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of nonlinear continuous integrable Hamiltonian couplings of the AKNS hierarchy of soliton
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1. Introduction

Integrable couplings [1,2] are associated with non-semisimple Lie algebras [3,4] and variational identities provide tools to
generate Hamiltonian structures of integrable couplings, in both continuous and discrete cases [5,6]. Most of the presented
integrable couplings are linear with respect to the supplementary variables (see, e.g., [1,7–13]). For example, the spectral
matrices of the form
U ¼ UðuÞ U0½v�
0 UðuÞ

� �
;

where the sub-spectral matrix U is associated with a given integrable equation ut = K(u) and U0 denotes its Gateaux deriva-
tive, lead to integrable couplings of the perturbation type. In such resulting integrable couplings, the equation for the sup-
plementary variable v is linear with respect to v. If the second equation of an integrable coupling
ut ¼ KðuÞ;
v t ¼ Sðu;vÞ;

�

defines a nonlinear equation for v, then the whole system is called a nonlinear integrable coupling. The two variables u and v
above can be either scalars or vectors.

Linear integrable couplings contain extensions of symmetry equations [1,7] and are important in classifying integrable
equations, but definitely, nonlinear ones have much richer structures. There are a few systematical ways to construct linear
integrable couplings, starting from the perturbed spectral matrices [2,7], defined as before, and the amended spectral matri-
ces [8,10]:
U ¼
UðuÞ UaðvÞ

0 0

� �
;

where Ua may not be a square matrix. However, there is no feasible way which allows us to construct nonlinear integrable
couplings.
. All rights reserved.
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In this paper, we focus on integrable partial differential equations and are concerned with a natural question: How can
one construct nonlinear continuous integrable couplings? We would like to show that the following choice of spectral
matrices:
U ¼
UðuÞ UaðvÞ

0 UðuÞ þ UaðvÞ

� �
;

can engender nonlinear continuous integrable couplings. The set of all matrices above is closed under the matrix product,
and so it constitutes a matrix Lie algebra, which is non-semisimple. The variational identities (see [5,14,15]) over this kind
of Lie algebras can be used to furnish Hamiltonian structures for the corresponding continuous integrable couplings. We will
illustrate such an idea of generating nonlinear continuous integrable Hamiltonian couplings by the AKNS hierarchy of soliton
equations. All these will amend the existing theories of linear integrable couplings. The resulting theory also provides an ap-
proach to another interesting mathematical question: How can one generate an infinite hierarchy of vector fields which
commute with each other?

2. Constructing nonlinear integrable couplings

2.1. General scheme

Assume that an integrable equation
ut ¼ KðuÞ ð2:1Þ
has a zero curvature representation
Ut � Vx þ ½U;V � ¼ 0; ð2:2Þ
where two square Lax matrices U and V usually belong to semisimple matrix Lie algebras (see, e.g., [16]). Let us then intro-
duce an enlarged spectral matrix
U ¼ U �uð Þ ¼
UðuÞ UaðvÞ

0 UðuÞ þ UaðvÞ

� �
; ð2:3Þ
where �u consists of u and v. Now, an enlarged zero curvature equation
Ut � Vx þ U;V
� �

¼ 0 ð2:4Þ
with
V ¼ V �uð Þ ¼
VðuÞ Vað�uÞ

0 VðuÞ þ Vað�uÞ

� �
ð2:5Þ
gives rise to
Ut � Vx þ ½U;V � ¼ 0;
Ua;t � Va;x þ ½U;Va� þ ½Ua;V � þ ½Ua;Va� ¼ 0:

�
ð2:6Þ
This is an integrable coupling of Eq. (2.1), due to Eq. (2.2), and it is normally a nonlinear integrable coupling because the
commutator [Ua,Va] can generate nonlinear terms.

We further take a solution W to the enlarged stationary zero curvature equation
Wx ¼ U;W
� �

: ð2:7Þ
Then, the associated variational identity written in vector form [5]:
d
d�u

Z
hW;Ukidx ¼ k�c @

@k
kchW;U�ui; ð2:8Þ
with the constant c being determined by
c ¼ � k
2

d
dk

ln hW;Wi
�� ��; ð2:9Þ
can be used to furnish Hamiltonian structures for those integrable couplings described above. In the variational identity
(2.8), the expression on the left-hand side is the vector of variational derivatives with respect to all elements of �u; Uk denotes
the partial derivative of U with respect to k, U�u denotes the vector of partial derivatives of U with respect to all elements of �u,
and h�, �i is a non-degenerate, symmetric and ad-invariant bilinear form over the Lie algebra consisting of square matrices of
the form (2.3) (see [5,14,15] for general discussion). In what follows, we will make an application to the AKNS hierarchy to
shed light on this generating scheme.
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2.2. An application

2.2.1. AKNS hierarchy
Let us consider the spectral matrix
U ¼ Uðu; kÞ ¼
�k p

q k

� �
; u ¼

p

q

� �
; k-spectral parameter; ð2:10Þ
which generates the AKNS hierarchy of soliton equations [17] (see also [18]). There are other integrable equations associated
with gl(2) (see, e.g., [19]). Upon setting
W ¼
a b

c �a

� �
¼
X
iP0

ai bi

ci �ai

� �
k�i; ð2:11Þ
the stationary zero curvature equation Wx = [U,W] gives
biþ1 ¼ �
1
2

bi;x � pai; ciþ1 ¼
1
2

ci;x � qai; aiþ1;x ¼ pciþ1 � qbiþ1; i P 0: ð2:12Þ
Choosing the initial data as
a0 ¼ �1; b0 ¼ c0 ¼ 0 ð2:13Þ
and assuming aiju=0 = biju=0 = ciju=0 = 0, i P 1 (equivalently selecting constants of integration to be zero), the recursion relation
(2.12) uniquely defines all differential polynomial functions ai, bi and ci, i P 1. The first few sets are listed as follows:
b1 ¼ p; c1 ¼ q; a1 ¼ 0;

b2 ¼ �
1
2

px; c2 ¼
1
2

qx; a2 ¼
1
2

pq;

b3 ¼
1
4

pxx �
1
2

p2q; c3 ¼
1
4

qxx �
1
2

pq2; a3 ¼
1
4
ðpqx � pxqÞ;

b4 ¼ �
1
8

pxxx þ
3
4

pxpq; c4 ¼
1
8

qxxx �
3
4

pqxq;
a4 ¼
1
8

pxxq� 1
8

pxqx þ
1
8

pqxx �
3
8

p2q2:
The zero curvature equations
Utm � V ½m�x þ ½U;V
½m�� ¼ 0; V ½m� ¼ ðkmWÞþ; m P 0; ð2:14Þ
where (P)+ denotes the polynomial part of P, generate the AKNS hierarchy of soliton equations:
utm ¼ Km ¼
�2bmþ1

2cmþ1

� �
¼ ðLyÞm

�2p

2q

� �
¼ J

dHm

du
; m P 0 ð2:15Þ
with the Hamiltonian operator J, the hereditary recursion operator L� and the Hamiltonian functions:
J ¼
0 �2
2 0

� �
; L ¼

1
2 @ � q@�1p q@�1q

�p@�1p � 1
2 @ þ p@�1q

" #
; Hm ¼

Z
2amþ2

mþ 1
dx; ð2:16Þ
where L� is the adjoint operator of L, @ ¼ @
@x and m P 0.

2.2.2. Integrable couplings
Let us now start from an enlarged spectral matrix
U ¼ Uð�u; kÞ ¼
U Ua

0 U þ Ua

� �
; �u ¼

p

q

r

s

2
6664
3
7775; ð2:17Þ
where U is defined as in (2.10) and the supplementary matrix Ua is taken as
Ua ¼ UaðvÞ ¼
0 r

s 0

� �
; v ¼

r

s

� �
: ð2:18Þ



W.X. Ma / Applied Mathematics and Computation 217 (2011) 7238–7244 7241
For the enlarged stationary zero curvature equation (2.7), we look for a solution
W ¼
W Wa

0 W þWa

� �
; Wa ¼Wað�u; kÞ ¼

e f

g �e

� �
; ð2:19Þ
where W, defined by (2.11), solves Wx = [U,W]. Then, Eq. (2.7) requires
Wa;x ¼ ½U;Wa� þ ½Ua;W� þ ½Ua;Wa�; ð2:20Þ
which equivalently generates
ex ¼ pg � qf þ rc � sbþ rg � sf ;

fx ¼ �2kf � 2pe� 2ra� 2re;

gx ¼ 2qeþ 2kg þ 2saþ 2se:

8><
>: ð2:21Þ
Trying a formal series solution
e ¼
X1
i¼0

eik
�i; f ¼

X1
i¼0

fik
�i; g ¼

X1
i¼0

gik
�i; ð2:22Þ
we obtain
eiþ1;x ¼ pgiþ1 � qfiþ1 þ rciþ1 � sbiþ1 þ rgiþ1 � sfiþ1;

fiþ1 ¼ � 1
2 fi;x � pei � rai � rei;

giþ1 ¼ 1
2 gi;x � qei � sai � sei;

8><
>: ð2:23Þ
where i P 0. We choose the initial data as
e0 ¼ �1; f 0 ¼ g0 ¼ 0 ð2:24Þ
and assume that eij�u¼0 ¼ fij�u¼0 ¼ gij�u¼0 ¼ 0; i P 1. Then the recursion relation (2.23) uniquely determines the sequence of
sets of ei, fi and gi, i P 1. The first few sets are computed as follows:
f1 ¼ pþ 2r; g1 ¼ qþ 2s; e1 ¼ 0;

f2 ¼ �
1
2

px � rx; g2 ¼
1
2

qx þ sx; e2 ¼
1
2

pqþ psþ qr þ rs;

f3 ¼
1
4

pxx þ
1
2

rxx �
1
2

p2q� p2s� 2pqr � 2prs� qr2 � r2s;

g3 ¼
1
4

qxx þ
1
2

sxx �
1
2

pq2 � ps2 � 2pqs� 2qrs� q2r � rs2;

e3 ¼ �
1
4

pxqþ 1
4

pqx �
1
2

pxsþ 1
2

psx þ
1
2

qxr � 1
2

qrx �
1
2

rxsþ 1
2

rsx;

f4 ¼ �
1
8

pxxx �
1
4

rxxx þ
3
4

pxpqþ 3
2

pxpsþ 3
2

pxqr þ 3
2

pxrsþ 3
2

pqrx þ
3
2

prxsþ 3
2

qrxr þ 3
2

rxrs;

g4 ¼
1
8

qxxx þ
1
4

sxxx �
3
4

pqxq� 3
2

pqxs� 3
2

pqsx �
3
2

psxs� 3
2

qxqr � 3
2

qxrs� 3
2

qrsx �
3
2

rsxs;

e4 ¼
1
8

pxxq� 1
8

pxqx þ
1
8

pqxx þ
1
4

pxxs� 1
4

pxsx þ
1
4

psxx þ
1
4

qrxx �
1
4

qxrx þ
1
4

qxxr þ 1
4

rxxs� 1
4

rxsx þ
1
4

rsxx �
3
8

p2q2 � 3
4

p2s2

� 3
4

q2r2 � 3
2

r2s2 � 3
2

p2qs� 3
2

pq2r � 3
2

qr2s� 3
2

prs2 � 3pqrs:
For each integer m P 0, take
V ½m� ¼ kmW
� 	

þ ¼
V ½m� V ½m�a

0 V ½m�

" #
; V ½m�a ¼ ðk

mWaÞþ ð2:25Þ
and then, the enlarged zero curvature equation
Utm � V ½m�
� 	

x þ U;V ½m�
� �

¼ 0; ð2:26Þ
yields
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Ua;tm � V ½m�a

� 	
x þ U;V ½m�a

h i
þ ½Ua;V

½m�� þ ½Ua;V
½m�
a � ¼ 0;
together with the mth AKNS system in (2.15). This tells
v tm ¼ Sm ¼ Smðu; vÞ ¼
�2f mþ1

2gmþ1

� �
; m P 0; ð2:27Þ
where v = (r,s)T defined as in (2.18). This way, the hierarchy of enlarged zero curvature equations presents a hierarchy of
integrable couplings:
�utm ¼

p

q

r

s

2
6664
3
7775

tm

¼ Kmð�uÞ ¼
KmðuÞ

Smðu; vÞ

� �
¼

�2bmþ1

2cmþ1

�2f mþ1

2gmþ1

2
6664

3
7775; m P 0 ð2:28Þ
for the AKNS hierarchy (2.15). Except the first two, all integrable couplings above are nonlinear, since the supplementary
systems (2.27) of r and s with m P 2 are nonlinear. The third one reads
pt2
¼ � 1

2 pxx þ p2q; qt2
¼ 1

2 qxx � pq2;

rt2 ¼ � 1
2 pxx � rxx þ p2qþ 2p2sþ 4pqr þ 4prsþ 2qr2 þ 2r2s;

st2 ¼ 1
2 qxx þ sxx � pq2 � 2ps2 � 4pqs� 4qrs� 2q2r � 2rs2:

8><
>: ð2:29Þ
Therefore, the systems in (2.28) with m P 2 provide a hierarchy of nonlinear integrable couplings for the AKNS hierarchy of
soliton equations.

2.2.3. Hamiltonian structures
To construct Hamiltonian structures of the obtained integrable couplings, we need to compute non-degenerate, symmet-

ric and ad-invariant bilinear forms on the Lie algebra considered before:
�g ¼
A B
0 Aþ B

� �����A;B 2 slð2Þ
� 


: ð2:30Þ
For brevity, let us transform the Lie algebra �g into a vector form through the mapping
d : �g ! R6; A#ða1; a2; a3; a4; a5; a6ÞT ; A ¼

a1 a2 a4 a5

a3 �a1 a6 �a4

0 0 a1 þ a4 a2 þ a5

0 0 a3 þ a6 �a1 � a4

2
6664

3
7775 2 �g: ð2:31Þ
This mapping d induces a Lie algebraic structure on R6, isomorphic to the matrix Lie algebra �g. The corresponding commu-
tator [�, �] on R6 is given by
½a; b�T ¼ aT RðbÞ; a ¼ ða1; . . . ; a6ÞT ; b ¼ ðb1; . . . ; b6ÞT 2 R6; ð2:32Þ
where
RðbÞ ¼

0 2b2 �2b3 0 2b5 �2b6

b3 �2b1 0 b6 �2b4 0
�b2 0 2b1 �b5 0 2b4

0 0 0 0 2b2 þ 2b5 �2b3 � 2b6

0 0 0 b3 þ b6 �2b1 � 2b4 0
0 0 0 �b2 � b5 0 2b1 þ 2b4

2
666666664

3
777777775
:

A bilinear form on R6 is determined as follows
ha; bi ¼ aT Fb; ð2:33Þ
where F is a constant matrix. The symmetric property ha,bi = hb,ai and the ad-invariance property
ha; ½b; c�i ¼ h½a; b�; ci ð2:34Þ
requires that FT = F and
ðRðbÞFÞT ¼ �RðbÞF for all b 2 R6: ð2:35Þ
This matrix equation gives a system of linear equations on the elements of F. Solving the resulting system, we obtain
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F ¼

2g1 0 0 2g2 0 0
0 0 g1 0 0 g2

0 g1 0 0 g2 0
2g2 0 0 2g2 0 0

0 0 g2 0 0 g2

0 g2 0 0 g2 0

2
666666664

3
777777775
; ð2:36Þ
where g1 and g2 are arbitrary constants.
Therefore, a bilinear form on the underlying Lie algebra �g is defined by
hA;Bi�g ¼ hd
�1ðAÞ; d�1ðBÞiR6 ¼ ða1; . . . ; a6ÞFðb1; . . . ; b6ÞT

¼ g1ð2a1b1 þ a2b3 þ a3b2Þ þ g2½2a1b4 þ a2b6 þ a3b5 þ 2a4ðb1 þ b4Þ þ a5ðb3 þ b6Þ þ a6ðb2 þ b5Þ�; ð2:37Þ
where
A ¼

a1 a2 a4 a5

a3 �a1 a6 �a4

0 0 a1 þ a4 a2 þ a5

0 0 a3 þ a6 �a1 � a4

2
6664

3
7775; B ¼

b1 b2 b4 b5

b3 �b1 b6 �b4

0 0 b1 þ b4 b2 þ b5

0 0 b3 þ b6 �b1 � b4

2
6664

3
7775:
This bilinear form (2.37) is symmetric and ad-invariant:
hA;Bi ¼ hB;Ai; hA; ½B; C�i ¼ h½A; B�;Ci; A;B; C 2 �g ð2:38Þ
and it is non-degenerate if and only if
ðg1 � g2Þg2 – 0: ð2:39Þ
Now, based on (2.37), we can easily compute that
hW;Uki ¼ �2g1a� 2g2e;

hW;U�ui ¼ g1c þ g2g;g1bþ g2f ;g2ðc þ gÞ;g2ðbþ f Þð ÞT ;

c ¼ � k
2

d
dk

ln hW;Wi
�� �� ¼ 0;
where W is defined by (2.19). Thus the variational identity (2.8) with c = 0 yields
d
d�u

Z
2g1amþ1 þ 2g2emþ1

m
dx ¼ g1cm þ g2gm;g1bm þ g2fm;g2ðcm þ gmÞ;g2ðbm þ fmÞð ÞT ; m P 1: ð2:40Þ
It follows now that the AKNS integrable couplings in (2.28) possess the following Hamiltonian structures:
�utm ¼ Kmð�uÞ ¼ J
dHm

d�u
; m P 0; ð2:41Þ
where the Hamiltonian operator is given by
J ¼ 1
g2 � g1

0 2 0 �2
�2 0 2 0
0 �2 0 2g1

g2

2 0 � 2g1
g2

0

2
66664

3
77775 ð2:42Þ
and the Hamiltonian functionals are given by
Hm ¼
Z

2g1amþ2 þ 2g2emþ2

mþ 1
dx; m P 0: ð2:43Þ
It is direct to see a recursion relation
L
dHm

d�u
¼ dHmþ1

d�u
; m P 0
with
L ¼
L La

0 Lþ La

� �
; ð2:44Þ
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where L is given by (2.16) and
La ¼
�ðqþ sÞ@�1r � s@�1p ðqþ sÞ@�1sþ s@�1q

�ðpþ rÞ@�1r � r@�1p ðpþ rÞ@�1sþ r@�1q

" #
: ð2:45Þ
Moreover, we have J L ¼ LyJ, where Ly is the adjoint operator of L. Based on the Tu scheme [20], it follows then that all inte-
grable couplings in (2.28) commute with each other and so do all conserved functionals in (2.43). It is also not difficult to
show that J and J L is a Hamiltonian pair [21] and Ly is a hereditary recursion operator [22] for the hierarchy of integrable
couplings (2.28), which similarly implies that the hierarchy (2.28) commutes.

3. Concluding remarks

We proposed a kind of specific Lie algebras which allows us to generate nonlinear continuous integrable couplings and
applied the variational identities on the suggested Lie algebras to the construction of Hamiltonian structures of the resulting
continuous integrable couplings. An application to the AKNS hierarchy gave a hierarchy of nonlinear continuous integrable
Hamiltonian couplings. The obtained results supplement the existing theories on the perturbation equations and linear inte-
grable couplings [1,5,8].

It is clear that using the block type matrix algebras, we will be able to generate larger classes of integrable couplings.
Combining the considered form of spectral matrices with the other forms in the literature (see, e.g., [10,23]) will lead to more
diverse integrable couplings. The presented integrable couplings can also possess other integrable properties such as Hirota
bilinear forms [24] and s-symmetry algebras [25]. All such analyses will enrich multi-component integrable equations (see,
e.g., [15,26]) and help understand them better to work towards classification of integrable equations based on loop algebras.
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