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Abstract The invariant subspace method is refined to present more unity and more diversity of exact solutions

to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as

invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations
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associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact

solutions with generalized separated variables.
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1 Introduction

Exact solutions to differential equations are significantly important in exploring the nature of motion.

Based on the classification of elementary functions, there are only three kinds of explicit elementary

exact solutions, classified as soliton-like, positon-like and complexiton-like solutions [9, 12, 17, 18], to

differential equations, both linear and nonlinear. Hirota direct method presents Wronskian and Pfaffian

formulations of solutions to soliton equations, leading to solitons, positons and complexitons [6,13,14]. For

general nonlinear partial differential equations, symmetry related methods (see, e.g., [3,21,22,28]) provide

powerful approaches to their exact solutions. Group-invariant solutions stemming from symmetries play

crucial roles in studying asymptotical behavior, blow up phenomena and fractal properties of motion,

and they can be used to justify numerical schemes of solving partial differential equations [1, 2, 20].

The invariant subspace method, recently proposed in [4, 27], is one of powerful approaches for con-

structing exact solutions to nonlinear evolution equations. Various invariant subspaces defined through

linear ordinary differential equations have been presented for solving specific nonlinear evolution equations

(see [5, 8, 25] and references therein). Indeed, the invariant subspace method generates many interesting

exact solutions to nonlinear evolution equations in mechanics and physics and a systematical solution

procedure was given by Galaktionov and Svirshchevskii in their book [5].

In particular, Galaktionov [4] utilized the invariant subspace method to generate exact solutions to

nonlinear evolution equations with quadratic nonlinearities, and showed that exact positive solutions to

the quasi-linear heat equations

ut = (u−
4
3 ux)x − au−

1
3 + bu

7
3 + cu,
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where a, b, c ∈ R are constants, can be constructed through invariant subspaces of functions of the

polynomial or trigonometric form, admitted by the spatial differential operator. Actually, evolution

equations that admit invariant subspaces can be defined to be symmetries of given ordinary differential

equations [25, 26]. Interestingly, the N -soliton solutions to soliton equations such as the KdV equation,

the mKdV equation, the nonlinear Schrödinger equation and the sine-Gordon equation, derived by the

Hirota bilinear method [6,7], are all in a linear space of exponential functions under change of variables [5].

The invariant subspace method was also used to construct exact solutions to systems of nonlinear

evolution equations. On the basis of the existence of invariant subspaces that systems of linear ordinary

differential equations define, Qu and Zhu [23] classified the systems of nonlinear parabolic equations of

the form

ut = [f(u, v)ux + p(u, v)vx]x + r(u, v),

vt = [g(u, v)ux + q(u, v)vx]x + s(u, v).

Zhu and Qu [29] presented an estimation of maximal dimensions of invariant subspaces for two-component

systems of nonlinear evolution equations, and Shen et al. [24] generalized this estimation to multi-

component systems of nonlinear evolution equations, together with some classifications of the consid-

ered systems of nonlinear parabolic equations and computation of the exact solutions derived from the

corresponding invariant subspaces.

In this paper, we would like to refine the invariant subspace method by taking invariant subspaces as

subspaces of solution spaces to systems of linear ordinary differential equations. Note that a solution

to an n-th-order ordinary differential equation may not satisfy another ordinary differential equation of

order less than n. Our idea will generalize the invariant subspace method from the point of view of

unity and diversity of invariant subspaces and exact solutions. A two-component nonlinear system of

dissipative equations is analyzed carefully and a set of sufficient and necessary conditions is presented for

the existence of invariant subspaces. Two concrete examples illustrate the effectiveness of the resulting

refined theory in presenting exact solutions with generalized separated variables.

2 Refining the invariant subspace method

2.1 Scalar case

Let us consider a scalar evolution equation

ut = F [u], (2.1)

where u = u(x, t) is a function of x, t ∈ R and F is a differential operator of order m:

F [u] = F (x, t, u, u1, . . . , um), ui =
∂i

∂xi
u, i � 0. (2.2)

Let n � 1 be a given natural number. Take n linearly independent functions

f1(x), f2(x), . . . , fn(x),

and form an n-dimensional linear space

Wn = L{f1(x), f2(x), . . . , fn(x)} =

{ n∑
i=1

Cifi(x)

∣∣∣∣Ci = const, 1 � i � n

}
, (2.3)

i.e., the linear span of f1(x), f2(x), . . . , fn(x) over R or C.

Definition 2.1. A finite-dimensional linear space Wn is said to be invariant with respect to a differ-

ential operator F , if F [Wn] ⊆Wn, i.e., F [u] ∈Wn, ∀u ∈Wn.
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Suppose that Wn is invariant with respect to a given differential operator F . Then there exist n

functions F̃1, F̃2, . . . , F̃n such that

F

[ n∑
i=1

Cifi(x)

]
=

n∑
i=1

F̃i(C1, C2, . . . , Cn)fi(x) (2.4)

for whatever constants C1, C2, . . . , Cn. It follows that the evolution equation (2.1) possesses a solution

of the form

u(x, t) =

n∑
i=1

φi(t)fi(x), (2.5)

if and only if φ1, φ2, . . . , φn satisfy a system of ordinary differential equations:

dφi
dt

= F̃i(φ1, φ2, . . . , φn), 1 � i � n. (2.6)

We usually take an invariant subspaceWn as the space of solutions to a given n-th-order linear ordinary

differential equation

L[y] = y(n) + an−1(x)y
(n−1) + · · ·+ a0(x)y = 0, y(i) = Diy, D =

d

dx
, i � 0, (2.7)

where a0, a1, . . . , an−1 are given continuous functions. The linearity of the above equation brings a good

possibility to generate exact solutions to nonlinear evolution equations.

The above approach for constructing exact solutions of the form (2.5) is called the invariant subspace

method [4,27]. It is also called a generalized separation of variables [25], whose resulting solutions of the

form (2.5) we call solutions with generalized separated variables.

To refine the invariant subspace method discussed above, let us consider a k-dimensional subspace Wk

of the n-dimensional linear space Wn, and without loss of generality, we set

Wk = L{f1(x), f2(x), . . . , fk(x)} =

{ k∑
i=1

Cifi(x)

∣∣∣∣Ci = const, 1 � i � k

}
, (2.8)

where k � n. The invariance condition F [Wk] ⊆ Wk means that there exist k functions F̄1, F̄2, . . . , F̄k

such that

F

[ k∑
i=1

Cifi(x)

]
=

k∑
i=1

F̄i(C1, C2, . . . , Ck)fi(x) (2.9)

for whatever constants C1, C2, . . . , Ck. This way, beginning with a similar system of ordinary differential

equations
dψi

dt
= F̄i(ψ1, ψ2, . . . , ψk), 1 � i � k, (2.10)

we can engender a set of exact solutions to the evolution equation (2.1):

u =
k∑

i=1

ψi(t)fi(x). (2.11)

We call this approach a refined invariant subspace method. One of its advantages is that when k < n,

the invariance condition F [Wk] ⊆Wk requires much less conditions on the evolution equation (2.1).

The following results are helpful in searching for conditions to guarantee the existence of invariant

subspaces that nonlinear evolution equations admit.

Theorem 2.1. Let I = (a, b) be an open interval, x0 ∈ I be an arbitrary point and m � 0 be an

integer. If a real function f defined on I satisfies

f(x0) = 0, f ′(x0) = 0, . . . , f (m−1)(x0) = 0, f (m)(x0) = d, (2.12)

where d is nonzero, then f, f ′, . . . , f (m) are linearly independent over I.
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Proof. If m = 0, the theorem is true, since based on (2.12), f is not a zero function. In what follows,

let m > 0. Suppose that the theorem is not true. That is to say, there are an integer 0 � k � m and real

constants ci, 0 � i � m− k, with cm−k �= 0 such that

c0f(x) + c1f
′(x) + · · ·+ cm−kf

(m−k)(x) = 0, x ∈ I. (2.13)

This is an ordinary differential equation with constant coefficients. Thus, the solution f is analytic in I,

and so, using the conditions for derivatives in (2.12), we have

f(x) =
d

m!
(x− x0)

m +
∞∑

i=m+1

f (i)(x0)

i!
(x− x0)

i. (2.14)

Now, the coefficient of (x − x0)
k in the Taylor series expansion of the function on the left-hand side of

(2.13) is cm−kd/k!, which is not zero. This contradicts the linear dependence equation (2.13). Therefore,

f, f ′, . . . , f (m) are linearly independent over I.

Theorem 2.2. Let ai(x), 0 � i � n− 1, be real continuous functions on an open interval I = (a, b).

Then there exits a solution y to the linear ordinary differential equation

y(n) + an−1(x)y
(n−1) + · · ·+ a0(x)y = 0

such that y, y′, . . . , y(n−1) are linearly independent over I.

Proof. For a fixed x0 ∈ I, let us consider a Cauchy problem of the linear ordinary differential equation

(2.7) with the initial data

y(x0) = 0, y′(x0) = 0, . . . , y(n−2)(x0) = 0, y(n−1)(x0) = d, (2.15)

where the real constant d is nonzero. The theory of ordinary differential equations tells that there exits a

unique solution y defined on I to this Cauchy problem. It now follows from Theorem 2.1 with m = n− 1

that this solution y is the desired solution.

Theorem 2.2 tells that for an n-th-order linear ordinary differential equation, there always exists a

solution y such that y, y′, . . . , y(n−1) are linearly independent. Thus, in principle, for a given differential

operator F , we can get necessary and sufficient conditions to guarantee the existence of an invariant

subspace Wk, by collecting all coefficients of linearly independent terms, generated from the linearly

independent functions y, y′, . . . , y(n−1), in the invariance condition

DnF [y] + an−1(x)D
n−1F [y] + · · ·+ a0(x)F [y] = 0, y ∈Wk, (2.16)

and setting them to be zero. The process may be difficult and frustrating. However, from analyzing

different terms involving y, y′, . . . , y(n−1) in (2.16), we can always get sufficient conditions for the existence

of invariant subspaces that F admits.

It should be interesting to note that Wk may not possibly be generated by a k-th-order linear ordinary

differential equation. An example is given as follows:

W1 = L{y}, y = eλ1x + eλ2x, λ1,2 = consts,

where y is a solution to the 2nd-order linear differential equation

y′′ − (λ1 + λ2)y
′ + λ1λ2y = 0,

but does not solve any 1st-order linear differential equation when λ1 �= λ2. Therefore, our refinement

does make sense in generalizing the invariant subspace method.

2.2 Multi-component case

In what follows, we adopt the notations

ui0 = ui(x, t), uij =
∂jui(x, t)

∂xj
, 1 � i � q, j � 1, (2.17)
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such that the discussion can be easily extended to cases of multiple spatial variables. A system of evolution

equations is assumed to take the form

ut = F [u] = (F 1[u], F 2[u], . . . , F q[u])T, u = (u1, u2, . . . , uq)T, (2.18)

where

F i[u] = F i(x, t, u1, . . . , uq, . . . , u1mi
, . . . , uqmi

), 1 � i � q, (2.19)

are given sufficiently smooth functions in the indicated variables. Therefore, for each 1 � i � q, F i can

be viewed as a differential operator of order mi.

Let Wk1,...,kq denote a linear space W 1
k1

× · · · ×W q
kq
, with W i

ki
being defined by

W i
ki

= L{f i
1(x), . . . , f

i
ki
(x)} =

{ ki∑
j=1

Ci
jf

i
j(x)

∣∣∣∣Ci
j = const, 1 � j � ki

}
, 1 � i � q, (2.20)

where for each 1 � i � q, f i
1(x), . . . , f

i
ki
(x) are linearly independent. If the above vector differential

operator F satisfies the invariance condition

F [u] ∈ Wk1,...,kq , ∀u ∈ Wk1,...,kq ,

i.e.,

F i[u] ∈W i
ki
, ∀u ∈Wk1,...,kq , 1 � i � q, (2.21)

then the vector differential operator F (or the system of evolution equations (2.18)) is said to admit an

invariant subspace Wk1,...,kq , or Wk1,...,kq is said to be invariant under the given differential operator F .

The above invariance condition (2.21) means that there exist functions F̃ i
j , 1 � j � ki, 1 � i � q, such

that

F i

[ k1∑
j=1

C1
j f

1
j (x), . . . ,

kq∑
j=1

Cq
j f

q
j (x)

]
=

ki∑
j=1

F̃ i
j (C

1
1 , . . . , C

1
k1
, . . . , Cq

1 , . . . , C
q
kq
)f i

j(x), (2.22)

where 1 � i � q.

Now if a spaceWk1,...,kq is admitted by the vector differential operator F , then the system of evolution

equations (2.18) possesses an exact solution of the form

ui =

ki∑
j=1

Ci
j(t)f

i
j(x), 1 � i � q, (2.23)

if and only if the Ci
j(t)’s satisfy a system of ordinary differential equations:

dCi
j

dt
= F̃ i

j (C
1
1 , . . . , C

1
k1
, . . . Cq

1 , . . . , C
q
kq
), 1 � j � ki, 1 � i � q. (2.24)

The last step is that for each 1 � i � q, we take the space W i
ki

= L{f i
1(x), . . . , f

i
ki
(x)} as a subspace

of solutions to an ni-th-order linear ordinary differential equation:

Li[yi] = y
(ni)
i + aini−1(x)y

(ni−1)
i + · · ·+ ai1(x)y

′
i + ai0(x)yi = 0, (2.25)

where ni � ki. The invariance conditions for the subspace Wk1,...,kq = W 1
k1

× · · · ×W q
kq

with respect to

F = (F 1, . . . , F q)T read

DniF i[u] + aini−1(x)D
ni−1F i[u] + · · ·+ ai0(x)F

i[u] = 0, u ∈Wk1,...,kq , 1 � i � q. (2.26)
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This set of equations is our starting point to construct exact solutions to systems of evolution equations

by looking for their invariant subspaces.

Note that the orders of linear ordinary differential equations defining invariant subspaces can not be

arbitrary, and they are subject to the differential orders of the nonlinear operators F i, 1 � i � q. Once

the maximal orders of the required linear ordinary differential equations are determined, we will be able

to classify systems of evolution equations under consideration, and compute exact solutions from the

associated invariant subspaces.

The problem of maximal orders of linear ordinary differential equations defining invariant subspaces

was firstly posed and solved for the scalar case in [5]. For the scalar case, the maximal order of a linear

ordinary differential equation defining an invariant subspace is not greater than 2m+ 1, where m is the

order of the differential operator F in (2.1). For a q-component nonlinear really-coupled system defined

by (2.18) and (2.19) with m1 � m2 � · · · � mq � 0, the orders {n1, . . . , nq} of linear ordinary differential

equations defining invariant subspaces with n1 � n2 � · · · � nq > 0 must satisfy [24]

ni−1 − ni � mi, 2 � i � q, n1 � 2

q∑
i=1

mi + 1.

That the system defined by (2.18) and (2.19) is really-coupled means that for each pair 1 � i �= j � q,

there exists an integer 0 � k � mi such that ∂F i

∂uj
k

is not a zero function. If F i, 1 � i � q, are all real,

then the really-coupled condition can be concisely written as

mi∑
k=0

(
∂F i

∂ujk

)2

�= 0, 1 � i �= j � q.

3 Invariant subspaces and exact solutions

In this section, we analyze a (1+1)-dimensional nonlinear system of dissipative equations to illustrate

how to generate invariant subspaces and the corresponding exact solutions. We consider the following

nonlinear system of dissipative equations:

ut = F = (uxx + α1vvx)x + α2v
2, (3.1)

vt = G = uxx + β1u+ β2v, (3.2)

where α1, α2, β1, β2 are constants, α1, α2 are not simultaneously equal to zero, and we have used the

traditional notation

ux =
∂u

∂x
, vx =

∂v

∂x
, uxx =

∂2u

∂x2
, vxx =

∂2v

∂x2
, . . .

Let us take an invariant subspace W2,2 =W 1
2 ×W 2

2 defined by

L1[y] = y′′ + a1y
′ + a0y = 0, L2[z] = z′′ + b1z

′ + b0z = 0, (3.3)

where a0, a1, b0, b1 are constants to be determined. The corresponding invariance conditions read

(D2F + a1DF + a0F )|u∈W 1
2 , v∈W 2

2
= 0, (3.4)

(D2G+ b1DG+ b0G)|u∈W 1
2 , v∈W 2

2
= 0. (3.5)

Substitute the expressions for F andG into the above equations, and replace uxx and vxx by−a1ux−a0u
and −b1vx − b0v a few times, respectively. Then we collect the coefficients of (vx)

2, vvx and v2 in the

first simplified equation and the coefficients of ux and u in the second simplified equation, and set them

to be zero, to obtain the sufficient conditions:

(vx)
2 : 7α1b1

2 + α1a0 + 2α2 − 4α1b0 − 3α1a1b1 = 0, (3.6)
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vvx : 12α1b1b0 − α1a0b1 − 4α1a1b0 + 2α2a1 − α1b1
3 − 2α2b1 + α1a1b1

2 = 0, (3.7)

v2 : 4α1b0
2 + α2a0 − α1b1

2b0 + α1a1b0b1 − α1a0b0 − 2α2b0 = 0, (3.8)

ux : −a13 + 2 a0a1 − β1a1 + a1
2b1 − a0b1 + β1b1 − a1b0 = 0, (3.9)

u : −a0a12 + a0
2 − β1a0 + a0a1b1 − a0b0 + β1b0 = 0, (3.10)

which guarantees the invariance conditions (3.4) and (3.5). We began with two second order differential

equations, and so definitely there exist linearly dependent terms in (vx)
2, vvx and v2 for whatever solution

v, but u and ux could be linearly independent (see Theorem 2.2). Therefore, the conditions (3.6)–(3.8)

are sufficient but not necessary to guarantee the first invariance condition (3.4), but the conditions (3.9)

and (3.10) are both necessary and sufficient to guarantee the second invariance condition (3.5).

Under the first condition (3.6), the second and third conditions, (3.7) and (3.8), are equivalent to

−α1a1b1
3 − 2α1b0b1

2 + 3α1b1
4 − α2a0 + α2a1b1 = 0, (3.11)

−3α1b1
3 − α2a1 + α1a1b1

2 + 2α1a1b0 − 4α1b0b1 = 0. (3.12)

This can be shown directly by using Maple and we will see later where they come from.

Let us now assume Δ2 = b1
2 − 4b0 > 0. Then

W 2
2 = L{eλ+x, eλ−x}, (3.13)

where

λ± =
−b1 ±

√
Δ2

2
.

Collecting the coefficients of three linearly independent terms e(λ++λ−)x, e2λ+x and e2λ−x in the first

invariance condition (3.4) and setting them to be zero gives rise to

γ1 = 0, γ2 ±
√
Δ2 γ3 = 0, (3.14)

respectively, where

γ1 = α1a0b1
2 − α1a1b1

3 − 2α2a1b1 + α1b1
4 + 2α2b1

2 + 2α2a0, (3.15)

γ2 = −4α2b0 + α2a0 + 8α1b0
2 − 16α1b0b1

2 − 2α− 1a0b0 + 4α1b1
4

+ 2α2b1
2 + 6α1a1b0b1 − 2α1a1b1

3 − α2a1b1 + α1a0b1
2, (3.16)

γ3 = −4α1b1
3 − 2α2b1 + α2a1 + 2α1a1b1

2 − 2α1a1b0 − α1a0b1 + 8α1b0b1. (3.17)

The conditions in (3.14) equivalently lead to

γ1 = 0, γ2 = 0, γ3 = 0. (3.18)

These are necessary and sufficient conditions for guaranteeing the first invariance condition (3.4).

Under the first condition (3.6), γ2 = 0 and γ3 = 0 become the equations (3.11) and (3.12), respectively.

When the three equations, (3.6), γ2 = 0 and γ3 = 0, hold, the condition γ1 = 0 is automatically satisfied.

Therefore, the conditions (3.6)–(3.8) yield (3.18). But conversely, it is not true. This is because the

system (3.18) has a solution α2 = b0 = b1 = 0 with the other variables being arbitrary, but the left-hand

side of (3.6) under α2 = b0 = b1 = 0 is α1a0, not always zero.

More specifically, under Δ2 = b1
2 − 4b0 > 0, let us take a smaller invariant subspace

W2,1 =W 1
2 ×W 2

1 , W 2
1 = L{eμx}, (3.19)

where μ = λ+ (or μ = λ−). Then the invariance conditions

(D2F + a1DF + a0F )|u∈W 1
2 , v∈W 2

1
= 0, (3.20)

(D2G+ b1DG+ b0G)|u∈W 1
2 , v∈W 2

1
= 0, (3.21)
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only require

γ2 +
√
Δ2 γ3 = 0 (or γ2 −

√
Δ2 γ3 = 0) (3.22)

plus (3.9) and (3.10). Any of these two conditions in (3.22) is much weaker than the conditions in (3.14),

i.e., (3.18). Therefore, we can have a more general system of dissipative equations which still possesses

exact solutions with generalized separated variables.

In what follows, we give two concrete examples of getting exact solutions with generalized separated

variables.

Example 3.1. Let us consider a system

ut = (uxx + α1vvx)x +

(
3α1a1b1 − 9

2
α1b1

2 − 1

2
α1a1

2

)
v2, (3.23)

vt = uxx + β1u+ β2v, (3.24)

which admits an invariant subspace W2,2 defined by

L1[y] = y′′ + a1y
′ + (a1b1 − b1

2)y = 0, (3.25)

L2[z] = z′′ + b1z
′ +

(
a1b1 − 3

4
b1

2 − 1

4
a1

2

)
z = 0, (3.26)

where a1 can take any of the following three choices:

a1 = b1 or a1 =
4 b1

2 − β1 ±
√
4 b1

4 − 20 β1b1
2 + β1

2

6b1
. (3.27)

We analyze the case of a1 = b1, for which we have

ut = (uxx + α1vvx)x − 2α1a1
2v2, (3.28)

vt = uxx + β1u+ β2v, (3.29)

and

L1[y] = y′′ + a1y
′ = 0, (3.30)

L2[z] = z′′ + a1z
′ = 0. (3.31)

From these two equations L1[y] = 0 and L2[z] = 0, we obtain an invariant subspace

W 1
2 ×W 2

2 = L{1, e−a1x} × L{1, e−a1x} (3.32)

that the system of (3.28) and (3.29) admits. It then follows that an exact solution takes the form

u = C1(t) + C2(t)e
−a1x, v = D1(t) +D2(t)e

−a1x. (3.33)

Substituting this solution into the system of (3.28) and (3.29), we get the following system of ordinary

differential equations:

C ′
1 = −2α1a1

2D1
2, C′

2 = −a13C2 − 3α1a1
2D1D2, (3.34)

D′
1 = β1C1 + β2D1, D′

2 = a1
2C2 + β1C2 + β2D2. (3.35)

Based on the refined theory, let us further focus on a smaller invariant subspace

W1,1 =W 1
1 ×W 2

1 = L{e−a1x} × L{e−a1x}, (3.36)

to present exact solutions. Solving the system of (3.34) and (3.35) with C1 = D1 = 0, we arrive at

C2 = c e−a1
3t, D2 = d eβ2t − c(a1

2 + β1)

a13 + β2
e−a1

3t, (3.37)
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and then according to (3.33), we obtain an exact solution to the system of (3.28) and (3.29):

u = c e−a1x−a1
3t, v = d e−a1x+β2t − c(a1

2 + β1)

a13 + β2
e−a1x−a1

3t, (3.38)

where c and d are arbitrary constants.

Example 3.2. Let us finally consider a system of the following evolution equations:

ut = (ux + α1vvx)x − a1
2α1v

2 − 3α1vvxx, (3.39)

vt = uxx + a1
2u+ β2v, (3.40)

where a1 �= 0, α1, β2 are arbitrary constants. This system admits an invariant subspace W1,1 defined by

W1,1 =W 1
1 ×W 2

1 = L{cos(a1x)} × L{1 + sin(a1x)}. (3.41)

These two basis solutions y = cos(a1x) and z = 1 + sin(a1x) satisfy

L1[y] = y′′ + a1
2y = 0, (3.42)

L2[z] = z′′′ + a1
2z′ = 0, (3.43)

but they cannot satisfy any lower-order linear ordinary differential equations with constant coefficients.

Now, assuming a solution with the form

u = C(t) cos(a1x), v = D(t)[1 + sin(a1x)], (3.44)

and substituting back into the system of (3.39) and (3.40), we find

C ′(t) = −a12C(t), D′(t) = β2D(t). (3.45)

The general solution of this system yields the following exact solution to the system of (3.39) and (3.40):

u = c e−a1
2t cos(a1x), v = d eβ2t[1 + sin(a1x)], (3.46)

where c and d are two arbitrary constants.

This gives us a concrete example which uses the refined invariant subspace method to construct exact

solutions to nonlinear systems of evolutions equations.

4 Concluding remarks

The invariant subspace method was refined by taking invariant subspaces as subspaces of solutions to

linear ordinary differential equations. Our discussions were concentrated on how to identify necessary

and sufficient conditions for the existence of invariant subspaces that nonlinear evolution equations ad-

mit. Two concrete examples illustrated the effectiveness of the refined approach for exploring solution

structures of systems of nonlinear differential equations, which are notoriously more difficult to solve than

scalar ones.

The invariant subspace method is also called a generalized separation of variables for nonlinear dif-

ferential equations by Svirshchevskii [25], presenting a kind of complexiton-like solutions [10, 12]. It is

interesting to see that the linear superposition principle takes on key role in constructing exact solu-

tions to either evolution equations [5] or Hirota bilinear equations [15, 19]. All related theories furnish

linear combination solutions of functions with separated variables, which shows a sort of integrability of

nonlinear differential equations [11].

Motivated by the multiple exp-function method [16], we can also characterize invariant subspaces

through linear partial differential equations. This will lead to more diverse situations of solutions with

generalized separated variables and open a much larger research area.
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3 Fokas A S, Liu Q M. Nonlinear interaction of travelling waves of nonintegrable equations. Phys Rev Lett, 1994, 72:

3293–3296

4 Galaktionov V A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities.

Proc Roy Soc Endin Sect A, 1995, 125: 225–246

5 Galaktionov V A, Svirshchevskii S R. Exact Solutions and Invarinat Subspaces of Nonlinear Partial Differential Equa-

tions in Mechanics and Physics. London: Chapman and Hall/CRC, 2007

6 Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004

7 Hirota R, Grammaticos B, Ramani A. Soliton structure of the Drinfel’d-Sokolov-Wilson equation. J Math Phys, 1986,

27: 1499–1505

8 King J R. Exact polynomial solutions to some nonlinear diffusion equations. Physica D, 1993, 64: 35–65

9 Li C X, Ma W X, Liu X J, et al. Wronskian solutions of the Boussinesq equation–solitons, negatons, positons and

complexitons. Inverse Problems, 2007, 23: 279–296

10 Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301: 35–44

11 Ma W X. Integrability. In: Scott A, ed. Encyclopedia of Nonlinear Science. New York: Taylor & Francis, 2005,

250–253

12 Ma W X. Complexiton solutions to integrable equations. Nonlinear Anal, 2005, 63: e2461–e2471

13 Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dynam Syst, 2009, Supp: 506–515

14 Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP

equation. Appl Math Comput, 2011, 217: 10016–10023

15 Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011,

61: 950–959

16 Ma W X, Huang T W, Zhang Y. A multiple exp-function method for nonlinear differential equations and its application.

Phys Scr, 2010, 82: 065003

17 Ma W X, Li C X, He J S. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal, 2009, 70:

4245–4258

18 Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math

Soc, 2005, 357: 1753–1778

19 Ma W X, Zhang Y, Tang Y N, et al. Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput,

2012, 218: 7174–7183

20 Olver P J. Applications of Lie Groups to Differential Equations, 2nd Ed. New York: Springer-Verlag, 1993

21 Qu C Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection

equation with a nonlinear source. Stud Appl Math, 1997, 99: 107–136
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