer algebra systems (see, e.g., [8]).

2.4. Liouville integrability

It is direct but lengthy to show by computer algebra systems that the operator U defined by (2.12) is hereditary (see [9]
for definition), i.e., it satisfies
U0ðuÞ½UK�S�UU0ðuÞ½K�S ¼ U0ðuÞ½US�K �UU0ðuÞ½S�K ð2:18Þ
for all vector fields K and S; and that J and
M ¼ UJ ¼ @ þ q@�1q �q@�1p

�p@�1q @ þ p@�1p

" #
; ð2:19Þ
where J is defined by (2.16), constitute a Hamiltonian pair (see [10] for details), i.e., any linear combination N of J and M
satisfies
Z

KT N0ðuÞ½NS�T dxþ cycleðK; S; TÞ ¼ 0 ð2:20Þ
for all vector fields K; S and T.
The hereditary property (2.18) is equivalent to
LUKU ¼ ULKU; ð2:21Þ
where K is an arbitrary vector field. The Lie derivative LKU above is defined by
ðLKUÞS ¼ U½K; S� � ½K;US�;
where ½�; �� is the Lie bracket of vector fields. It is known that an autonomous operator U ¼ Uðu;ux; . . .Þ is a recursion operator
of an evolution equation ut ¼ K iff the operator U needs to satisfy
LKU ¼ 0: ð2:22Þ
Obviously, for the operator U defined by (2.12), we have
LK0 U ¼ 0; K0 ¼
q

�p

� �
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and thus
LKmU ¼ LUKm�1U ¼ ULKm�1U ¼ 0; m P 1; ð2:23Þ
where the Km’s are given by (2.11). This implies that the operator U defined by (2.12) is a common hereditary recursion oper-
ator for the soliton hierarchy (2.11). We point out that there are also direct symbolic algorithms for computing recursion
operators of nonlinear partial differential equations by computer algebra systems (see, e.g., [11]).

Now, the soliton hierarchy (2.11) is bi-Hamiltonian (see, e.g., [10,12]):
utm ¼ Km ¼ J
dHm

du
¼ M

dHm�1

du
; m P 1; ð2:24Þ
where J;M and Hm are defined by (2.16), (2.19) and (2.17) respectively, and so, the hierarchy is Liouville integrable, i.e., it
possesses infinitely many commuting symmetries and conservation laws. In particular, we have the Abelian symmetry
algebra:
½Kk;Kl� ¼ K 0kðuÞ½Kl� � K 0lðuÞ½Kk� ¼ 0; k; l P 0 ð2:25Þ
and the Abelian algebras of conserved functionals:
fHk;HlgJ ¼
Z

dHk

du

� �T

J
dHl

du
dx ¼ 0; k; l P 0 ð2:26Þ
and
fHk;HlgM ¼
Z

dHk

du

� �T

M
dHl

du
dx ¼ 0; k; l P 0: ð2:27Þ
2.5. Two nonlinear examples

The first two nonlinear integrable systems in the hierarchy (2.11) read
ut2 ¼
p

q

� �
t2

¼ K2 ¼
�qxx � 1

2 p2q� 1
2 q3

pxx þ 1
2 p3 þ 1

2 pq2

" #
ð2:28Þ
and
ut3 ¼
p

q

� �
t3

¼ K3 ¼
pxxx þ 3

2 p2px þ 3
2 pxq2

qxxx þ 3
2 p2qx þ 3

2 q2qx

" #
: ð2:29Þ
They possess the following bi-Hamiltonian structures
ut2 ¼ K2 ¼ J
dH2

du
¼ M

dH1

du
ð2:30Þ
and
ut3 ¼ K3 ¼ J
dH3

du
¼ M

dH2

du
; ð2:31Þ
where the Hamiltonian pair fJ;Mg is defined by (2.16) and (2.19), and the Hamiltonian functionals, H1;H2 and H3, are given
by
H1 ¼ � 1
2

R
ðpqx � pxqÞdx;

H2 ¼ � 1
3

R
�ppxx � qqxx þ 1

2 p2
x þ 1

2 q2
x � 3

8 p4 � 3
4 p2q2 � 3

8 q4
� 	

dx;

H3 ¼ � 1
4

R
pxxxq� pqxxx � pxxqx þ pxqxx þ 3

2 p2pxq� 3
2 pq2qx � 3

2 p3qx þ 3
2 pxq3

� 	
dx:

8><>: ð2:32Þ
3. Conclusions and remarks

We presented a hierarchy of soliton equations from zero curvature equations associated with the real loop algebrafsoð3;RÞ. The Liouville integrability of the resulting soliton equations has been shown by establishing a bi-Hamiltonian
formulation.

The real Lie algebra of the special orthogonal group, soð3;RÞ, is not isomorphic to the real Lie algebra slð2;RÞ over the real
field R, and thus the soliton hierarchy (2.11) is not gauge equivalent to the AKNS soliton hierarchy [13] over the real field R.
But the two Lie algebras are isomorphic to each other over the complex filed C, which implies that the hierarchy (2.11) is
gauge equivalent to the AKNS hierarchy over the complex filed C.
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There is a growing interest in soliton equations generating from zero curvature equations associated with non-semisim-
ple Lie algebras. Bi-integrable couplings and tri-integrable couplings provide us with insightful thoughts about general struc-
tures of integrable systems with multi-components [14]. Multi-integrable couplings generate diverse recursion operators in
block matrix form. The mathematical structures behind integrable couplings are rich and interesting [6,14]. It is known that
Hamiltonian structures exist for the perturbation equations [15,16], but some non-semisimple matrix Lie algebras generat-
ing spectral matrices do not possess any non-degenerate bilinear forms required in the variational identities [17,18]. It is an
open question to us how to guarantee the existence of Hamiltonian structures for bi- or tri-integrable couplings, based on
zero curvature equations.
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