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Abstract The invariant subspace method is refined to present more unity and more diversity of exact solutions
to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as
invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations
is analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces
associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact
solutions with generalized separated variables.
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1 Introduction

Exact solutions to differential equations are significantly important in exploring the nature of motion.
Based on the classification of elementary functions, there are only three kinds of explicit elementary
exact solutions, classified as soliton-like, positon-like and complexiton-like solutions [9, 12,17, 18], to
differential equations, both linear and nonlinear. Hirota direct method presents Wronskian and Pfaffian
formulations of solutions to soliton equations, leading to solitons, positons and complexitons [6,13,14]. For
general nonlinear partial differential equations, symmetry related methods (see, e.g., [3,21,22,28]) provide
powerful approaches to their exact solutions. Group-invariant solutions stemming from symmetries play
crucial roles in studying asymptotical behavior, blow up phenomena and fractal properties of motion,
and they can be used to justify numerical schemes of solving partial differential equations [1,2,20].

The invariant subspace method, recently proposed in [4,27], is one of powerful approaches for con-
structing exact solutions to nonlinear evolution equations. Various invariant subspaces defined through
linear ordinary differential equations have been presented for solving specific nonlinear evolution equations
(see [5,8,25] and references therein). Indeed, the invariant subspace method generates many interesting
exact solutions to nonlinear evolution equations in mechanics and physics and a systematical solution
procedure was given by Galaktionov and Svirshchevskii in their book [5].

In particular, Galaktionov [4] utilized the invariant subspace method to generate exact solutions to
nonlinear evolution equations with quadratic nonlinearities, and showed that exact positive solutions to
the quasi-linear heat equations
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where a,b,c € R are constants, can be constructed through invariant subspaces of functions of the
polynomial or trigonometric form, admitted by the spatial differential operator. Actually, evolution
equations that admit invariant subspaces can be defined to be symmetries of given ordinary differential
equations [25,26]. Interestingly, the N-soliton solutions to soliton equations such as the KdV equation,
the mKdV equation, the nonlinear Schrodinger equation and the sine-Gordon equation, derived by the
Hirota bilinear method [6,7], are all in a linear space of exponential functions under change of variables [5].

The invariant subspace method was also used to construct exact solutions to systems of nonlinear
evolution equations. On the basis of the existence of invariant subspaces that systems of linear ordinary
differential equations define, Qu and Zhu [23] classified the systems of nonlinear parabolic equations of
the form

up = [f(u,v)uy + p(u, v)vg], + 7(u,v),
vy = [g(u, v)ug + q(u, v)vg], + s(u,v).

Zhu and Qu [29] presented an estimation of maximal dimensions of invariant subspaces for two-component
systems of nonlinear evolution equations, and Shen et al. [24] generalized this estimation to multi-
component systems of nonlinear evolution equations, together with some classifications of the consid-
ered systems of nonlinear parabolic equations and computation of the exact solutions derived from the
corresponding invariant subspaces.

In this paper, we would like to refine the invariant subspace method by taking invariant subspaces as
subspaces of solution spaces to systems of linear ordinary differential equations. Note that a solution
to an n-th-order ordinary differential equation may not satisfy another ordinary differential equation of
order less than n. Our idea will generalize the invariant subspace method from the point of view of
unity and diversity of invariant subspaces and exact solutions. A two-component nonlinear system of
dissipative equations is analyzed carefully and a set of sufficient and necessary conditions is presented for
the existence of invariant subspaces. Two concrete examples illustrate the effectiveness of the resulting
refined theory in presenting exact solutions with generalized separated variables.

2 Refining the invariant subspace method

2.1 Scalar case
Let us consider a scalar evolution equation

uy = Flul, (2.1)
where u = u(z,t) is a function of x,¢ € R and F' is a differential operator of order m:

ai

il 120 (2.2)

Flu] = F(z,t,u,ug, ..oy Um), U =

Let n > 1 be a given natural number. Take n linearly independent functions

fl(x)7 f2(x)7 RN fn(x)7

and form an n-dimensional linear space

Wy = L{fi(2), fo(@), ..., fu(2)} = {Zcifi(x) C; = const, 1 <1< n}, (2.3)
i=1

i.e., the linear span of fi(z), fa(z),..., fn(x) over R or C.

Definition 2.1. A finite-dimensional linear space W,, is said to be invariant with respect to a differ-
ential operator F, if F[W,] CW,, i.e., Flu] € W,,,Yu € W,,.
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Suppose that W, is invariant with respect to a given differential operator F'. Then there exist n
functions Fy, Fy, ..., F, such that

for whatever constants Cy,Cs,...,C,. It follows that the evolution equation (2.1) possesses a solution
of the form

u(z,t) = ¢i(t) fi(x), (2.5)
=1

if and only if ¢1, ¢o, ..., @, satisfy a system of ordinary differential equations:
do; = .
= Fi(61,6n 0 00), 1<i<n (26)

We usually take an invariant subspace W, as the space of solutions to a given n-th-order linear ordinary
differential equation

: . d
Lyl =y™ + ana(@)y" ™ 4+ aole)y =0,y =Dy, D= . i>0, (2.7)
x
where ag, a1, ...,a,_1 are given continuous functions. The linearity of the above equation brings a good

possibility to generate exact solutions to nonlinear evolution equations.

The above approach for constructing exact solutions of the form (2.5) is called the invariant subspace
method [4,27]. It is also called a generalized separation of variables [25], whose resulting solutions of the
form (2.5) we call solutions with generalized separated variables.

To refine the invariant subspace method discussed above, let us consider a k-dimensional subspace Wy,
of the n-dimensional linear space W,,, and without loss of generality, we set

k
Wk = ‘C{fl(x)7f2(x)7 cee 7fk(x)} = { chfl(x) Ci = CODSt, 1 g 1 < k}? (28)
i=1
where k& < n. The invariance condition F[W}] C W}, means that there exist &k functions F,F, ... F
such that
k koo
F[Zcifi(x)] =Y Fi(Cy,Ca,...,Cr) filx) (2.9)
i=1 i=1
for whatever constants C4, Co, ..., Cy. This way, beginning with a similar system of ordinary differential
equations
dy; .
dt :E(wl7¢27"'7¢k)7 1<Z<k7 (210)

we can engender a set of exact solutions to the evolution equation (2.1):

k
w="Y (t)fi(). (2.11)
i=1

We call this approach a refined invariant subspace method. One of its advantages is that when k < n,
the invariance condition F[W}] C W}, requires much less conditions on the evolution equation (2.1).

The following results are helpful in searching for conditions to guarantee the existence of invariant
subspaces that nonlinear evolution equations admit.

Theorem 2.1. Let I = (a,b) be an open interval, xo € I be an arbitrary point and m > 0 be an
integer. If a real function f defined on I satisfies
flzo) =0, fl(xo)=0, ..., f" VD(xg)=0, f™(x)=4d, (2.12)

where d is nonzero, then f, f',..., f™) are linearly independent over I.
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Proof.  If m = 0, the theorem is true, since based on (2.12), f is not a zero function. In what follows,
let m > 0. Suppose that the theorem is not true. That is to say, there are an integer 0 < k < m and real
constants ¢;, 0 < i < m — k, with ¢;,—x # 0 such that

cof (@) +af (@) + 4 emifm (@) =0, zel (2.13)

This is an ordinary differential equation with constant coefficients. Thus, the solution f is analytic in I,
and so, using the conditions for derivatives in (2.12), we have

o0 (g 4
flz) = :L ( —20)™ + Z ! z(' 0) (x —x0)". (2.14)

!

’ i=m+41
Now, the coefficient of (z — 2¢)* in the Taylor series expansion of the function on the left-hand side of
(2.13) is ¢;—kd/k!, which is not zero. This contradicts the linear dependence equation (2.13). Therefore,
£, ..., £ are linearly independent over I.

Theorem 2.2.  Let a;(x), 0 < i < n—1, be real continuous functions on an open interval I = (a,b).
Then there exits a solution y to the linear ordinary differential equation

y(n) + an—l(x)y(n_l) + o+ ao(x)y = O
such that y,y’, ...,y are linearly independent over I.

Proof.  For a fixed z¢ € I, let us consider a Cauchy problem of the linear ordinary differential equation
(2.7) with the initial data

y(xo) - 07 y/(xo) = 07 ey y(n72)(x0) = 07 y(nil) (xo) = d? (215)

where the real constant d is nonzero. The theory of ordinary differential equations tells that there exits a
unique solution y defined on I to this Cauchy problem. It now follows from Theorem 2.1 with m =n—1
that this solution y is the desired solution.

Theorem 2.2 tells that for an n-th-order linear ordinary differential equation, there always exists a
solution y such that y,7/, ...,y 1 are linearly independent. Thus, in principle, for a given differential
operator F', we can get necessary and sufficient conditions to guarantee the existence of an invariant
subspace Wy, by collecting all coefficients of linearly independent terms, generated from the linearly
independent functions y,v/, ...,y Y, in the invariance condition

D"Fly] + an_1(z)D" ' Fly| + -+ ao(x)Fly] =0, y € Wy, (2.16)

and setting them to be zero. The process may be difficult and frustrating. However, from analyzing
different terms involving y, v/, ...,y 1) in (2.16), we can always get sufficient conditions for the existence
of invariant subspaces that I’ admits.

It should be interesting to note that W} may not possibly be generated by a k-th-order linear ordinary
differential equation. An example is given as follows:

Wi =L{y}, y=eM"+e™* A, = consts,
where y is a solution to the 2nd-order linear differential equation
Y= (A X))y + Moy =0,

but does not solve any 1st-order linear differential equation when A\; # As. Therefore, our refinement
does make sense in generalizing the invariant subspace method.

2.2 Multi-component case

In what follows, we adopt the notations

uh = ui(z,t), U= Ou'(z, 1)

J Ori 1<i<q, j=21, (2.17)
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such that the discussion can be easily extended to cases of multiple spatial variables. A system of evolution
equations is assumed to take the form

ug = Flu] = (FYu), F2[u],..., Fu))T, w=(u',u? ... u9)T, (2.18)
where
Filu] = Fi(z, t,u', oo ud, . ul, o ud), 1<i<g, (2.19)

are given sufficiently smooth functions in the indicated variables. Therefore, for each 1 < i < ¢, F' can
be viewed as a differential operator of order m;.
Let Wkl,,,,,kq denote a linear space I/V,Cl1 X -+ X W,gq, with le, being defined by

ki
Wi = L{fi(x),..., fi.(x)} = {Zc;if;f(a:) C! =const, 1 <j < k} 1<i<q, (2.20)
j=1
where for each 1 < i < ¢, f{(x),..., fi (z) are linearly independent. If the above vector differential

operator F' satisfies the invariance condition
Flu) € Wiy ok, Y€ Wy o kys
ie.,
Fillule Wi, Yue Wy, x, 1<i<g, (2.21)

then the vector differential operator F' (or the system of evolution equations (2.18)) is said to admit an
invariant subspace Wy, . k,, or Wi, k, is said to be invariant under the given differential operator F'.
The above invariance condition (2.21) means that there exist functions F}, 1<j<k 1<i<q,such
that

k1 kq ki
Fi [chfjl(x), o chfg(x)] =Y Fi(Cl,....Ch,. ., OF . CL fi(), (2.22)
j=1 j=1 j=1

where 1 <17 < q.
Now if a space Wy, ...k, is admitted by the vector differential operator I, then the system of evolution
equations (2.18) possesses an exact solution of the form

ki
ui =Y i), 1<i<q (223)
J=1

if and only if the C%(t)’s satisfy a system of ordinary differential equations:

dC

i = Fj(C,...,C,...CL,...,CL), 1<j<k, 1<i<q. (2.24)

The last step is that for each 1 < i < ¢, we take the space W} = L{f{(z),..., f] (z)} as a subspace
of solutions to an n;-th-order linear ordinary differential equation:

Lily) =y + aly,_y (@)yd" ) + - al(@)y] + ab(@)y: = 0, (2.25)

where n; > k;. The invariance conditions for the subspace Wy, .k, = W,{l1 X oo X W,gq with respect to
F=(F' ... F)T read

D" F'lu] +al, 1 (x)D™ ' F'lu] + -+ af(2)F'lu] =0, we Wi, k., 1<i<q (2.26)
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This set of equations is our starting point to construct exact solutions to systems of evolution equations
by looking for their invariant subspaces.

Note that the orders of linear ordinary differential equations defining invariant subspaces can not be
arbitrary, and they are subject to the differential orders of the nonlinear operators F*, 1 < i < ¢q. Once
the maximal orders of the required linear ordinary differential equations are determined, we will be able
to classify systems of evolution equations under consideration, and compute exact solutions from the
associated invariant subspaces.

The problem of maximal orders of linear ordinary differential equations defining invariant subspaces
was firstly posed and solved for the scalar case in [5]. For the scalar case, the maximal order of a linear
ordinary differential equation defining an invariant subspace is not greater than 2m + 1, where m is the
order of the differential operator F' in (2.1). For a g-component nonlinear really-coupled system defined
by (2.18) and (2.19) with mq > mgo > -+ = my 2= 0, the orders {n1,...,n,} of linear ordinary differential
equations defining invariant subspaces with ny > ne > -+ > n, > 0 must satisfy [24]

q
ni—1—mn; <my, 2<i1<g, n1<22mi+1.
=1

That the system defined by (2.18) and (2.19) is really-coupled means that for each pair 1 < i # j < g,

there exists an integer 0 < k < m; such that gf; is not a zero function. If Fi7 1 < i < ¢, are all real,
k

then the really-coupled condition can be concisely written as

L (OFH\? o,
Z(auj) #0, 1<i#j<q.
k

k=0

3 Invariant subspaces and exact solutions

In this section, we analyze a (1+1)-dimensional nonlinear system of dissipative equations to illustrate
how to generate invariant subspaces and the corresponding exact solutions. We consider the following
nonlinear system of dissipative equations:

up = F = (Ugy + @1005), + asv?, (3.1)

Ut = G = Uga +ﬂ1u+62v7

where a1, s, 81, P2 are constants, aq,ao are not simultaneously equal to zero, and we have used the
traditional notation

ou ov 9%u 9%v

Ve = Upyr = V. =
8x ) xT 8x I Trr 8%2 I rxr 8%2 I

Let us take an invariant subspace Wz o = W3 x W3 defined by

Uy =

Lily] =v" + a1y’ + apy =0, La[z] = 2" + b12" + bpz = 0, (3.3)
where ag, a1, by, by are constants to be determined. The corresponding invariance conditions read

(D*F + a1 DF + aoF)|yew;, vewz =0, (3.4)

(DzG + leG + bOG)|u€W217v€W22 = 0
Substitute the expressions for F' and G into the above equations, and replace ., and v, by —aiu,—agu
and —bjv, — bpv a few times, respectively. Then we collect the coeflicients of (vw)Q,vvw and v? in the

first simplified equation and the coefficients of u, and w in the second simplified equation, and set them
to be zero, to obtain the sufficient conditions:

(093)2 : 7041b12 + arag + 2042 — 4041b0 — 3a1a1b1 = 0, (36)
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vy : 12a1b1by — aqaghy — donarby + 200a1 — a1bi® — 2a9by + aqarb? =0, (3.7)
v? : danbo? 4 asag — arbi?by + araibobr — aragby — 2aby = 0, (3.8)
Uy T —a1® + 2apar — fra1 + a12by — agb + Bibr — arby =0, (3.9)
w: —agar? + ap® — frag + agarby — agby + Bibo = 0, (3.10)

which guarantees the invariance conditions (3.4) and (3.5). We began with two second order differential
equations, and so definitely there exist linearly dependent terms in (v,)?, vv, and v? for whatever solution
v, but v and u, could be linearly independent (see Theorem 2.2). Therefore, the conditions (3.6)—(3.8)
are sufficient but not necessary to guarantee the first invariance condition (3.4), but the conditions (3.9)
and (3.10) are both necessary and sufficient to guarantee the second invariance condition (3.5).

Under the first condition (3.6), the second and third conditions, (3.7) and (3.8), are equivalent to

—a1a1b13 — 2041b0b12 + 30(1b14 — anag + agab; = 0, (311)

-3 Oélblg — apal + a1a1b12 + 2 ara1bg — 4 a1bgb; = 0. (312)

This can be shown directly by using Maple and we will see later where they come from.
Let us now assume Ay = b12 — 4by > 0. Then

W3 = L {eM* M7, (3.13)
where
N = —b1 £ VA
+ 9 .

Collecting the coefficients of three linearly independent terms e ++A-)% 222 and €2~ in the first
invariance condition (3.4) and setting them to be zero gives rise to

Mn=0, Y2t\VAry=0, (3.14)
respectively, where
Y= a1a0b12 — a1a1b13 — 2w0a1by + Oélb14 + 20(2()12 + 2 asag, (315)
Yo = —4 aaby + asag + 8a1b02 — 16 a1b0b12 — 2o — lagby + 4a1b14
+2 a2b12 +6 a1a1b0b1 -2 a1a1b13 — agalbl + a1a0b12, (316)
Y3 = —4 a1b13 — 2a9b1 + asay + 2a1a1b12 — 2aqa1bg — aragby + 8 aryboby . (317)

The conditions in (3.14) equivalently lead to
n=0, 12=0 73=0 (3.18)

These are necessary and sufficient conditions for guaranteeing the first invariance condition (3.4).
Under the first condition (3.6), y2 = 0 and 3 = 0 become the equations (3.11) and (3.12), respectively.
When the three equations, (3.6), 72 = 0 and 3 = 0, hold, the condition v; = 0 is automatically satisfied.
Therefore, the conditions (3.6)—(3.8) yield (3.18). But conversely, it is not true. This is because the
system (3.18) has a solution ag = by = by = 0 with the other variables being arbitrary, but the left-hand
side of (3.6) under as = by = by = 0 is @1 ap, not always zero.
More specifically, under Ay = b1? — 4by > 0, let us take a smaller invariant subspace

Woq =Wy x WE, Wi = L{e'}, (3.19)
where = Ay (or p = A_). Then the invariance conditions

(D*F + a1DF + aoF)|yew;, vew? = 0, (3.20)
(D*G + b1 DG + boG)|yews, vew? = 0, (3.21)
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only require
Y24+ VAry3 =0 (or yo — \/Ayvs = 0) (3.22)

plus (3.9) and (3.10). Any of these two conditions in (3.22) is much weaker than the conditions in (3.14),
i.e., (3.18). Therefore, we can have a more general system of dissipative equations which still possesses
exact solutions with generalized separated variables.

In what follows, we give two concrete examples of getting exact solutions with generalized separated
variables.

Example 3.1. Let us consider a system

9 1
up = (Ugy + 1005 )5 + (3041a1b1 - 2a1b12 - 2041a12>112, (3.23)
V¢ = Ugy + Blu + 627}7 (324)

which admits an invariant subspace W5 5 defined by

Lilyl = y" + ary’ + (a1by — b1%)y =0, (3.25)
3 1
LQ[Z] =z + blz' + (a1b1 — 4b12 — 4a12>z =0, (326)

where a; can take any of the following three choices:

_ A =Bk VaAb = 20810 + 51

ap=b; or a 6b1 (3.27)
We analyze the case of a; = by, for which we have
U = (g + 1 0V;) — 20101207, (3.28)
Ve = Ugg + S1u + Bav, (3.29)
and
Lilyl=y" +a1y =0, (3.30)
Lyz] = 2" +a12' = 0. (3.31)
From these two equations L;[y] = 0 and Lz[z] = 0, we obtain an invariant subspace
Wi x W2 = L{1, e "%} x L{1, e" 17} (3.32)
that the system of (3.28) and (3.29) admits. It then follows that an exact solution takes the form
u=Cy(t) + Ca(t)e™ ", v = Dy(t) + Da(t)e” ", (3.33)

Substituting this solution into the system of (3.28) and (3.29), we get the following system of ordinary
differential equations:

Ci = —2051&12D12, Cé = —a13C'2 — 30(1&12D1D2, (334)
D/1 = (1C1 + B2Dq, Dé = a1202 + $1Cs + B2Ds. (3.35)

Based on the refined theory, let us further focus on a smaller invariant subspace
Wi =W x WE = L{e” 7} x L{e” M7}, (3.36)

to present exact solutions. Solving the system of (3.34) and (3.35) with Cy = Dy = 0, we arrive at

_ clar? + ,
Cy =ce alst, Dy = deP?t — (all3 . ﬁil) e a13t, (3.37)
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and then according to (3.33), we obtain an exact solution to the system of (3.28) and (3.29):

2
w = ce—alz—al?’t7 v = de—a1r+B2t _ C(a13 + ﬂl) e—alz—al?’t’ (338)
a1’ + P2

where ¢ and d are arbitrary constants.

Example 3.2. Let us finally consider a system of the following evolution equations:

up = (g + @10V )y — a1?0qv? — 310045, (3.39)

Vg = Ugy + 120 + Bov, (3.40)
where a1 # 0, a1, S are arbitrary constants. This system admits an invariant subspace Wi 1 defined by
Wi =W} x Wi = L{cos(a1x)} x L{1 + sin(a17)}. (3.41)

These two basis solutions y = cos(aiz) and z = 1 + sin(a;x) satisfy

Lily) =y" + a1’y =0, (3.42)
Lo[z] = 2" + a,%2' = 0, (3.43)

but they cannot satisfy any lower-order linear ordinary differential equations with constant coefficients.
Now, assuming a solution with the form

u=C(t)cos(arz), v = D(t)[1+ sin(aiz)], (3.44)
and substituting back into the system of (3.39) and (3.40), we find
C'(t) = —a,’C(t), D'(t) = B2D(t). (3.45)

The general solution of this system yields the following exact solution to the system of (3.39) and (3.40):

a12t

u=ce " tcos(arx), v=de’[1+sin(arz)], (3.46)

where ¢ and d are two arbitrary constants.
This gives us a concrete example which uses the refined invariant subspace method to construct exact
solutions to nonlinear systems of evolutions equations.

4 Concluding remarks

The invariant subspace method was refined by taking invariant subspaces as subspaces of solutions to
linear ordinary differential equations. Our discussions were concentrated on how to identify necessary
and sufficient conditions for the existence of invariant subspaces that nonlinear evolution equations ad-
mit. Two concrete examples illustrated the effectiveness of the refined approach for exploring solution
structures of systems of nonlinear differential equations, which are notoriously more difficult to solve than
scalar ones.

The invariant subspace method is also called a generalized separation of variables for nonlinear dif-
ferential equations by Svirshchevskii [25], presenting a kind of complexiton-like solutions [10,12]. It is
interesting to see that the linear superposition principle takes on key role in constructing exact solu-
tions to either evolution equations [5] or Hirota bilinear equations [15,19]. All related theories furnish
linear combination solutions of functions with separated variables, which shows a sort of integrability of
nonlinear differential equations [11].

Motivated by the multiple exp-function method [16], we can also characterize invariant subspaces
through linear partial differential equations. This will lead to more diverse situations of solutions with
generalized separated variables and open a much larger research area.
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