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Abstract. Wewill discuss how to generate integrable couplings from zero curvature equations associated with matrix spectral
problems. The key elements are matrix loop algebras consisting of block matrices with blocks of the same size or different
sizes. Hamiltonian structures are furnished by applying the variational identity defined over semi-direct sums of Lie algebras.
Illustrative examples include integrable couplings of the AKNS hierarchy by using the irreducible representations V2 and V3
of the special linear Lie algebra sl(2,R).
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1. INTRODUCTION

A system of differential equations or differential-difference equations is said to be integrable by quadratures if its
solutions to well-possed Cauchy problems can be obtained after a finite number of steps involving algebraic operations
and integration of given functions [1]. Given a Hamiltonian system of ordinary differential equations (ODEs) on a
symplectic space, when is it integrable by quadratures? A first answer is the Liouville theorem using action-angle
variables [2, 3]. The modern formulation of the Liouville theorem is called the Liouville-Arnold theorem. It states
that for a Hamiltonian system of ODEs associated with a Hamiltonian function H defined on a symplectic manifold
(M2N ,ω2):

pt = {p,H}= ω2(IdH, Id p), qt = {q,H} = ω2(IdH, Idq), (1)

the following conditions guarantee integrability by quadratures:
(i) Existence of N integrals of motion {Fi(p,q)}N

i=1;
(ii) F1,F2, · · · ,FN commute with each other under the associated Poisson bracket: {Fi,Fj} = 0, 1≤ i, j ≤ N;
(iii) F1,F2, · · · ,FN are functionally independent on the level surface {Fi = ai|1≤ i ≤ N} containing the initial data.

Those three conditions are nowadays called the Liouville conditions, and Liouville integrable systems of ODEs mean
Hamiltonian systems possessing the above Liouville conditions.
For partial differential equations (PDEs) or differential-difference equations (DDEs), no similar Liouville conditions

are found to guarantee their integrability by quadratures. There are, however, many different but related integrable
criteria for PDEs or DDEs widely adopted in the soliton community [4], a few of which are listed as follows (see, e.g.,
[5, 6, 7] for details):
(i) Existence of Lax pair and solvable by the inverse scattering transform (S-integrable case);
(ii) Transforming into linear equations (C-integrable case);
(iii) Passing the Painlevé test and the singularity confinement;
(iv) Existence of Darboux transformations;
(v) Algebraic complete integrability;
(vi) Existence of three-soliton solutions;
(vii) Existence of infinitely many symmetries;
(viii) Existence of infinitely many conservation laws;
(ix) Bi-Hamiltonian formulations (which often imply the existence of infinitely many symmetries and conservation

laws); etc.
In what follows, we say a system of PDEs or DDEs is integrable if it has infinitely many symmetries which are

functionally independent on the jet spaces, and Liouville integrable if it is Hamiltonian and possesses infinitely
many conserved densities being functionally independent on the jet spaces. The Liouville integrability is stronger
since Hamiltonian systems generate symmetries from conserved densities associated with conservation laws. The
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fundamental question in the integrability theory of PDEs and DDEs is how to explore Hamiltonian structures and
infinitely many commuting functionally independent conserved densities.
A continuous (or discrete) Hamiltonian system of PDEs or DDEs reads

ut = K(u) = K(u,ux, · · ·) [or K(u,Eu,E−1u, · · ·)] = J
δH

δu
, (2)

where u denotes a column vector of dependent variables, δ
δu is the variational derivative with respect to u, J is

a Hamiltonian operator and H =
∫

H dx [or H = ∑n∈ZH] is called a Hamiltonian functional associated with a
Hamiltonian function H. For a Hamiltonian system, there exists a relationship chain from conserved densities through
adjoint symmetries to symmetries:

I �→ δ
δu

∫
I dx �→ J

δ
δu

∫
I dx [or I �→ δ

δu ∑n∈Z
I �→ J

δ
δu ∑n∈Z

I] (3)

and a Lie algebra homomorphism J δ
δu :

J
δ
δu

{I1,I2} = [J
δI1

δu
,J

δI2

δu
], (4)

with the Poisson bracket of functionals being defined by

{I1,I2} =
∫ (δI1

δu

)T
J
δI2

δu
dx [or {I1,I2} = ∑

n∈Z

(δI1

δu

)T
J
δI2

δu
], (5)

and the Lie bracket of vector fields being defined by

[K,S] = K′(u)[S]−S′(u)[K]. (6)

Here and in what follows, P′(u)[v] denotes the Gateaux derivative of an object P = P(u,ux, · · ·) with respect to u along
a direction v:

P′(u)[v] =
∂
∂ε

∣∣∣
ε=0

P(u+ εv,ux + εvx, · · ·). (7)

We say that two conserved densities of a Hamiltonian system (2) commute, if their corresponding functionals commute
under the Poisson bracket (5) (see, e.g., [8] for details).
Lax proposed an equivalent operator formulation, now called the Lax pair approach, for studying the KdV equation

[9]. A Lax pair formulation is generally equivalent to a zero curvature equation formulation [10] and it also provides
a novel type of separability [11]. An integrable system of PDEs or DDEs is said to possess a zero curvature equation
representation, if it is generated from a continuous zero curvature equation

Ut −Vx +[U,V ] = 0 (8)

or a discrete zero curvature equation
Ut +UV − (EV )U = 0, (9)

where the two square matrices, U and V , are called a Lax pair, often belonging to simple matrix loop algebras [12].
One of our primary tasks in the field of integrable systems is how to construct, from the continuous and discrete zero
curvature equation formulations, a Hamiltonian structure with a recursion operator [13] or a bi-Hamiltonian structure
[14]:

ut = K(u) = J
δH1

δu
= M

δH2

δu
, (10)

which naturally engenders infinitely many commuting conserved densities, for a given system of evolution equations.
The existence of bi-Hamiltonian structures often guarantee recursion operators [14]-[17], which can be hereditary
[18].
A Lax pair of U = U(u,λ ) and V = V (u,λ ) involving a spectral parameter λ , from a matrix Lie algebra with a

free parameter, called a matrix loop algebra, is a starting point in formulating integrable systems which possess bi-
Hamiltonian structures. Simple matrix loop algebras yield typical integrable systems (see, e.g., [19, 20] for examples
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associated with sl(2,R) and so(3,R)). Semisimple matrix loop algebras lead to separated integrable systems, i.e.,
collections of typical integrable systems, each of which corresponds to a simple matrix loop algebra. Non-semisimple
matrix loop algebras generate integrable couplings [21, 22].
Specially, an integrable coupling of an integrable system (2) is a triangular integrable system of the following form

[23, 24]: {
ut = K(u),
vt = S(u,v). (11)

If S is nonlinear with respect to the second sub-vector v of dependent variables, the integrable coupling (11) is called
nonlinear. An example of integrable couplings is the first-order perturbation system [23]:{

ut = K(u),
vt = K′(u)[v],

(12)

where K′ is the Gateaux derivative as defined earlier. A bi-integrable coupling of a given integrable system (2) is an
enlarged triangular integrable system of the following form [25]:⎧⎨

⎩
ut = K(u),
u1,t = S1(u,u1),
u2,t = S2(u,u1,u2);

(13)

and similarly, by a tri-integrable coupling, we mean an enlarged triangular integrable system of the following form
[26, 27]: ⎧⎪⎨

⎪⎩
ut = K(u),
u1,t = S1(u,u1),
u2,t = S2(u,u1,u2),
u3,t = S3(u,u1,u2,u3).

(14)

Non-semisimple Lie algebras possess semi-direct sum decompositions [28]:

ḡ= g � gc, g - semisimple, gc - solvable, (15)

and so, semi-direct sums of Lie algebras lay a foundation for constructing integrable couplings. The notion of semi-
direct sums

ḡ= g � gc (16)

means that the two Lie subalgebras g and gc satisfy

[g,gc]⊆ gc, (17)

where [g,gc] = {[A,B] |A ∈ g, B ∈ gc}, with [·, ·] denoting the Lie bracket of ḡ. Obviously, gc is an ideal Lie sub-
algebra of ḡ. The subscript c indicates a contribution to the construction of coupling systems. We also require the
closure property between g and gc under the matrix multiplication

ggc,gcg⊆ gc, (18)

where g1g2 = {AB |A ∈ g1, B ∈ g2}, while we use discrete zero curvature equations over semi-direct sums of matrix
Lie algebras to generate discrete integrable couplings [22].
Integrable couplings provide inspiration and insights into classifying integrable systems with multi-components

[23, 24]. Continuous and discrete zero curvature equation formulations over non-semisimple matrix loop algebras
are the basis for generating integrable couplings, and the associated (classical and super) variational identities offer
fundamental tools to build their Hamiltonian structures [29]-[32].
In this report, we would like to explore non-semisimple loop algebras consisting of block matrices to generate

integrable couplings. Hamiltonian structures of the resulting coupling systems will be furnished through the variational
identity on general matrix loop algebras. In particular, we will present matrix loop algebras consisting of block
matrices by using two irreducible representations V2 and V3 of the special linear Lie algebra sl(2,R) and apply them
to the construction of integrable couplings, based on enlarged zero curvature equations. As illustrative examples, two
applications will be made for the AKNS soliton hierarchy, and Hamiltonian structures will be generated for one of
the two resulting hierarchies of integrable couplings. The presented matrix loop algebras provide key elements for
constructing integrable couplings.
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2. SOLITON HIERARCHIES

2.1. General procedure

Let us recall a standard procedure for generating soliton hierarchies from Lax pairs (see [33, 34, 35] for details).
Assume that g is a given matrix Lie algebra, which can be either semisimple or non-semisimple, and its correspond-

ing matrix loop algebra is formulated as follows:

g̃ = {M ∈ g |entries of M - Laurent series of λ}. (19)

The beginning is to introduce a spatial spectral problem

φx = Uφ , U = U(u,λ ) ∈ g̃, (20)

where u is a column vector of dependent variables and λ is a spectral parameter. We then take a solution of the form

W = W (u,λ ) = ∑
i≥0

W0,iλ−i, W0,i ∈ g, i ≥ 0, (21)

to the stationary zero curvature equation

Wx = [U,W ] [or (EW )U −UW = 0]. (22)

Further, introduce the temporal spectral problems

φtm = V [m]φ = V [m](u,λ )φ , m ≥ 0, (23)

with the Lax matrices being chosen as

V [m] = (λmW )+ +Δm ∈ g̃, m ≥ 0, (24)

where P+ denotes the polynomial part of P in λ . The introduction of the modification terms Δm ∈ g̃ aims to guarantee
that the zero curvature equations

Utm −V [m]
x +[U,V [m]] = 0 [orUtm − (EV [m])U +UV [m] = 0], m ≥ 0, (25)

engender a hierarchy of soliton equations with Hamiltonian structures:

utm = Km(u) = J
δHm

δu
, m ≥ 0. (26)

Those Hamiltonian functionals are usually generated by applying the trace identity:

δ
δu

∫
tr(

∂U
∂λ

W )dx = λ−γ ∂
∂λ

λγ tr(
∂U
∂u

W ), γ =
λ
2

d
dλ

ln |tr(W 2)|, (27)

or
δ
δu ∑n∈Z

tr(
∂U
∂λ

W ) = λ−γ ∂
∂λ

λγ tr(
∂U
∂u

W ), γ =
λ
2

d
dλ

ln |tr((WU)2)|, (28)

and more generally, the variational identity:

δ
δu

∫
〈∂U
∂λ

,W 〉dx = λ−γ ∂
∂λ

λγ 〈∂U
∂u

,W 〉, γ =
λ
2

d
dλ

ln |〈W,W 〉|, (29)

or
δ
δu ∑n∈Z

〈∂U
∂λ

,W 〉 = λ−γ ∂
∂λ

λγ 〈∂U
∂u

,W 〉, γ =
λ
2

d
dλ

ln |〈WU,WU〉|, (30)

where 〈·, ·〉 is a non-degenerate, symmetric and ad-invariant bilinear form on the matrix loop algebra g̃ [31, 32].
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The non-degenerate property means that if 〈A,B〉 = 0 for all A ∈ g̃, then B = 0; and if 〈A,B〉 = 0 for all B ∈ g̃, then
A = 0. The symmetric and ad-invariant properties are

〈A,B〉 = 〈B,A〉
and

〈A, [B,C]〉 = 〈[A,B],C〉,
where [·, ·] denotes the Lie bracket of g̃, respectively.
When the underlying Lie algebra g̃ is semisimple, the trace identity will most likely work. When g̃ is non-

semisimple, we have to use the variational identity since the trace identity is not valid, and the bilinear form 〈·, ·〉
in the variational identity (29) must not be of the Killing type. If 〈A,A〉 are positive for non-zero matrices A ∈ g̃, then
the Lie algebra (g̃,〈·, ·〉) becomes quadratic.
Matrix loop algebras provide key elements to study soliton hierarchies, including hierarchies of integrable couplings,

and both the trace identity and the variational identity are basic tools for generating Hamiltonian structures which
usually guarantee the Liouville integrability.

2.2. The AKNS soliton hierarchy

Let us recall the AKNS soliton hierarchy associated with g = sl(2,R) [19]. The traditional spatial spectral problem
for the AKNS hierarchy is given by

φx = Uφ , U = U(u,λ ) =

[−λ p
q λ

]
, u =

[
p
q

]
, φ =

[
φ1
φ2

]
. (31)

The stationary continuous zero curvature equation in (22), i.e.,Wx = [U,W ], is equivalent to⎧⎪⎨
⎪⎩

ax = pc−qb,

bx =−2λ b−2 pa,

cx = 2qa+2λ c,

(32)

if we assume thatW is of the form

W =

[
a b
c −a

]
= ∑

i≥0
W0,iλ−i, W0,i =

[
ai bi

ci −ai

]
, i ≥ 0. (33)

Equivalently, the system (32) leads to the recursion relations:⎧⎪⎨
⎪⎩

bi+1 =− 1
2bi,x − pai,

ci+1 = 1
2ci,x −qai,

ai+1,x = pci+1−qbi+1,

i ≥ 0, (34)

upon taking the initial values
a0 =−1, b0 = c0 = 0. (35)

We impose the conditions on constants of integration:

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1, (36)

such that the recursion relations in (34) will uniquely determine the sequence of {ai,bi,ci| i ≥ 1}. This way, the first
three sets can be worked out as follows:

b1 = p, c1 = q, a1 = 0;

b2 =− 1
2 px, c2 = 1

2qx, a2 = 1
2 pq;

b3 = 1
4 pxx − 1

2 p2q, c3 = 1
4qxx − 1

2 pq2, a3 = 1
4 (pqx − pxq).
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Now, the zero curvature equations

Utm −V [m]
x +[U,V [m]] = 0 with V [m] = (λmW )+, m ≥ 0, (37)

where all modification terms, Δm, m ≥ 0, are taken as zero, generate the AKNS soliton hierarchy:

utm = Km =

[ −2bm+1

2cm+1

]
= Φm

[ −2p
2q

]
= J

δHm

δu
, m ≥ 0, (38)

where the Hamiltonian operator, the hereditary recursion operator and the Hamiltonian functionals are given by

J =

[
0 −2
2 0

]
, Φ =

[
− 1

2∂ + p∂−1q p∂−1p

−q∂−1q 1
2∂ −q∂−1p

]
, Hm =

∫
2am+2

m+1
dx, m ≥ 0, (39)

respectively. The above Hamiltonian structures are generated by applying the trace identity [33, 35].

3. MATRIX LOOP ALGEBRAS

To generate integrable couplings, one needs to create non-semisimple Lie algebras, also called enlarged Lie algebras
(see, e.g., [36]-[45] for typical examples). We will present a few classes of matrix Lie algebras consisting of block
matrices with blocks of the same size or different sizes. Larger numbers of blocks show diversity of integrable
couplings, though they bring complexity in theoretical verification.

3.1. Lie algebras consisting of block matrices with blocks of the same size

In this subsection, we would particularly like to show matrix Lie algebras consisting of 2×2, 3×3 or 4×4 block
matrices, which can be used to generate dark equations and bi- and tri-integrable couplings [26].

Class 1 - Matrix Lie algebras consisting of 2×2 block matrices:
All 2×2 block matrices of the type:

M1(A1,A2) =

[
A1 A2

0 A1

]
, (40)

where A1 and A2 are square matrices of the same size, define an enlarged matrix Lie algebra with the following
semi-direct sum decomposition:

ḡ= g � gc, where g= {M(A1,0)} and gc = {M(0,A2)}.

The corresponding matrix product reads

M(A1,A2)M(B1,B2) = M(C1,C2), (41)

whereC1 and C2 are given by {
C1 = A1B1,

C2 = A1B2+A2B1.
(42)

This kind of enlarged matrix Lie algebras can be used to generate dark equations [32, 46, 47], and the variational
identity in this case reduces to the bi-trace identity [48].

Class 2 - Matrix Lie algebras consisting of 3×3 block matrices:
Let α and β be two arbitrarily given constants, which can be zero. All 3×3 block matrices of the type:

M(A1,A2,A3) =

⎡
⎢⎣

A1 A2 A3

0 A1+αA2 βA2+αA3

0 0 A1+αA2

⎤
⎥⎦ , (43)
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where A1, A2 and A3 be square matrices of the same size, define an enlarged matrix Lie algebra with the following
semi-direct sum decomposition:

ḡ= g � gc, where g = {M(A1,0,0)} and gc = {M(0,A2,A3)}.

The corresponding matrix product reads

M(A1,A2,A3)M(B1,B2,B3) = M(C1,C2,C3), (44)

whereC1,C2 andC3 are given by⎧⎪⎨
⎪⎩

C1 = A1B1,

C2 = A1B2+A2B1+αA2B2,

C3 = A1B3+A3B1+βA2B2+αA2B3+αA3B2.

(45)

This kind of enlarged matrix Lie algebras can be used to generate bi-integrable couplings [25].
Class 3 - Matrix Lie algebras consisting of 4×4 block matrices:
Let α ,β ,μ and ν be four arbitrarily given constants, which can be zero. All following 4×4 block matrices:

M3(A1,A2,A3,A4) =

⎡
⎢⎢⎢⎣

A1 A2 A3 A4

0 A1+αA2 αA3 βA2+αA4

0 0 A1+αA2+μA3 νA3

0 0 0 A1+αA2

⎤
⎥⎥⎥⎦ , (46)

where Ai, 1 ≤ i ≤ 4, be square matrices of the same size, define an enlarged matrix Lie algebra with the semi-direct
sum decomposition:

ḡ= g � gc, where g= {M(A1,0,0,0)} and gc = {M(0,A2,A3,A4)}.

The corresponding matrix product reads

M(A1,A2,A3,A4)M(B1,B2,B3,B4) = M(C1,C2,C3,C4), (47)

whereC1,C2,C3 andC4 are given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 = A1B1,

C2 = A1B2+A2B1+αA2B2,

C3 = A1B3+A3B1+αA2B3+αA3B2+μA3B3,

C4 = A1B4+A4B1+αA2B4+αA4B2+βA2B2+νA3B3.

(48)

This kind of enlarged matrix Lie algebras can be used to generate tri-integrable couplings [27].

3.2. Lie algebras consisting of block matrices with blocks of different sizes

We will use the finite-dimensional irreducible representations Vd of the special linear Lie algebra sl(2,R) (see, e.g.,
[49]), to create enlarged matrix Lie algebras.

Class 1 - Matrix Lie algebra by using the irreducible representation V2:
Let M(V2,Aa) = ḡ be a Lie algebra of enlarged matrices of the type:

M(a,b,c, f ,g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2a b 0

2c 0 2b

0 c −2a

Aa

0 0 0

0 0 0

a b
c −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Aa =

⎡
⎢⎣

f 0

g f

0 g

⎤
⎥⎦ . (49)
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Here the (1,1)-block is generated from the irreducible representationV2 of sl(2,R). This Lie algebra has the semi-direct
sum decomposition:

ḡ= g � gc, where g= {M(a,b,c,0,0)} and gc = {M(0,0,0, f ,g}.

The corresponding matrix commutator reads

[M(a,b,c, f ,g),M(a′,b′,c′, f ′,g′)] = M(a′′,b′′,c′′, f ′′,g′′), (50)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a′′ = bc′ − cb′,

b′′ = 2ab′ −2ba′,

c′′ = 2ca′ −2ac′,

f ′′ = a f ′ − f a′+bg′ −gb′,

g′′ = c f ′ − f c′+ga′ −ag′.

(51)

This enlarged matrix Lie algebra will be used to generate a class of integrable couplings of different type from the
previous ones.

Class 2 - Matrix Lie algebra by using the irreducible representation V3:
Let M(V3,Aa) = ḡ be a Lie algebra of enlarged matrices of the type:

M(a,b,c,e, f ,g) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3a b 0 0

3c a 2b 0

0 2c −a 3b

0 0 c −3a

Aa

0 0 0 0

0 0 0 0

a b

c −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Aa =

⎡
⎢⎢⎢⎢⎣

f 0

e f

g e

0 g

⎤
⎥⎥⎥⎥⎦ . (52)

Here the (1,1)-block is generated from the irreducible representation V3 of sl(2,R). This enlarged matrix Lie algebra
has the semi-direct sum decomposition:

ḡ = g � gc,where g = {M(a,b,c,0,0,0)} and gc = {M(0,0,0,e, f ,g}.

The corresponding matrix commutator reads

[M(a,b,c,e, f ,g),M(a′,b′,c′,e′, f ′,g′)] = M(a′′,b′′,c′′,e′′, f ′′,g′′), (53)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a′′ = bc′ − cb′,

b′′ = 2ab′ −2ba′,

c′′ = 2ca′ −2ac′,

e′′ = 2c f ′ −2 f c′+2bg′ −2gb′,

f ′′ = 2a f ′ −2 f a′+be′ − eb′,

g′′ = ce′ − ec′ −2ag′+2ga′.

(54)

This enlarge matrix Lie algebra will be used to generate another class of integrable couplings of different type from
the previous ones.
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4. INTEGRABLE COUPLINGS BY USING IRREDUCIBLE REPRESENTATIONS

4.1. Using the irreducible representation V2 of sl(2,R)

Based on M(V2,Aa), let us introduce a spatial spectral problem

φx = Ūφ = Ū(ū,λ )φ , (55)

where λ is a spectral parameter, φ = (φ1, · · · ,φ5)T is an eigenfunction, and the enlarged spatial matrix Ū is given by

Ū = Ū(ū,λ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2λ p 0 r 0

2q 0 2p s r

0 q 2λ 0 s

0 0 0 −λ p

0 0 0 q λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, ū =

⎡
⎢⎢⎢⎢⎣

p

q

r
s

⎤
⎥⎥⎥⎥⎦ . (56)

With W̄ = M(V2,Wa) being chosen from the enlarged matrix loop algebra M̃(V2,Aa):

W̄ = M(V2,Wa) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2a b 0 f 0

2c 0 2b g f

0 c −2a 0 g

0 0 0 a b

0 0 0 c −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Wa =

⎡
⎢⎣

f 0

g f

0 g

⎤
⎥⎦ , (57)

the enlarged stationary zero curvature equation
W̄x = [Ū ,W̄ ] (58)

leads equivalently to both (32) and {
fx = −λ f + pg− ra− sb,

gx = q f + sa− rc+λg.
(59)

Assume thatWa is of the following form

Wa = ∑
i≥0

Wa,iλ−i, Wa,i =

⎡
⎢⎣

fi 0

gi fi

0 gi

⎤
⎥⎦ , i ≥ 0. (60)

Then, upon taking the initial values
f0 = g0 = 0, (61)

the system (59) equivalently yields the recursion relations:{
fi+1 =− fi,x + pgi − rai − sbi,

gi+1 = gi,x −q fi − sai + rci,
i ≥ 0. (62)

The first three sets then can be computed as follows:

b1 = r, g1 = s;

f2 = −rx, g2 = sx;

f3 = rxx + psx − 1
2 pqr + 1

2 pxs, g3 = sxx +qrx − 1
2 pqs+ 1

2qxr.

Further, taking

V̄ [m] = (λmW̄ )+ =
m

∑
i=0

W̄iλm−i, m ≥ 0, (63)
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where W̄i ∈ M(V2,Aa), i ≥ 0, we see that the zero curvature equations

Ūtm −V̄ [m]
x +[Ū ,V̄ [m]] = 0, m ≥ 0, (64)

generate a hierarchy of integrable couplings for the AKNS hierarchy (38):

ūtm =

⎡
⎢⎢⎢⎢⎣

p

q

r
s

⎤
⎥⎥⎥⎥⎦

tm

= K̄m =

⎡
⎢⎢⎢⎢⎣

−2bm+1

2cm+1

− fm+1

gm+1

⎤
⎥⎥⎥⎥⎦= Φ̄m

⎡
⎢⎢⎢⎢⎣

−2p

2q

−r
s

⎤
⎥⎥⎥⎥⎦ , m ≥ 0, (65)

where the operator Φ̄ is determined by using the recursion relations in (34) and (62):

Φ̄ =

[
Φ 0

Φ1 Φ2

]
, Φ1 =

[
1
2 r∂−1q− 1

2 s 1
2 r∂−1p

− 1
2 s∂−1q − 1

2 s∂−1p+ 1
2 r

]
, Φ2 =

[ −∂ −p

q ∂

]
. (66)

This recursion operator is of different type from the previous ones (see, e.g., [26, 31, 32] for previous examples).
We point out that any symmetric and ad-invariant bilinear form on the enlarged matrix loop algebra M̃(V2,Aa)

is degenerate. Therefore, the variational identity does not work for M̃(V2,Aa), and we do not know how to explore
Hamiltonian structures, if any, for the hierarchy of integrable couplings (65).

4.2. Using the irreducible representation V3 of sl(2,R)

4.2.1. Soliton hierarchy of integrable couplings

Based on M(V3,Aa), let us introduce a spatial spectral problem

φx = Ūφ = Ū(ū,λ )φ , (67)

where λ is a spectral parameter, φ = (φ1, · · · ,φ6)T is an eigenfunction, and the enlarged spatial matrix Ū is given by

Ū = Ū(ū,λ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3λ p 0 0 r 0

3q −λ 2p 0 0 r

0 2q λ 3p s 0

0 0 q 3λ 0 s

0 0 0 0 −λ p

0 0 0 0 q λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ū =

⎡
⎢⎢⎢⎢⎣

p

q

r
s

⎤
⎥⎥⎥⎥⎦ .

With W̄ = M(V3,Wa) being chosen from the enlarge matrix loop algebra M̃(V3,Aa):

W̄ = M(V3,Wa) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3a b 0 0 f 0

3c a 2b 0 e f

0 2c −a 3b g e

0 0 c −3a 0 g

0 0 0 0 a b

0 0 0 0 c −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Wa =

⎡
⎢⎢⎢⎢⎣

f 0

e f

g e

0 g

⎤
⎥⎥⎥⎥⎦ , (68)

the enlarged stationary zero curvature equation
W̄x = [Ū ,W̄ ] (69)
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leads equivalently to both (32) and ⎧⎪⎨
⎪⎩

fx = −2λ f + pe−2ra,

gx = qe+2sa+2λg,

ex = 2q f +2pg−2rc−2sb.

(70)

Assume thatWa is of the following form

Wa = ∑
i≥0

Wa,iλ−i, Wa,i =

⎡
⎢⎢⎢⎣

fi 0

ei fi

gi ei

0 gi

⎤
⎥⎥⎥⎦ , i ≥ 0. (71)

Then, upon taking the initial values
e0 = −1, f0 = g0 = 0, (72)

the system (70) equivalently yields the recursion relations:⎧⎪⎪⎨
⎪⎪⎩

fi+1 =− 1
2 fi,x +

1
2 pei − rai,

gi+1 = 1
2gi,x − 1

2qei − sai,

ei+1,x = 2qei+1+2pgi+1−2rci+1−2sbi+1,

i ≥ 0. (73)

We impose the conditions on constants of integration

ei|ū=0 = fi|ū=0 = gi|ū=0 = 0, i ≥ 1, (74)

to determine the sequence of {ei, fi,gi| i ≥ 1} uniquely. The first three sets then can be computed as follows:
f1 = − 1

2 p+ r, g1 = 1
2q+ s, e1 = 0;

f2 = 1
4 px − 1

2 rx, g2 = 1
4qx +

1
2 sx, e2 = 1

2 pq+ ps−qr;

f3 = − 1
8 pxx +

1
4 rxx +

1
4 p2q− 1

2 p2s− pqr,

g3 = 1
8qxx +

1
4 sxx − 1

4 pq2− pqs− 1
2q2r,

e3 =− 1
4 (pxq− pqx)− 1

2 (pxs− psx)− 1
2 (qxr−qrx).

Further, taking

V̄ [m] = (λmW̄ )+ =
m

∑
i=0

W̄iλm−i, m ≥ 0, (75)

where W̄i ∈ M(V3,Aa), i ≥ 0, we see that the zero curvature equations

Ūtm −V̄ [m]
x +[Ū ,V̄ [m]] = 0, m ≥ 0, (76)

generate a hierarchy of integrable couplings for the AKNS hierarchy (38):

ūtm =

⎡
⎢⎢⎢⎢⎣

p

q

r
s

⎤
⎥⎥⎥⎥⎦

tm

= K̄m =

⎡
⎢⎢⎢⎢⎣

−2bm+1

2cm+1

−2 fm+1

2gm+1

⎤
⎥⎥⎥⎥⎦= Φ̄m

⎡
⎢⎢⎢⎢⎣

−2p

2q

p−2r

q+2s

⎤
⎥⎥⎥⎥⎦ , m ≥ 0, (77)

where the operator Φ̄ is determined by using the recursion relations in (34) and (73):

Φ̄ =

[
Φ 0

Φ1 Φ2

]
, (78)
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with the sub-matrix operators Φ1 and Φ2 being given by

Φ1 =

[ −p∂−1s+ r∂−1q p∂−1r + r∂−1p

−q∂−1s− s∂−1q q∂−1r− s∂−1p

]
, Φ2 =

[ − 1
2∂ + p∂−1q −p∂−1p

q∂−1q 1
2∂ −q∂−1p

]
. (79)

This recursion operator is also of different type from the previous ones (see, e.g, [26, 31, 32] for previous examples).

4.2.2. Hamiltonian structures

It can be directly shown that any symmetric and ad-invariant bilinear form on the enlarged matrix loop algebra
M̃(V3,Aa) is given by

〈M(a,b,c,e, f ,g),M(a′,b′,c′,e′, f ′,g′)〉
= (a,b,c,e, f ,g)F(a′,b′,c′,e′, f ′,g′)T

= η1(aa′+
1

2
bc′+

1

2
cb′)+η2(ae′+bg′ − c f ′+ ea′ − f c′+gb′), (80)

where the square matrix F is defined by

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1 0 0 η2 0 0

0 0 1
2η1 0 0 η2

0 1
2η10 0 −η2 0

η2 0 0 0 0 0

0 0 −η2 0 0 0

0 η2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (81)

with η1 and η2 being arbitrary constants. Note that the determinant of F is −η6
2 . Thus, the bilinear form 〈·, ·〉 is

non-degenerate iff the constant η2 is non-zero.
Now a simple application of the variational identity [29, 31, 32]:

δ
δ ū

∫
〈W̄ ,

∂Ū
∂λ

〉dx = λ−γ λ
∂λ

λγ 〈W̄ ,
∂Ū
∂ ū

〉, (82)

where γ is a constant, engenders

δ
δ ū

∫
(−η1a−η2e)dx = λ−γ ∂

∂λ
λγ

⎡
⎢⎢⎢⎢⎢⎣

1
2η1c+η2g
1
2η1b−η2 f

−η2c

η2b

⎤
⎥⎥⎥⎥⎥⎦ .

Balancing coefficients of each power of λ in the above equality leads to

δ
δ ū

∫
(−η1am+1−η2em+1)dx = (γ−m)

⎡
⎢⎢⎢⎢⎢⎣

1
2η1cm +η2gm

1
2η1bm −η2 fm

−η2cm

η2bm

⎤
⎥⎥⎥⎥⎥⎦ , m ≥ 0.

The case of m = 1 tells that γ = 0, and thus we have

δ
δu

∫ η1am+2+η2em+2

m+1
dx =

⎡
⎢⎢⎢⎢⎢⎣

1
2η1cm+1+η2gm+1

1
2η1bm+1−η2 fm+1

−η2cm+1

η2bm+1

⎤
⎥⎥⎥⎥⎥⎦ , m ≥ 0. (83)
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Consequently, we obtain the Hamiltonian structures for the soliton hierarchy of integrable couplings (77):

ūtm =

⎡
⎢⎢⎢⎢⎣

p

q

r
s

⎤
⎥⎥⎥⎥⎦

tm

= K̄m =

⎡
⎢⎢⎢⎣

−2bm+1

2cm+1

−2 fm+1

2gm+1

⎤
⎥⎥⎥⎦= J̄

δH̄m

δ ū
, m ≥ 0, (84)

with the Hamiltonian operator

J̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 − 2
η2

0 0 − 2
η2

0

0 2
η2

0 − η1
η2
2

2
η2

0 η1
η2
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (85)

and the Hamiltonian functionals

H̄m =
∫ η1am+2+η2em+2

m+1
dx, m ≥ 0. (86)

4.2.3. Liouville integrability

It is direct but lengthy to show by compte algebra systems that J̄ defined by (85) and

M̄ = Φ̄J̄ =

⎡
⎢⎢⎢⎢⎢⎣

0 − 2
η2
Φ

[
0 1

1 0

]

2
η2
Φ2

[
0 1

1 0

]
− 2

η2
Φ1

[
0 1

1 0

]
+ η1

η2
2

Φ2

[
0 −1
1 0

]

⎤
⎥⎥⎥⎥⎥⎦ (87)

with Φ being defined as in (39) and Φ1 and Φ2 being defined by (79), constitute a Hamiltonian pair. It means that any
linear combination N̄ of J̄ and M̄ satisfies∫

K̄T N̄′(ū)[N̄S̄]T̄ dx+ cycle(K̄, S̄, T̄ ) = 0 (88)

for all vector fields K̄, S̄ and T̄ . This implies that Φ̄ is hereditary [18], i.e., it satisfies

Φ̄′(ū)[Φ̄K̄]S̄− Φ̄Φ̄′(ū)[K̄]S̄ = Φ̄′(ū)[Φ̄S̄]K̄ − Φ̄Φ̄′(ū)[S̄]K̄ (89)

for all vector fields K̄ and S̄. The hereditary property (89) is equivalent to

LΦ̄K̄Φ̄ = Φ̄LK̄Φ̄ (90)

for an arbitrary vector field K̄, where the Lie derivative LK̄Φ̄ is defined by

(LK̄Φ̄)S̄ = Φ̄[K̄, S̄]− [K̄,Φ̄S̄]. (91)

It is known (see, e.g., [50]) that an autonomous operator Φ̄ = Φ̄(ū, ūx, · · ·) is a recursion operator of an evolution
equation ūt = K̄ iff the operator Φ̄ needs to satisfy

LK̄Φ̄ = 0. (92)

Obviously, we have LK̄0
Φ̄ = 0, and thus

LK̄m
Φ̄ = Φ̄LK̄m−1Φ̄ = · · · = Φ̄mLK̄0

Φ̄ = 0, m ≥ 1. (93)
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This shows that the operator Φ̄ is a common hereditary recursion operator for the soliton hierarchy of integrable
couplings (77).
Now, it follows that the soliton hierarchy of integrable couplings (77) is bi-Hamiltonian and Liouville integrable, and

thus, it possesses infinitely many commuting symmetries and conserved densities. In particular, we have the Abelian
symmetry algebra:

[K̄k, K̄l ] = K̄′
k(ū)[K̄l ]− K̄′

l (ū)[K̄k] = 0, k, l ≥ 0, (94)

and the two Abelian algebras of conserved Hamiltonian functionals:

{H̄k,H̄l}J̄ =
∫ (δH̄k

δ ū

)T
J̄
δH̄l

δ ū
dx = 0, k, l ≥ 0, (95)

and

{H̄k,H̄l}M̄ =
∫ (δH̄k

δ ū

)T
M̄

δH̄l

δ ū
dx = 0, k, l ≥ 0. (96)

These conserved Hamiltonian functionals generate infinitely many conservation laws for each system of integrable
couplings in the hierarchy (77). Such differential polynomial type conservation laws can also be computed systemat-
ically by computer algebra systems (see, e.g., [51]) or generated from a Riccati equation from the associated spatial
spectral problem (see, e.g., [52, 53]).

5. SUPER VARIATIONAL IDENTITIES

If the underlying Lie algebra ḡ is superalgebra, we have similar super variational identities [26]. Let ḡ(λ ) be a loop
superalgebra over a supercommutative ring. Then the continuous super variational identity on ḡ(λ ) holds:

δ
δu

∫
〈W,

∂U
∂λ

〉dx = λ−γ ∂
∂λ

λγ〈W,
∂U
∂u

〉, (97)

and the discrete super variational identity on ḡ(λ ) holds:

δ
δu ∑n∈Z

〈W,
∂U
∂λ

〉 = λ−γ ∂
∂λ

λγ〈W,
∂U
∂u

〉, (98)

where γ is a fixed constant,U,W ∈ ḡ(λ ) satisfyWx = [U,W ] or (EW )U =UW , and 〈·, ·〉 is a non-degenerate, symmetric
and ad-invariant bilinear form on the loop superalgebra ḡ(λ ).
When the supertrace str is non-degenerate, the above super variational identities reduce to the supertrace identities

[54]:
δ
δu

∫
str(adW ad ∂U

∂λ
)dx = λ−γ ∂

∂λ
λγ(adW ad ∂U

∂u
), (99)

and
δ
δu ∑n∈Z

str(adW ad ∂U
∂λ

) = λ−γ ∂
∂λ

λγ(adW ad ∂U
∂u

), (100)

where adab = [a,b]. A second class of the powerful super variational identities are bi-supertrace identities for con-
structing super Hamiltonian dark equations:

δ
δu

∫ [
str

(
W0

∂U1

∂λ
)
+ str

(
W1

∂U0

∂λ
)]

dx = λ−γ ∂
∂λ

λγ[str(W0
∂U1

∂u

)
+ str

(
W1

∂U0

∂u

)]
(101)

in the continuous case, and

δ
δu ∑n∈Z

[
str

(
W0

∂U1

∂λ
)
+ str

(
W1

∂U0

∂λ
)]

= λ−γ ∂
∂λ

λγ[str(W0
∂U1

∂u

)
+ str

(
W1

∂U0

∂u

)]
(102)

in the discrete case. More generally, the super variational identities can reduce to the last-component-trace identities:

δ
δu

∫ N

∑
i=0

str
(
Wi

∂UN− j

∂λ
)

dx = λ−γ ∂
∂λ

λγ
N

∑
i=0

str
(
Wi

∂UN−i

∂u

)
, (103)
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and
δ
δu ∑n∈Z

N

∑
i=0

str
(
Wi

∂UN−i

∂λ
)
= λ−γ ∂

∂λ
λγ

N

∑
i=0

str
(
W0

∂UN−i

∂u

)
, (104)

which help generate Hamiltonian structures of super multi-integrable couplings.
If a spectral matrix U = U(u,λ ) is of order 2, we can make a super generalization to construct a super soliton

hierarchy:

Ū = U(u,λ )+αE3+βE4 =

⎡
⎢⎢⎣

U(u,λ )
α
β

β −α 0

⎤
⎥⎥⎦ , (105)

where E3 and E4 are odd generators of the super sl(2), u is a vector of commuting variables, and α and β are anti-
commuting variables. Applications of the super-trace identities lead to super integrable systems and super-symmetric
integrable systems (see, e.g., [54]-[57]).
We can also form semi-direct sums of Lie superalgebras and take new enlarged spectral matrices from the resulting

semi-direct sums of Lie superalgebras, to construct super integrable couplings. More specifically, we can make

ḡ(λ ) = g̃ � g̃c (106)

with the Lie product:
W̄ = [Ū ,V̄ ] = [U +Uc,V +Vc] = W +Wc, Ū ,V̄ ∈ ḡ(λ ), (107)

where
W = [U,V ] ∈ g̃, Wc = [U,Vc]+ [Uc,V ]+ [Uc,Vc] ∈ g̃c. (108)

Applications of the super variational identities such as the bi-supertrace identities will yield super Hamiltonian
structures for super integrable couplings. The procedure for constructing super integrable couplings is similar to the
one in the classical case, and one only needs to pay special attention to the anticommuting fermionic variables in
deriving integrable couplings.

6. CONCLUDING REMARKS

We proposed a few classes of matrix Lie algebras consisting of block matrices to generate integrable couplings, and
successfully constructed two new type hierarchies of integrable couplings for the AKNS equations. The presented
enlarged matrix loop algebras provide key elements to construct integrable couplings, and we point out that the
construction idea by using irreducible representations can also be applied to the other existing soliton hierarchies
like the Dirac hierarchy (see, e.g., [58]) and the Kaup-Newell hierarchy (see [59]).
Integrable couplings bring inspiration and insights into the general structure of integrable systems with multi-

components. It will be very helpful in building an exhaustive list of integrable systems to collect particular examples of
integrable couplings, both linear and nonlinear. The theory of integrable couplings generates various and complicated
recursion operators in block matrix form, and the mathematics behind integrable couplings is deep and interesting. It is
extremely important to explore more specific examples of integrable couplings in establishing mathematical structures
that integrable systems, particularly multi-component ones, possess.
There are many further questions on integrable couplings and their solution theories. We list some of them for

interested readers as follows.
Para-Grassmann zero curvature equations:
It is not clear how to generalize a procedure for constructing integrable systems by zero curvature equations to the

para-Grassmann case. Even in the special super-symmetric case of D = 1 and N = 1, it is not known how to solve

DxW = [U,W ], Dx = ∂θ +θ∂x - super derivative,

forW such that the super-symmetric zero curvature equation

Ut −DxV +[U,V ] = 0

generates super-symmetric integrable systems. The general para-Grassmann case definitely brings more difficulties.
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Open question on linear ordinary differential equations:
It was shown recently that for a general linear ordinary differential equation (ODE) with continuous coefficients

y(n) +a1(x)y(n−1) +a2(x)y(n−2) + · · ·+an−1(x)y′+an(x)y = 0,

where y(i) denotes the i-th order derivative of y = y(x) with respect to x, there is a solution y(x) such that

y(x), y′(x), · · · ,y(n−1)(x)

are linearly independent over the interval where solutions exist, and this helps recognize solution structures of linear
ODEs and generate subspaces of solutions invariant under the flows of given systems of evolution equations [60].
There is, however, an unsolved problem about the representation of the general solutions of linear systems of ODEs

with continuous coefficients. Let n ≥ 2, I = (a,b) ⊆ R and t0 ∈ I. Consider a Cauchy problem{
x′(t) = A(t)x(t),

x(t0) = x0 ∈ Rn,

where A(t) is an n×n matrix whose entries are continuous on I. It is known that the general solution is given by

x(t) = e
∫ t
t0

A(s)dsx0,

if the coefficient matrix commutes with its integral, i.e., we have

[A(t),
∫ t

t0
A(s)ds] = 0, t ∈ I.

An open question is whether this commutativity condition is necessary to guarantee that the vector function x(t)
defined above solves the given Cauchy problem [61].

Criterion for multivariate polynomials with one zero:
Hirota bilinear equations have recently been generalized by a technique of assigning signs to derivatives and the

linear superposition principle was used to classify bilinear equations and determine their linear subspaces of solutions
[62]. The related analysis presents an open question on multivariate polynomials [63]: how to determine if a real
multivariate polynomial has one and only one zero? There are many such polynomials, for example,

x2+ y2−2x+2y+2, zero (x,y) = (1,−1);
5x2+2xy+2y2−12x−6y+9, zero (x,y) = (1,1).

Note that all such multivariate polynomials satisfy the requirement in Hilbert’s 17th problem [64]. So, the above
problem is more general than Hilbert’s 17th problem.

Conjecture on integrability of commuting soliton equations:
There are infinitely many functionally independent symmetries generated from a recursion operator in a hierarchy of

commuting soliton equations. Those symmetries generate an infinite number of one-parameter Lie groups of solutions
to each member in the given soliton hierarchy. We conjecture that those infinitely many one-parameter Lie groups of
solutions form a dense subset of solutions in the whole solution set to each member in the soliton hierarchy.
More specifically, let us denote a hierarchy of commuting soliton equations by utm = Km(u), m ≥ 0. For a given

member utn = Kn(u), we assume that

symmetry Km ⇒ Lie group of solutions Sm(εm), εm ∈ Im = (am,bm) ⊆ R.

Let Tn be the set of solutions to the n-th member utn = Kn, and make a metric space (Tn(D),d) with a bounded domain
D :

Tn(D) = { f |D | f ∈ Tn}, d( f ,g) = sup(t,x)∈D | f (t,x)−g(t,x)|.
Is the union ∪∞

m=0Sm(εm) dense in the metric space (Tn(D),d) with any bounded domain D for each member utn = Kn
in the soliton hierarchy?
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If the answer is yes, the solution to a Cauchy problem can be approximated by the solutions generated from those
Lie symmetries. Thus, soliton hierarchies present good models of integrable nonlinear partial differential equations
from a computational point of view, indeed.

Criterion for existence of Hamiltonian structures:
We know that Hamiltonian structures exist for the perturbation systems (see, e.g., [23], [65]-[68]). But some enlarged

matrix loop algebras do not possess any non-degenerate, symmetric and ad-invariant bilinear forms required in the
variational identities and a specific such example was given in subsection 4.1 (see also [69, 70] for other examples). Is
there any concrete criterion which tells when there exist Hamiltonian structures for integrable couplings, even bi- and
tri-integrable couplings? A concrete example is the following bi-integrable coupling⎧⎪⎨

⎪⎩
ut = K(u),
vt = K′(u)[v],
wt = K′(u)[w],

where K′ denotes the Gateaux derivative as before. Is there any Hamiltonian structure for this specific bi-integrable
coupling?

ACKNOWLEDGMENTS

The work was supported in part by the State Administration of Foreign Experts Affairs of China, the National Natural
Science Foundation of China (Nos. 11371326, 11271008, 11202161, 10831003, 61072147 and 11071159), Chunhui
Plan of the Ministry of Education of China, Zhejiang Innovation Project of China (Grant No. T200905), the First-class
Discipline of Universities in Shanghai and the Shanghai Univ. Leading Academic Discipline Project (Grant No. A.13-
0101-12-004), the Natural Science Foundation of Shanghai (No. 09ZR1410800) and the Shanghai Leading Academic
Discipline Project (No. J50101). The author is also grateful to E. A. Appiah, X. Gu, X. Y. Li, S. Manukure, H. Q.
Zhang, and Q. L. Zhao for their stimulating discussions.

REFERENCES

1. V. I. Arnold, Mathematical Methods of Classical Mechanics (2nd edition, Springer-Verlag, New York, 1989).
2. J. Bour, J. Math. Pures Appl. 20, 185–200 (1855).
3. J. Liouville, J. Math. Pures Appl. 20, 201–202 (1855).
4. W. X. Ma, in: Encyclopedia of Nonlinear Science, ed. A. Scott (Taylor & Francis, New York, 2005), pp. 250–253.
5. M. A. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University

Press, Cambridge, 1991).
6. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004).
7. D. Y. Chen, Introduction to Solitons (Science Press, Beijing, 2006).
8. L. A. Dickey, Soliton Equations and Hamiltonian Systems (2nd edition, World Scientific, Singopore, 2003).
9. P. D. Lax, Comm. Pure Appl. Math. 21, 467–490 (1968).
10. W. X. Ma, Acta Math. Sci. 14, 409–418 (1994).
11. A. S. Fokas, Inverse Problems 25, 123007, 44 pp. (2009).
12. V. G. Drinfel’d and V. V. Sokolov, Soviet Math. Dokl. 23, 457–462 (1981).
13. P. J. Olver, J. Math. Phys. 18, 1212–1215 (1977).
14. F. Magri, J. Math. Phys. 19, 1156–1162 (1978).
15. I. M. Gelfand and I. Ja Dorfman, Funktsional. Anal. i Prilozhen. 13, 13–30, 96 (1979).
16. B. Fuchssteiner and A. S. Fokas, Physica D 4, 47–66 (1981/82).
17. P. J. Olver, Applications of Lie groups to differential equations (Springer-Verlag, New York, 1986).
18. B. Fuchssteiner, Nonlinear Anal. 3, 849–862 (1979).
19. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 53, 249–315 (1974).
20. W. X. Ma, Appl. Math. Comput. 220, 117–122 (2013).
21. W. X. Ma, X. X. Xu, and Y. F. Zhang, Phys. Lett. A 351, 125–130 (2006).
22. W. X. Ma, X. X. Xu, and Y. F. Zhang, J. Math. Phys. 47, 053501, 16 pp. (2006).
23. W. X. Ma and B. Fuchssteiner, Chaos, Solitons & Fractals 7, 1227–1250 (1996).
24. W. X. Ma, Methods Appl. Anal. 7, 21–55 (2000).
25. W. X. Ma, in: Special Issue on Solitons, ed. W. X. Ma, Chin. Ann. Math. B 33, 207–224 (2012).
26. W. X. Ma, J. H. Meng, and H. Q. Zhang, Global J. Math. Sci. 1, 1–17 (2012).

121 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.247.214.70 On: Thu, 05 Dec 2013 21:38:55



27. W. X. Ma, J. H. Meng, and H. Q. Zhang, Int. J. Nonlinear Sci. Numer. Simul. 14, DOI:10.1515/ijnsns-2013-0011 (2013).
28. L. Frappat, A. Sciarrino, and P. Sorba, Dictionary on Lie Algebras and Superalgebras (Academic, San Diego, CA, 2000).
29. W. X. Ma and M. Chen, J. Phys. A: Math. Gen. 39, 10787–10801 (2006).
30. W. X. Ma, J. Phys. A: Math. Theoret. 40, 15055–15069 (2007).
31. W. X. Ma, Nonlinear Anal. 71, e1716–e1726 (2009).
32. W. X. Ma, in: Nonlinear and Modern Mathematical Physics, eds. W. X. Ma, X. B. Hu, and Q. P. Liu, AIP Conference

Proceedings, Vol.1212 (American Institute of Physics, Melville, NY, 2010), pp. 1–27.
33. G. Z. Tu, J. Phys. A: Math. Gen. 22, 2375–2392 (1989).
34. G. Z. Tu, J. Phys. A: Math. Gen. 23, 3903–3922 (1990).
35. W. X. Ma, Chin. Ann. Math. A 13, 115–123 (1992).
36. F. G. Guo and Y. F. Zhang, J. Math. Phys. 44, 5793–5803 (2003).
37. T. C. Xia, F. J. Yu, and Y. F. Zhang, Physica A 343, 238–246 (2004).
38. Y. F. Zhang, Chaos, Solitons & Fractals 21, 305–310 (2004).
39. E. G. Fan and Y. F. Zhang, Chaos, Solitons & Fractals 25, 425–439 (2005).
40. Z. Li and H. H. Dong, Comput. Math. Appl. 55, 2643–2652 (2008).
41. X. X. Xu, J. Phys. A: Math. Theoret. 42, 395201, 21 pp. (2009).
42. C. Yue, Z. J. Liu, and J. D. Yu, Modern Phys. Lett. B 23, 3643–3658 (2009).
43. Q. L. Zhao, X. X. Xu, and X. Y. Li, Commun. Nonlinear Sci. Numer. Simul. 15,
44. B. L. Feng and J. Q. Liu, Commun. Nonlinear Sci. Numer. Simul. 16, 1734–1741 (2011).
45. H. W. Yang, H. H. Dong, B. S. Yin, and Z. Y. Liu, Adv. Math. Phys. 2012, Art. ID 272904, 14 pp. (2012).
46. B. A. Kupershmidt, J. Nonlinear Math. Phys. 8, 363–445 (2001).
47. S. Y. Lou, Commun. Theor. Phys. 55, 743–746 (2011).
48. W. X. Ma and Y. Zhang, Appl. Anal. 89, 457–472 (2010).
49. K. Erdmann and M. J. Wildon, Introduction to Lie Algebras (Springer, London, 2006).
50. W. X. Ma, J. Phys. A: Math. Gen. 23, 2707–2716 (1990).
51. W. Hereman, P. J. Adams, H. L. Eklund, M. S. Hickman, and B. M. Herbst, in: Advances in Nonlinear Waves and Symbolic

Computation, loose errata (Nova Sci. Publ., New York, 2009), pp. 19–78.
52. T. M. Alberty, T. Koikawa, and R. Sasaki, Physica D 5, 43–65 (1982).
53. P. Casati, A. Della Vedova, and G. Ortenzi, J. Geom. Phys. 58, 377–386 (2008).
54. W. X. Ma, J. S. He, and Z. Y. Qin, J. Math. Phys. 49, 033511, 13 pp. (2008).
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