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Abstract
The aim of this paper is to conduct two group reductions for matrix spectral problems simul-
taneously. We formulate reduced Ablowitz-Kaup-Newell-Segur matrix spectral problems
under two local group reductions, and construct associated hierarchies of matrix integrable
models, which keep the corresponding zero curvature equations invariant. In this way, vari-
ous integrable models can be generated via zero curvature equations.

Keywords AKNS matrix spectral problem · Integrable hierarchy · Zero curvature equation

Mathematics Subject Classification 37K15 · 35Q55 · 37K40

1 Introduction

Matrix spectral problems are key objects in formulating integrable models and their soliton
solutions. Zero curvature equations are representations of integrable models, which are the
compatibility conditions of spatial and temporal matrix spectral problems. The universal
approach for Cauchy problems of integrable models, called the inverse scattering transform,
is completely based on Lax pairs of matrix spectral problems [1].

Motivated by gauge transformations, conducting group reductions for matrix spectral
problems, which keep the zero curvature equations invariant, can yield reduced zero curva-
ture equations, and thus, reduced integrable models [2]. The nonlinear Schrödinger equa-
tions and the modified Korteweg-de Vries equation are such typical examples, which are
generated by one group reduction (see, e.g., [3–6], for more examples). Based on the
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Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems, taking one group reduc-
tion leads to one kind of reduced integrable nonlinear Schrödinger type models and two
kinds of reduced integrable modified Kortweweg-de Vries type models. Moreover, taking
a pair of group reductions can engender more diverse integrable models. However, some
additional constraint conditions are required to satisfy, which are raised by the compatibility
conditions between two group reductions. Such conditions bring relations between entries
of spectral matrices in matrix spectral problems and are usually hard to achieve.

The idea of taking group reductions has also been applied to construction of nonlocal
integrable models [7]. Based on one nonlocal group reduction for the AKNS matrix spectral
problems, one can generate three kinds of reduced integrable nonlinear Schrödinger type
models, and two kinds of reduced integrable modified Kortweweg-de Vries type models
[8]. The inverse scattering transform has also been successfully applied to nonlocal inte-
grable models (see, e.g., [9–12]). Moreover, many other efficient approaches solve nonlocal
integrable models, and particularly, construct soliton solutions. Among those methods are
the Hirota bilinear method, Darboux transformation, Bäclund transforms and the Riemann-
Hilbert technique (see, for example, [13–16]). It is also shown [17] that a nonlocal reduction
on the full-line, leading to the nonlocal nonlinear Schrödinger equation from the AKNS
spectral problem, can be recast as a local reduction on the half-line.

In this paper, we would like to propose a pair of specific local group reductions for the
AKNS matrix spectral problems, to generate reduced integrable models. The other sections
of the paper are structured as follows. In the next section, we recall the AKNS hierarchies of
matrix integrable models and their matrix spectral problems to prepare the subsequent anal-
yses. Then we consider two local group reductions for the AKNS matrix spectral problems
simultaneously and compute reduced hierarchies of local integrable models, which consist
of commuting flows. The whole theory of formulating reduced AKNS matrix spectral prob-
lems and reduced corresponding matrix integrable models is illustrated by a few concrete
examples., which also present novel integrable models. A conclusion and some discuss ions
are given in the last section.

2 The AKNS Matrix Integrable Hierarchies Revisited

In order to facilitate the subsequent analyses, let us recall the AKNS hierarchies of matrix
integrable models and their corresponding matrix spectral problems.

First, let λ stand for the spectral parameter, and p and q be two matrix potentials:

p = p(x, t) = (pjk)m×n, q = q(x, t) = (qkj )n×m, (1)

where m,n ≥ 1 are two arbitrarily given natural numbers. The matrix AKNS spectral prob-
lems are defined by

−iφx = Uφ, U = U(u,λ) = (λ� + P ), (2)

and

−iφt = V [r]φ, V [r] = V [r](u,λ) = (λr� + Q[r]), r ≥ 0, (3)

with u = u(p,q) being the potential. In this Lax pair of matrix spectral problems, the (m +
n)-th order square matrices, � and �, are given by

� = diag(α1Im,α2In), � = diag(β1Im,β2In), (4)



Reduced AKNS Spectral Problems and Associated Complex Matrix. . . Page 3 of 13    17 

where Ik is the identity matrix of size k, and α1, α2 and β1, β2 are two pairs of arbitrarily
given distinct real constants, which show the diversity of matrix spectral problems but do
not affect associated integrable models very much. The other two (m + n)-th order square
matrices, P and Q[r], are defined by

P = P (u) =
[

0 p

q 0

]
, (5)

which is called the potential matrix, and

Q[r] =
r−1∑
s=0

λs

[
a[r−s] b[r−s]

c[r−s] d [r−s]

]
, (6)

where a[s], b[s], c[s] and d [s] are defined recursively through

b[0] = 0, c[0] = 0, a[0] = β1Im, d [0] = β2In, (7)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b[s+1] = 1

α
(−ib[s]

x − pd [s] + a[s]p),

c[s+1] = 1

α
(ic[s]

x + qa[s] − d [s]q),

a[s+1]
x = i(pc[s+1] − b[s+1]q),

d [s+1]
x = i(qb[s+1] − c[s+1]p),

s ≥ 0, (8)

where α = α1 − α2 and zero constants of integration are taken in the determination of a[s]
and d [s]. Particularly, we can have

Q[1] = β

α
P, Q[2] = β

α
λP − β

α2
Im,n(P

2 + iPx),

and

Q[3] = β

α
λ2P − β

α2
λIm,n(P

2 + iPx) − β

α3
(i[P,Px] + Pxx + 2P 3),

where β = β1 −β2 and Im,n = diag(Im,−In). It is easy to see from the recursive relations in
(8) with (7) that

W =
∑
s≥0

λ−sW [s] =
∑
s≥0

λ−s

[
a[s] b[s]

c[s] d [s]

]
(9)

determines a Laurent series solution to the stationary zero curvature equation

Wx = i[U,W ], (10)

where U is given in (2). Such a formal series solution is crucial in generating integrable
hierarchies (see, e.g., [18, 19] for examples).
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Then, it is direct to see that for each pair of m,n ≥ 1, the compatibility conditions of the
two matrix spectral problems in (2) and (3), namely, the zero curvature equations:

Ut − V [r]
x + i[U,V [r]] = 0, r ≥ 0, (11)

present one matrix AKNS integrable hierarchy

pt = iαb[r+1], qt = −iαc[r+1], r ≥ 0. (12)

The case of m = n = 1 reduces to the typical AKNS integrable hierarchy [20]. By the trace
identity [21], each member in the above matrix integrable hierarchy can be showed to pos-
sess a bi-Hamiltonian structure and infinitely many symmetries and conserved quantities
(see, e.g., [22, 23] for more details).

The first and second nonlinear (corresponding to r = 2,3) integrable models in (12) give
us the AKNS matrix nonlinear Schrödinger equations:

pt = − β

α2
i(pxx + 2pqp), qt = β

α2
i(qxx + 2qpq), (13)

and the AKNS matrix modified Korteweg-de Vries equations:

pt = − β

α3
(pxxx + 3pqpx + 3pxqp), qt = − β

α3
(qxxx + 3qxpq + 3qpqx), (14)

where p and q are the two matrix potentials defined by (1). More examples could be found
in the literature (see, e.g., [24, 25]).

3 Reduced AKNS Spectral Problems and Integrable Hierarchies

3.1 Reduced AKNS Matrix Spectral Problems

Assume that �1 and �2 are two constant invertible Hermitian matrices of orders m and n,
respectively, and 	1 and 	2 are other two constant invertible matrices of orders m and n,
respectively. Then, we form the two bigger invertible constant matrices of order m + n:

� =
[

�1 0
0 �2

]
, 	 =

[
	1 0
0 	2

]
. (15)

All such matrice form a group 
 under the matrix multiplication.
For the spectral matrix U in (2), we propose the following pair of group reductions:

�U(λ)�−1 = U †(λ∗) = (U(λ∗))†, (16)

and

	U(λ)	−1 = U(λ), (17)

where † and ∗ denotes the Hermitian transpose and the complex conjugate. These show the
two invariance properties under similarity transformations, and in (16) and (17), two groups

{(�,f (λ∗)) ∈ (
,C∞)} with (�[1], f [1](λ∗))(�[2], f [2](λ∗)) = (�[1]�[2], f [1](f [2](λ∗))),
(18)
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and

{(	,g(λ)) ∈ (
,C∞)} with (	[1], g[1](λ))(	[2], g[2](λ)) = (	[1]	[2], g[1](g[2](λ))), (19)

are taken, respectively.
Noting the characteristic form of U , we can see that these two group reductions lead

equivalently to

�P�−1 = P †, (20)

and

	P	−1 = P, (21)

respectively. These actually require the following corresponding constraints for the two ma-
trix potentials p and q:

p = �−1
1 q†�2 or q = �−1

2 p†�1, (22)

and

p = 	1p	−1
2 , q = 	2q	−1

1 . (23)

As a consequence of (22) and (23), the first matrix potential p needs to satisfy

	1p = p	2, �−1
1 	

†
1�1p = p�−1

2 	
†
2�2, (24)

or the second matrix potential q needs to satisfy

q	1 = 	2q, q�−1
1 	

†
1�1 = �−1

2 	
†
2�2q. (25)

Therefore, under both group reductions in (16) and (17), we have a class of reduced AKNS
matrix spectral problems:

−iφx = Uφ, U =
[

α1λIm p

�−1
2 p†�1 α2λIn

]
, (26)

where p needs to satisfy the constraints in (24), or equivalently,

−iφx = Uφ, U =
[

α1λIm �−1
1 q†�2

q α2λIn

]
, (27)

where q needs to satisfy the constraints in (25).

3.2 Associated Reduced Matrix Integrable Hierarchies

Following the two group reductions in (16) and (17), one can show that{
�W(λ)�−1 = W †(λ∗) = (W(λ∗))†,

	W(λ)	−1 = W(λ),
(28)
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where W is given by (9). These invariance properties guarantee that for each r ≥ 0, we have

{
�V [r](λ)�−1 = V [r]†(λ∗) = (V [r](λ∗))†,

	V [r](λ)	−1 = V [r](λ),
(29)

and {
�Q[r](λ)�−1 = Q[r]†(λ∗) = (Q[r](λ∗))†,

	Q[r](λ)	−1 = Q[r](λ),
(30)

where V [r] and Q[r] are given in (3) and (6), respectively. Now, as a consequence of the
potential constraints (22) and (23), we see that

{
�(Ut − V [r]

x + i[U,V [r]])�−1 = U
†
t − V [r]†

x + i[U †,V [r]†],
	(Ut − V [r]

x + i[U,V [r]])	−1 = Ut − V [r]
x + i[U,V [r]],

r ≥ 0, (31)

and thus, the matrix AKNS integrable models in (12) become a hierarchy of reduced AKNS
matrix integrable models:

pt = iαb[r+1]|
q=�−1

2 p†�1
, r ≥ 0, (32)

where p is a reduced m × n matrix potential satisfying (24), or equivalently,

qt = −iαc[r+1]|
p=�−1

1 q†�2
, r ≥ 0, (33)

where q is a reduced n × m matrix potential satisfying (25). Moreover, every member in
the reduced hierarchy (32) or (33) has a Lax pair consisting of the reduced matrix spectral
problems in (2) and (3) and possesses a hierarchy of commuting symmetries and conserved
densities reduced from those for the matrix integrable AKNS models in (12). The Lax pair
of reduced matrix spectral problems are made of (26) and

−iφt = V [r]|
q=�−1

2 p†�1
φ, r ≥ 0, (34)

or equivalently, (27) and

−iφt = V [r]|
p=�−1

1 q†�2
φ, r ≥ 0. (35)

Since �1 and �2 are arbitrary invertible constant Hermitian matrices of orders m and
n, respectively, and 	1 and 	2 are arbitrary invertible constant matrices of orders m and
n, respectively, we can generate various reduced hierarchies of matrix AKNS integrable
models.

4 Illustrative Examples

4.1 Case of m = 1 and n = 2

In the case of m = 1 and n = 2, we present two examples.
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If we firstly take

�1 = 1, �2 =
[

σ 0

0 σ

]
, 	1 = 1, 	2 =

[
0 δ

δ 0

]
, (36)

where δ and σ take on values of either 1 or −1, then we have

p = (p1, δp1), q = σp† = σ(p∗
1, δp

∗
1)

T , (37)

and the reduced matrix spectral problem becomes

−iφx = U |
q=�−1

2 p†�1
φ =

⎡
⎢⎢⎣

α1λ p1 δp1

σp∗
1 α2λ 0

σδp∗
1 0 α2λ

⎤
⎥⎥⎦φ. (38)

Upon going with the choice for p and q in (37), we can see that the 2nd-order reduced
integrable model is just the nonlinear Schrödinger equation

ip1,t = β

α2
(p1,xx + 4σ |p1|2p1), (39)

and the 3rd-order reduced integrable equation is exactly the modified Korteweg-de Vries
equation

p1,t = − β

α3
(p1,xxx + 12σ |p1|2p1,x). (40)

If we secondly take

�1 = 1, �2 =
[

0 σ

σ 0

]
, 	1 = 1, 	2 =

[
0 δ

δ 0

]
, (41)

where δ and σ take on values of either 1 or −1, then we have

p = (p1, δp1), q = σδp† = σ(δp∗
1,p

∗
1)

T , (42)

and the reduced matrix spectral problem becomes

−iφx = U |
q=�−1

2 p†�1
φ =

⎡
⎢⎢⎣

α1λ p1 δp1

σδp∗
1 α2λ 0

σp∗
1 0 α2λ

⎤
⎥⎥⎦φ. (43)

Now going with the choice for p and q in (42), we can see that the 2nd-order reduced
integrable model is precisely the nonlinear Schrödinger equation

ip1,t = β

α2
(p1,xx + 4σδ|p1|2p1), (44)

and the 3rd-order reduced integrable model is exactly the modified Korteweg-de Vries equa-
tion

p1,t = − β

α3
(p1,xxx + 12σδ|p1|2p1,x). (45)
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To conclude, we have shown that the nonlinear Schrödinger equation and the modified
Korteweg-de Vries equation possess different 3×3 matrix Lax pairs, which amend the 2×2
matrix Lax pairs in the existing literature [1].

4.2 Case of m = 2 and n = 2

In the case of m = n = 2, we present a few examples below.
Let us generally take

�1 =
[

0 σ1

σ2 0

]
, �2 =

[
0 σ3

σ4 0

]
, 	1 =

[
0 δ1

δ2 0

]
, 	2 =

[
0 δ3

δ4 0

]
, (46)

where each of σi and δi takes on values of either 1 or −1 and all of them satisfy

δ1δ2δ3δ4 = 1, σ1σ2σ3σ4 = 1, (47)

which come from the two group reductins, then we have

p =
[

p1 p2

δ2δ3p2 δ2δ4p1

]
, q =

[
δ2δ4σ2σ4p

∗
1 σ1σ4p

∗
2

δ2δ3σ2σ3p
∗
2 σ1σ3p

∗
1

]
, (48)

and so the reduced matrix spectral problem takes the form

−iφx =

⎡
⎢⎢⎢⎢⎢⎣

α1λ 0 p1 p2

0 α1λ δ2δ3p2 δ2δ4p1

δ2δ4σ2σ4p
∗
1 σ1σ4p

∗
2 α2λ 0

δ2δ3σ2σ3p
∗
2 σ1σ3p

∗
1 0 α2λ

⎤
⎥⎥⎥⎥⎥⎦φ. (49)

Particularly, if we firstly take{
δ1 = −δ2 = δ3 = −δ4 = 1,

σ1 = σ2 = ±σ3 = ±σ4 = 1,
(50)

then we have

p =
[

p1 p2

−p2 p1

]
, q = ±p∗ = ±

[
p∗

1 p∗
2

−p∗
2 p∗

1

]
. (51)

The second example here is the reduction analyzed in [26]. The two coupled nonlinear
Schrödinger integrable models read{

ip1,t = β

α2 [p1,xx ± 2(|p1|2 − 2|p2|2)p1 ∓ 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx ∓ 2(|p2|2 − 2|p1|2)p2 ± 2p2
1p

∗
2],

(52)

and the two coupled modified Korteweg-de Vries integrable models are{
p1,t = − β

α3 [p1,xxx ± 6(|p1|2 − |p2|2)p1,x ∓ 6(p1p
∗
2 + p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx ± 6(p1p
∗
2 + p∗

1p2)p1,x ± 6(|p1|2 − |p2|2)p2,x].
(53)
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If we secondly take {
δ1 = −δ2 = δ3 = −δ4 = 1,

σ1 = −σ2 = ±σ3 = ∓σ4 = −1,
(54)

then we have

p =
[

p1 p2

−p2 p1

]
, q = ±p† = ±

[
p∗

1 −p∗
2

p∗
2 p∗

1

]
. (55)

The second example above is the reduction discussed in [27, 28]. The two coupled nonlinear
Schrödinger integrable models read{

ip1,t = β

α2 [p1,xx ± 2(|p1|2 + 2|p2|2)p1 ∓ 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx ± 2(|p2|2 + 2|p1|2)p2 ∓ 2p2
1p

∗
2],

(56)

and the two coupled modified Korteweg-de Vries integrable models are{
p1,t = − β

α3 [p1,xxx ± 6(|p1|2 + |p2|2)p1,x ± 6(p1p
∗
2 − p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx ∓ 6(p1p
∗
2 − p∗

1p2)p1,x ± 6(|p1|2 + |p2|2)p2,x].
(57)

If we thirdly take

δ1 = −δ2 = −δ3 = δ4 = 1, (58)

then we have

p =
[

p1 p2

p2 −p1

]
. (59)

Further, let us take ⎧⎪⎪⎨
⎪⎪⎩

σ1 = −σ2 = −σ3 = σ4 = 1;
σ1 = σ2 = −σ3 = −σ4 = 1;
σ1 = −σ2 = σ3 = −σ4 = 1;

(60)

and then we have

q =
[

p∗
1 p∗

2

p∗
2 −p∗

1

]
, q =

[
p∗

1 −p∗
2

−p∗
2 −p∗

1

]
, q =

[−p∗
1 −p∗

2

−p∗
2 p∗

1

]
, (61)

respectively. All three corresponding coupled nonlinear Schrödinger integrable models read{
ip1,t = β

α2 [p1,xx + 2(|p1|2 + 2|p2|2)p1 − 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx + 2(|p2|2 + 2|p1|2)p2 − 2p2
1p

∗
2],

(62)

{
ip1,t = β

α2 [p1,xx + 2(|p1|2 − 2|p2|2)p1 − 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx − 2(|p2|2 − 2|p1|2)p2 + 2p2
1p

∗
2],

(63)
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and {
ip1,t = β

α2 [p1,xx − 2(|p1|2 + 2|p2|2)p1 + 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx − 2(|p2|2 + 2|p1|2)p2 + 2p2
1p

∗
2],

(64)

All three corresponding coupled modified Korteweg-de Vries integrable models are{
p1,t = − β

α3 [p1,xxx + 6(|p1|2 + |p2|2)p1,x + 6(p1p
∗
2 − p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx − 6(p1p
∗
2 − p∗

1p2)p1,x + 6(|p1|2 + |p2|2)p2,x],
(65)

{
p1,t = − β

α3 [p1,xxx + 6(|p1|2 − |p2|2)p1,x − 6(p1p
∗
2 + p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx + 6(p1p
∗
2 + p∗

1p2)p1,x + 6(|p1|2 − |p2|2)p2,x],
(66)

and {
p1,t = − β

α3 [p1,xxx − 6(|p1|2 + |p2|2)p1,x − 6(p1p
∗
2 − p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx + 6(p1p
∗
2 − p∗

1p2)p1,x − 6(|p1|2 + |p2|2)p2,x].
(67)

These three examples of coupled nonlinear Schrödinger and coupled modified Korteweg-de
Vries integrable models are covered in the previous examples.

Finally, let us take

δ1 = δ2 = −δ3 = −δ4 = −1, (68)

and then we have

p =
[

p1 p2

−p2 −p1

]
. (69)

Further, we choose {
σ1 = σ2, σ3 = σ4, σ1σ3 = ±1;
σ1 = −σ2, σ3 = −σ4, σ1σ3 = ±1; (70)

we get

q = ±
[−p∗

1 p∗
2

−p∗
2 p∗

1

]
, q = ±

[−p∗
1 −p∗

2

p∗
2 p∗

1

]
, (71)

respectively. The two pairs of corresponding coupled nonlinear Schrödinger integrable mod-
els are as follows: {

ip1,t = β

α2 [p1,xx ∓ 2(|p1|2 + 2|p2|2)p1 ∓ 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx ∓ 2(|p2|2 + 2|p1|2)p2 ∓ 2p2
1p

∗
2];

(72)

and {
ip1,t = β

α2 [p1,xx ∓ 2(|p1|2 − 2|p2|2)p1 ∓ 2p2
2p

∗
1],

ip2,t = β

α2 [p2,xx ± 2(|p2|2 − 2|p1|2)p2 ± 2p2
1p

∗
2].

(73)
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The two pairs of corresponding coupled modified Korteweg-de Vries integrable models read

{
p1,t = − β

α3 [p1,xxx ∓ 6(|p1|2 + |p2|2)p1,x ∓ 6(p1p
∗
2 + p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx ∓ 6(p1p
∗
2 + p∗

1p2)p1,x ∓ 6(|p1|2 + |p2|2)p2,x];
(74)

and {
p1,t = − β

α3 [p1,xxx ∓ 6(|p1|2 − |p2|2)p1,x ± 6(p1p
∗
2 − p∗

1p2)p2,x],
p2,t = − β

α3 [p2,xxx ± 6(p1p
∗
2 − p∗

1p2)p1,x ∓ 6(|p1|2 − |p2|2)p2,x].
(75)

5 Conclusion and Remarks

Two group reductions have been discussed, which reduce the AKNS matrix spectral prob-
lems, and associated reduced AKNS matrix integrable hierarchies have been presented.
Illustrative examples of reduced AKNS matrix spectral problems and associated reduced
integrable models were given, which also show the diversity of Lax pairs that reduced in-
tegrable models could possess. One of the group reductions yields a constraint on the two
matrix potentials, and the other leads to a constraint on one of the two matrix potentials. This
is a different kind of pairs of group reductions from the ones discussed in the literature for
the nonlinear Schrödinger equations [29–32] and the modified Korteweg-de Vries equations
[33, 34].

It will be significantly important to construct soliton type solutions through various ap-
proaches, such as the Darboux transformation, the Hirota bilinear tool, Bäcklund transforms
and the Wronskian determinant technique. Breather wave solutions [35, 36] and lump wave
solutions [37–39] are particularly interesting. Moreover, Riemann-Hilbert problems are used
to formulate soliton solutions to integrable models, both local and nonlocal. Reduced inte-
grable models need to satisfy additional constraint conditions and so require special attention
while formulating solitons. Applications of Riemann-Hilbert problems to reduced integrable
models will be another intriguing problem worthy of further exploration.
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