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Abstract

The properties of Lie products of vector field generators introduced in Ref. [1] are
discussed from which Lie algebra of vector field genegrators can be derived. Based on these,
it is shown that the space of time dependent symmetries with exponential terms of time
constitutes a Lie subalgebra of Lie algebra of vector fields. Furthermore the commutator
relations of Lie algebra of symmetries of this kind are given and thus the isomorphism
between it and Lie algebra of vector field generators not depending explicitly on time is
presented.
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