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1. Introduction

It is well-known that there is a close connection between the integrability proper-

ties of differential equations and their infinitely many symmetries. An extensive

literature on this subject already exists, including continuous and discrete non-

linear equations.1–21 Moreover, these symmetries form nice and interesting algebraic

structures, such as: Virasoro algebras,13,14 W1+∞ algebras,20,21 master symmetry

algebras1,2 and so on.

In recent years, there has been an increasing interest in the theories of inte-

grable couplings on the basis of the concept of semidirect sums of Lie algebras,23–25

in particular, loop algebras.26–28 Ones have constructed plenty of examples of both

continuous and discrete integrable couplings for given classes of integrable equa-

tions.22–29 The corresponding results show various mathematical structures that
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integrable equations possess, such as Lax representations, infinitely many symme-

tries, conserved quantities and bi-Hamiltonian structures, and also provide powerful

tools to analyze integrable equations.

Very recently, Ma and Gao31 put forward a new result on generating integrable

couplings by coupled integrable couplings. Such new integrable couplings are asso-

ciated with Lie algebras possessing two sub-Lie algebras in the form of semidirect

sums of Lie algebras, and infinitely many commuting symmetries and recursion

operators are presented for such coupled integrable couplings by Ma and Gao.31 In

this paper, we are concerned with an algebraic structure of zero curvature represen-

tations of the coupled integrable couplings and apply such a structure to the coupled

integrable couplings of the AKNS systems to obtain their τ -symmetry algebras.

This paper is organized as follows. In Sec. 2, we briefly introduce coupled

integrable couplings. In Sec. 3, we compute the Lie algebra of the correspond-

ing enlarged vector fields under the enlarged commutator, and further, establish an

algebraic structure of zero curvature representations associated with coupled inte-

grable coupling systems. Finally, we apply such a structure to the coupled integrable

couplings of the AKNS systems to propose an approach for generating τ -symmetry

algebras of coupled integrable couplings.

2. Coupled Integrable Coupling Systems

Let us consider an integrable evolution equation

ut = K = K(u) = K(x, t, u, ux, uxx, . . .) , (2.1)

where x, t ∈ R and u = (u1, u2, . . . , uq)
T is a potential vector. Assume that it has

a zero curvature representation

Ut − Vx + [U, V ] = 0 , (2.2)

where the Lax matrices U and V belong to a matrix loop algebra g. This means

that a triple (U, V,K) satisfies

U ′(u)[K] + f(λ)Uλ − Vx + [U, V ] = 0 , (2.3)

where λt = f(λ) ∈ C∞(C), Uλ = ∂U/∂λ and U ′(u)[K] = ∂/∂ǫ|ǫ=0U(u+ ǫK).

Now let us assume Eq. (2.1) has two integrable couplings

ū1,t = K̄1(ū1) =

(

K

K1

)

, (2.4)

and

ū2,t = K̄2(ū2) =

(

K

K2

)

, (2.5)

and their corresponding zero curvature representations read as

Ū ′

i(ūi)[K̄i] + f(λ)Ūiλ − V̄ix + [Ūi, V̄i] = 0 , (2.6)
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with the Lax pairs being given by

Ūi = Ūi(ūi) =

(

U(u) Ui(ūi)

0 U(u)

)

,

V̄i = V̄i(ūi) =

(

V (u) Vi(ūi)

0 V (u)

)

,

(2.7)

where i = 1, 2 and ū1 = (uT , vT )T , ū2 = (uT , wT )T , v = (v1, v2, . . . , vq1 )
T , w =

(w1, w2, . . . , wq2)
T .

The algebraic structures for zero curvature representations (2.3) and (2.6) were

discussed systematically in Refs. 13, 14 and 29.

To generate coupled integrable couplings of (2.4) and (2.5) as

ût = K̂(û) =





K

K1

K2



 , ût =





u

v

w



 , (2.8)

let us now form a matrix Lie algebra ĝ consisting of square matrices of the following

block form as introduced in Ref. 31:

P̂ =





P 0 P1

0 P P2

0 0 P



 , (2.9)

where P , P1, P2 are the same size square submatrices as U and V . This Lie algebra

ĝ has two sub-Lie algebras

ḡ1 = {P̂ |P2 = 0} , ḡ2 = {P̂ |P1 = 0} , (2.10)

which can be written as semidirect sums of sub-Lie algebras

ḡ1 = ḡ1|P1=0 A ḡ1|P=0 , ḡ2 = ḡ2|P2=0 A ḡ2|P=0 , (2.11)

and thus, the Lie algebra ĝ is nonsemisimple.

So, the coupled integrable couplings (2.8) are determined by the following

enlarged zero curvature representation

Ût − V̂x + [Û , V̂ ] = 0 , (2.12)

where

Û =





U 0 U1

0 U U2

0 0 U



 , V̂ =





V 0 V1

0 V V2

0 0 V



 . (2.13)

This implies that an enlarged triple (Û , V̂ , K̂) satisfies

Û ′(û)[K̂] + f(λ)Ûλ − V̂x + [Û , V̂ ] = 0 , λt = f(λ) , (2.14)
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with

Û ′(û)[K̂] =



























∂

∂ǫ
U(u+ ǫK)

∣

∣

∣

∣

ǫ=0

0
∂

∂ǫ
U1(v + ǫK1)

∣

∣

∣

∣

ǫ=0

0
∂

∂ǫ
U(u+ ǫK)

∣

∣

∣

∣

ǫ=0

∂

∂ǫ
U2(w + ǫK2)

∣

∣

∣

∣

ǫ=0

0 0
∂

∂ǫ
U(u+ ǫK)

∣

∣

∣

∣

ǫ=0



























=









U ′(u)[K] 0 U ′

1(v)[K1]

0 U ′(u)[K] U ′

2(w)[K2]

0 0 U ′(u)[K]









,

which precisely presents














U ′(u)[K] + f(λ)Uλ − Vx + [U, V ] = 0 ,

U ′

1(v)[K1] + f(λ)U1λ − V1x + [U, V1] + [U1, V ] = 0 ,

U ′

2(w)[K2] + f(λ)U2λ − V2x + [U, V2] + [U2, V ] = 0 .

(2.15)

3. Algebraic Structure of Zero Curvature Representation for

Coupled Integrable Couplings

In this section, we aim to discuss the algebraic structure of zero curvature rep-

resentations for coupled integrable coupling systems (2.8), i.e. the enlarged triple

(Û , V̂ , K̂) satisfying (2.14).

For the sake of convenience, let us first fix the notation as in Refs. 13 and 29.

We denote by B all complex (or real) functions P = P (x, t, u, v, w) which are C∞-

differentiable with respect to x, t and C∞-Gateaux differentiable with respect to

u, v and w, and set Br = {(P1, . . . , Pr)
T |Pi ∈ B}. Moreover, by Vr, we denote all

r × r matrix integrable-differential operators:

Vr = {(Φij)r×r|Φij = Φij(x, t, u, v, w)-integra-differential operators, 1 ≤ i, j ≤ r} ,

and by Vr
(0), we denote all following r × r matrices:

Vr
(0) = {(Pij)r×r|Pij = Pij(x, t, u, v, w) ∈ B, 1 ≤ i, j ≤ r} .

Define

Ṽr = Vr ⊗ [λ, λ−1] , Ṽr
(0) = Vr

(0) ⊗ [λ, λ−1] .

We now set

K̂ =





K

K1

K2



 , Ŝ =





S

S1

S2



 ∈ Bq+q1+q2 , (3.1)
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where K, S ∈ Bq, K1, S1 ∈ Bq1 and K2, S2 ∈ Bq2 . The Gateaux derivative is

defined as follows:

R′[K̂] =
∂

∂ǫ
R(u+ ǫK, v + ǫK1, w + ǫK2)

∣

∣

∣

∣

ǫ=0

, R ∈ Ṽr or Br , (3.2)

and in particular, we have

K ′

1[Ŝ] = K ′

1[S] +K ′

1[S1] , S′

1[K̂] = S′

1[K] + S′

1[K1] , (3.3)

K ′

2[Ŝ] = K ′

2[S] +K ′

2[S2] , S′

2[K̂] = S′

2[K] + S′

2[K2] , (3.4)

By a direct computation, we have the following result:

Theorem 3.1. Let Φ(u, v, λ) ∈ Ṽr and K̂, Ŝ ∈ Bq+q1+q2 . Then we have

(Φ′[K̂])′[Ŝ]− (Φ′[Ŝ])′[K̂]

= Φ′(u)[K ′[S]− S′[K]] + Φ′(v)[K ′

1[S]− S′

1[K] +K ′

1[S1]− S′

1[K1]]

+ Φ′(w)[K ′

2[S]− S′

2[K] +K ′

2[S2]− S′

2[K2]] . (3.5)

Thus, for U1 = U1(v, λ), U2 = U2(w, λ) ∈ Ṽr
(0), we can obtain

(U ′

1[K1])
′[Ŝ]− (U ′

1[S1])
′[K̂] = U ′

1[K
′

1[S]− S′

1[K] +K ′

1[S1]− S′

1[K1]], (3.6)

and

(U ′

2[K2])
′[Ŝ]− (U ′

2[S2])
′[K̂] = U ′

2[K
′

2[S]− S′

2[K] +K ′

2[S2]− S′

2[K2]] . (3.7)

Here we have noted that U1 = U1(v, λ) and U2 = U2(w, λ) have nothing to do with

the original potential vector u. Evidently, we can also compute the commutator of

two enlarged vector fields K̄, S̄ ∈ Bq+q1+q2 as follows :

[K̂, Ŝ] , K̂ ′[Ŝ]− Ŝ′[K̂] =









[K,S]

[K,S]1

[K,S]2









, (3.8)

where

[K,S] = K ′[S]− S′[K] ,

[K,S]1 = K ′

1[S]− S′

1[K] +K ′

1[S1]− S′

1[K1] ,

[K,S]2 = K ′

2[S]− S′

2[K] +K ′

2[S2]− S′

2[K2] .

which implies (3.8) defines a Lie algebra structure over vector fields in Bq+q1+q2 .

The commutator of two smooth functions f , g ∈ C∞(C) (as vector fields over

C) is defined as

[[f, g]](λ) = f ′(λ)g(λ) − f(λ)g′(λ) , λ ∈ C , (3.9)
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which defines a Lie algebra structure overC∞(C). In what follows, we always assume

that the enlarged spectral operator Û ∈ Ṽ3r
(0) has an injective Gateaux derivative

operator Û ′ : Bq+q1+q2 → Ṽ3r
(0).

We further assume that P (Û) denotes all triple (V̂ , K̂, f) ∈ Ṽ3r
(0) × Bq+q1+q2 ×

C∞(C) satisfying Eq. (2.14), and for f(λ) ∈ C∞(C), we set

M(Û , f) =
{

V̂ ∈ Ṽ3r
(0)

∣

∣∃K̂ ∈ Bq+q1+q2 so that (V̂ , K̂, f) ∈ P (Û)
}

, (3.10)

EM(Û , f) =
{

K̂ ∈ Bq+q1+q2
∣

∣∃V̂ ∈ M(Û , f) so that (V̂ , K̂, f) ∈ P (Û)
}

. (3.11)

For (V̂ , K̂, f), (Ŵ , Ŝ, g) ∈ P (Û), the product [[V̂ , Ŵ ]] ∈ Ṽ3r
(0) can be computed as

follows (see Ref. 13):

[[V̂ , Ŵ ]] = V̂ ′[Ŝ]− Ŵ ′[K̂] + [V̂ , Ŵ ] + gV̂λ − fŴλ

=









[[V,W ]] 0 [[V1,W1]]

0 [[V,W ]] [[V2,W2]]

0 0 [[V,W ]]









, (3.12)

where

[[V,W ]] = V ′[S]−W ′[K] + [V,W ] + gVλ − fWλ ,

[[V1,W1]] = V ′

1 [Ŝ]−W ′

1[K̂] + [V,W1] + [V1,W ] + gV1λ − fW1λ ,

[[V2,W2]] = V ′

2 [Ŝ]−W ′

2[K̂] + [V,W2] + [V2,W ] + gV2λ − fW2λ .

(3.13)

This shows a special structure of the commutator of enlarged Lax operators and

play a crucial role in our following computation.

Theorem 3.2. Let (V̂ , K̂, f), (Ŵ , Ŝ, g) ∈ P (Û). Then ([[V̂ , Ŵ ]], [K̄, Ŝ], [[f, g]]) be-

longs to P (Û), too. That is to say

Û ′[[K̂, Ŝ]] + [[f, g]](λ)Ûλ − [[V̂ , Ŵ ]]x + [Û , [[V̂ , Ŵ ]]] = 0 , (3.14)

which is equivalent to the following three equations :

U ′[[K,S]] + [[f, g]](λ)Uλ − [[V,W ]]x + [U, [[V,W ]]] = 0 ,

U ′

1[[K,S]1] + [[f, g]](λ)U1λ − [[V1,W1]]x + [U, [[V1,W1]]] + [U1, [[V,W ]]] = 0 ,

U ′

2[[K,S]2] + [[f, g]](λ)U2λ − [[V2,W2]]x + [U, [[V2,W2]]] + [U2, [[V,W ]]] = 0 .

(3.15)

Proof. Since (V̂ , K̂, f), (Ŵ , Ŝ, g) ∈ P (Û), we have

V ′

x[S] = (U ′[K])′[S] + fU ′

λ[S] + [U, V ]′[S] ,

W ′

x[K] = (U ′[S])′[K] + gU ′

λ[K] + [U,W ]′[K] ,

U ′

λ[K] = Vxλ − [U, V ]λ − fλUλ − fUλλ ,

U ′

λ[S] = Wxλ − [U,W ]λ − gλUλ − gUλλ ;

(3.16)
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V ′

1x[Ŝ] = (U ′

1[K1])
′[Ŝ] + fU ′

1λ[Ŝ] + [U, V1]
′[Ŝ] + [U1, V ]′[Ŝ] ,

W ′

1x[K̂] = (U ′

1[S1])
′[K̂] + gU ′

1λ[K̂] + [U,W1]
′[K̂] + [U1,W ]′[K̂] ,

U ′

1λ[K̂] = V1xλ − [U, V1]λ − [U1, V ]λ − fλU1λ − fU1λλ ,

U ′

1λ[Ŝ] = W1xλ − [U,W1]λ − [U1,W ]λ − gλU1λ − gU1λλ ;

(3.17)

and

V ′

2x[Ŝ] = (U ′

1[K2])
′[Ŝ] + fU ′

2λ[Ŝ] + [U, V2]
′[Ŝ] + [U2, V ]′[Ŝ] ,

W ′

2x[K̂] = (U ′

2[S2])
′[K̂] + gU ′

2λ[K̂] + [U,W2]
′[K̂] + [U2,W ]′[K̂] ,

U ′

2λ[K̂] = V2xλ − [U, V2]λ − [U2, V ]λ − fλU2λ − fU2λλ ,

U ′

2λ[Ŝ] = W2xλ − [U,W2]λ − [U2,W ]λ − gλU2λ − gU2λλ .

(3.18)

Let us define

Θ = V̂ ′[Ŝ]− Ŵ ′[K̂] + [V̂ , Ŵ ]

=









Q 0 V ′

1 [Ŝ]−W ′

1[K̂] + [V,W1] + [V1,W ]

0 Q V ′

2 [Ŝ]−W ′

2[K̂] + [V,W2] + [V2,W ]

0 0 Q









, (3.19)

where Q = V ′[S]−W ′[K] + [V,W ], then we have

Θx − [Û ,Θ] = V̂ ′

x[Ŝ]− Ŵ ′

x[K̂] + [V̂ , Ŵ ]x

− [Û , V̂ ′[Ŝ]− Ŵ ′[K̂] + [V̂ , Ŵ ]]

,





Ω 0 Ω1

0 Ω Ω2

0 0 Ω



 , (3.20)

where

Ω = U ′[[K,S]] + fWxλ − f [U,Wλ]− gVxλ + g[U, Vλ] + [[f, g]]Uλ , (3.21)

Ω1 = V ′

1x[Ŝ]−W ′

1x[K̂] + [V,W1]x + [V1,W ]x

− [U, V1[Ŝ]−W ′

1[K̂] + [V,W1] + [V1,W ]]

− [U1, V
′[S]−W ′[K] + [V,W ]] , (3.22)

and

Ω2 = V ′

2x[Ŝ]−W ′

2x[K̂] + [V,W2]x + [V2,W ]x

− [U, V2[Ŝ]−W ′

2[K̂] + [V,W2] + [V2,W ]]

− [U2, V
′[S]−W ′[K] + [V,W ]] . (3.23)
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Making full use of (3.16) and (3.17), we can compute that

Ω1 = (U ′

1[K1])
′[Ŝ]− (U ′

1[S1])
′[K̂] + fU ′

1λ[Ŝ]− gU ′

1λ[K̂] + [U, V1]
′[Ŝ] + [U1, V ]′[Ŝ]

+ [U ′

1[K1] + fU1λ + [U, V1] + [U1, V ],W ] + [V1, [U,W ] + U ′[S] + gUλ]

− [U, V ′

1 [Ŝ]−W ′

1[K̂] + [V,W1] + [V1,W ]]

− [U1, V
′[S]−W ′[K] + [V,W ]]− [U,W1]

′[K̂]− [U1,W ]′[K̂]

+ [[U, V ] + U ′[K] + fUλ,W1] + [V, U ′

1[S1] + gU1λ + [U,W1] + [U1,W ]]

= U ′

1[K
′

1[S]− S′

1[K] +K ′

1[S1]− S′

1[K1]] + fW1xλ

− f [U,W1λ]− f [U1,Wλ]− gV1xλ + g[U, V1λ] + g[U1, Vλ] + [[f, g]]U1λ . (3.24)

Similarly, from (3.16) and (3.18), we obtain that

Ω2 = U ′

2[K
′

2[S]− S′

2[K] +K ′

2[S2]− S′

2[K2]] + fW2xλ − f [U,W2λ]

− f [U2,Wλ]− gV2xλ + g[U, V2λ] + g[U2, Vλ] + [[f, g]]U2λ . (3.25)

On the other hand, according to (3.13) and (3.19), we have

Θ =









Q̃ 0 [[V1,W1]] + fW1λ − gV1λ

0 Q̃ [[V2,W2]] + fW2λ − gV2λ

0 0 Q̃









, (3.26)

where Q̃ = [[V,W ]] + fWλ − gVλ. Thus, we obtain

Θx − [Û ,Θ] ,





Ω̃ 0 Ω̃1

0 Ω̃ Ω̃2

0 0 Ω̃



 , (3.27)

where

Ω̃ = [[V,W ]]x + fWxλ − gVxλ − [U, [[V,W ]] + fWλ − gVλ] , (3.28)

Ω̃1 = [[V1,W1]]x − [U, [[V1,W1]]]− [U1, [[V,W ]]] + fW1xλ − gV1xλ

− f [U,W1λ] + g[U, V1λ]− f [U1,Wλ] + g[U1, Vλ] , (3.29)

and

Ω̃2 = [[V2,W2]]x − [U, [[V2,W2]]]− [U2, [[V,W ]]] + fW2xλ − gV2xλ

− f [U,W2λ] + g[U, V2λ]− f [U2,Wλ] + g[U2, Vλ] . (3.30)

Comparing Ω, Ω1, Ω2 with Ω̃, Ω̃1, Ω̃2, we immediately obtain (3.15) . Thus, (3.14)

holds. This means that ([[V̂ , Ŵ ]], [K̂, Ŝ], [[f, g]])) belongs to P (Û). The proof is com-

pleted.
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Remark. The first two equations in (3.15) is exactly the result presented in

Refs. 13 and 29. The whole equality (3.15) is an application but also a general-

ization of the result in Refs. 13 and 29.

It follows from the above theorem that if two enlarged evolution equations

ût = K̂, ût = Ŝ, (K̂, Ŝ ∈ Bq+q1+q2) are the compatibility conditions of the spectral

problems

ϕ̂x = Û ϕ̂ , ϕ̂t = V̂ ϕ̂ , V̂ ∈ Ṽr
(0) , λt = pλm ,

ϕ̂x = Û ϕ̂ , ϕ̂t = Ŵ ϕ̂ , Ŵ ∈ Ṽr
(0) , λt = qλn ,

where p, q are constants and m, n ≥ 0, respectively, then the product equation

ût = [K̂, Ŝ] is the compatibility condition of the following spectral problems

ϕ̂x = Û ϕ̂ , ϕ̂t = [[V̂ , Ŵ ]]ϕ̂ , λt = ab(m− n)λm+n−1 ,

where

[[V̂ , Ŵ ]] = V̂ ′[Ŝ]− Ŵ ′[K̂] + [V̂ , Ŵ ] + gV̂λ − fŴλ

=









[[V,W ]] 0 [[V1,W1]]

0 [[V,W ]] [[V2,W2]]

0 0 [[V,W ]]









.

This will give us an approach for generating τ -symmetry algebras of coupled inte-

grable couplings.

4. Application

In this section, we shall illustrate our construction process by a concrete example

in the AKNS case and establish the corresponding τ -symmetry algebra.

4.1. The isospectral and nonisospectral AKNS hierarchies

The AKNS spectral problem is given by

ϕx = Uϕ , U = U(u, λ) =

(

−λ u1

u2 λ

)

, u =

(

u1

u2

)

, (4.1)

where ui = ui(x, t), i = 1, 2, are two dependent variables.

Suppose that the associated temporal spectral problem is as follows:

ϕt = V ϕ , V = V (u, λ) =

(

a b

c −a

)

∈ Ṽ2
(0) , (4.2)

where a =
∑m

j=0 ajλ
m−j , b =

∑m

j=0 bjλ
m−j and c =

∑m

j=0 cjλ
m−j . Clearly, the

compatibility condition Ut − Vx + [U, V ] = 0 in this case gives equivalently

u1t = bx + 2λb+ 2u1∂
−1(u1c− u2b)− 2u1λtx , (4.3)

u2t = cx − 2λc− 2u2∂
−1(u1c− u2b) + 2u2λtx . (4.4)
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For the isospectral case (λt = 0), if we choose

b0 = c0 = 0 , b1 = u1 , c1 = u2 , (4.5)

and set integration constants to be zero, then the corresponding isospectral AKNS

hierarchy reads (see Ref. 7):

ut = Km =

(

−2bm+1

2cm+1

)

= Φ(u)mK0 , K0 =

(

−2u1

2u2

)

, m ≥ 0 , (4.6)

where the hereditary operator Φ(u) is determined by

Φ(u) =











−
1

2
∂ + u1∂

−1u2 u1∂
−1u1

−u2∂
−1u2

1

2
∂ − u2∂

−1u1











. (4.7)

For the nonisospectral (λt = λm+1) case, if we choose

b0 = u1x , c0 = u2x , b1 = −
1

2
(u1x)x , c1 =

1

2
(u2x)x , (4.8)

then we can arrive at the nonisospectral AKNS hierarchy (see Ref. 7):

ut = Sm =

(

−2bm+1

2cm+1

)

= Φ(u)mS0 , S0 =

(

(u1x)x

(u2x)x

)

, m ≥ 0 . (4.9)

4.2. Coupled integrable couplings of the isospectral and

nonisospectral AKNS hierarchies

Following Refs. 25 and 29, we know that each of the isospectral and nonisospectral

AKNS hierarchies, (4.6) and (4.9), can have two hierarchies of integrable couplings:

K̄1m =

(

Km

K1m

)

, S̄1m =

(

Sm

S1m

)

(4.10)

and

K̄2m =

(

Km

K2m

)

, S̄2m =

(

Sm

S2m

)

, (4.11)

with the corresponding zero curvature equation being given by

Ūit − V̄ix + [Ūi, V̄i] = 0 , i = 1, 2 , (4.12)

where

Ūi =

(

U Ui

0 U

)

, V̄i =

(

V Vi

0 V

)

, i = 1, 2 .
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Now we define enlarged AKNS spectral problem as follows:31

ϕ̂x = Û ϕ̂ , Û = Û(û, λ) =





U 0 U1

0 U U2

0 0 U



 ,

U1 = U1(v) =

(

0 v1
v2 0

)

,

U2 = U2(w) =

(

−1 w1

w2 1

)

,

(4.13)

where vi = vi(x, t), i = 1, 2, wi = wi(x, t), i = 1, 2 are new dependent variables and

û =
(

uT , vT , wT
)T

= (u1, u2, v1, v2, w1, w2)
T .

The associated enlarged temporal spectral problem is assumed to be

ϕ̂t = V̂ ϕ̂ , V̂ = V̂ (û, λ) =





V 0 V1

0 V V2

0 0 V



 ∈ Ṽ6
(0) ,

V1 = V1(u, v) =

(

e1 f1
g1 −e1

)

,

V2 = V2(u,w) =

(

e2 f2
g2 −e2

)

.

(4.14)

Then the corresponding enlarged zero curvature equation becomes

Ut − Vx + [U, V ] = 0 ,

U1t − V1x + [U, V1] + [U1, V ] = 0 ,

U2t − V2x + [U, V2] + [U2, V ] = 0 ,

(4.15)

which are equivalent to

u1t = bx + 2λb+ 2u1∂
−1(u1c− u2b)− 2u1λtx ,

u2t = cx − 2λc− 2u2∂
−1(u1c− u2b) + 2u2λtx ,

v1t = f1x + 2λf1 + 2u1e1 + 2b1[−λtx+ ∂−1(u1c− u2b)] ,

v2t = g1x − 2u2e1 − 2λg1 − 2v2[−λtx+ ∂−1(u1c− u2b)] ,

w1t = f2x + 2λf2 + 2u1e2 + 2w3b+ 2w1[−λtx+ ∂−1(u1c− u2b)] ,

w2t = g2x − 2λg2 − 2u2e2 − 2w3c− 2w2[−λtx+ ∂−1(u1c− u2b)] .

(4.16)

Set

ei =

m
∑

j=0

eijλ
m−j , fi =

m
∑

j=0

fijλ
m−j , gi =

m
∑

j=0

gijλ
m−j , i = 1, 2 , (4.17)

and then, we can derive the isospectral and nonisospectral coupled integrable cou-

plings for the isospectral and nonisospectral AKNS hierarchies, respectively.
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(i) For the isospectral case (λt = 0), we choose

f10 = g10 = 0 , f11 = u1 + v1 , g11 = u2 + v2 ,

f20 = g20 = 0 , f21 = u1 + w1 , g21 = u2 + w2 ,
(4.18)

then we obtain the isospectral coupled integrable couplings of the isospectral AKNS

hierarchy:

ût =





u

v

w





t

= K̂m =









Km

K1m

K2m









=



















−2bm+1

2cm+1

−2f1 m+1

2g1 m+1

−2f2 m+1

2g2 m+1



















= Φ̂(û)mK̂0 , m ≥ 0 . (4.19)

Here the hereditary operator Φ̂(û) reads

Φ̂(û) =





Φ(u) 0 0

Φ1(u, v) Φ(u) 0

Φ2(u,w) 0 Φ(u)



 , (4.20)

with Φ1 and Φ2 being given by

Φ1(u, v) =

(

v1∂
−1u2 + u1∂

−1v2 v1∂
−1u1 + u1∂

−1v1

−v2∂
−1u2 − u2∂

−1v2 −v2∂
−1u1 − u2∂

−1v1

)

, (4.21)

and

Φ2(u,w) =

(

w1∂
−1u2 + u1∂

−1w2 − 1 w1∂
−1u1 + u1∂

−1w1

−w2∂
−1u2 − u2∂

−1w2 −w2∂
−1u1 − u2∂

−1w1 − 1

)

, (4.22)

and the initial coupled vector field is

K̂0 =









K0

K10

K20









=



















−2u1

2u2

−2u1 − 2v1
2u2 + 2v2

−2u1 − 2w1

2u2 + 2w2



















. (4.23)



September 21, 2011 8:50 WSPC/140-IJMPB S0217979211101351

An Algebraic Structure of Zero Curvature Representations 3249

(ii) For the nonisospectral case (λt = λm+1), we choose

f10 = v1x , g10 = v2x ,

f11 = −
1

2
(v1x)x , g11 =

1

2
(v2x)x ,

f20 = w1x , g20 = w2x ,

f21 = −
1

2
(w1x)x,−u1x , g21 =

1

2
(w2x)x − u2x ,

(4.24)

then the nonisospectral coupled integrable couplings of the nonisospectral AKNS

hierarchy reads

ût = Ŝm =





Sm

S1m

S2m



 =

























−2bm+1

2cm+1

−2f1m+1

2g1m+1

−2f2m+1

2g2m+1

























= Φ̂(û)mŜ0 , m ≥ 0 , (4.25)

where the nonisospectral (λt = λ) initial coupled vector field is

Ŝ0 =





S0

S10

S20



 =

























(u1x)x

(u2x)x

(v1x)x

(v2x)x

(w1x)x + 2u1x

(w2x)x − 2u2x

























, (4.26)

and Φ̂(û) is defined as in (4.20).

Let us next consider how to compute the corresponding τ -symmetry algebra for

the coupled integrable coupling systems generated above. As in Ref. 13, we first

make the following computation at û = 0

K̂m|û=0 =





Km

K1m

K2m





∣

∣

∣

∣

∣

∣

û=0

= Φ̂mK̂0|û=0 = 0 ,

Ŝn|û=0 =





Sn

S1n

S2n





∣

∣

∣

∣

∣

∣

û=0

= Φ̂nŜ0|û=0 = 0 ,

(4.27)
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where m, n ≥ 0. We denote by V̂m and Ŵn the Lax operators corresponding to the

vector fields K̂m and Ŝn, respectively, we compute that

V̂m|û=0 =







Vm 0 V1m

0 Vm V2m

0 0 Vm







∣

∣

∣

∣

∣

∣

∣

û=0

=























−1 0 0 0 −1 0

0 1 0 0 0 1

0 0 −1 0 −1 0

0 0 0 1 0 1

0 0 0 0 −1 0

0 0 0 0 0 1























λm ,

V̂mλ|û=0 = (V̂m|û=0)λ = m























−1 0 0 0 −1 0

0 1 0 0 0 1

0 0 −1 0 −1 0

0 0 0 1 0 1

0 0 0 0 −1 0

0 0 0 0 0 1























λm−1 ,

Ŵn|û=0 =







Wn 0 W1n

0 Wn W2n

0 0 Wn







∣

∣

∣

∣

∣

∣

∣

û=0

=























−λx 0 0 0 0 0

0 λx 0 0 0 0

0 0 −λx 0 0 0

0 0 0 λx 0 0

0 0 0 0 −λx 0

0 0 0 0 0 λx























λn ,

Ŵnλ|û=0 = (Ŵn|û=0)λ = (n+ 1)























−λx 0 0 0 0 0

0 λx 0 0 0 0

0 0 −λx 0 0 0

0 0 0 λx 0 0

0 0 0 0 −λx 0

0 0 0 0 0 λx























λn−1 ,

where m, n ≥ 0. Now we can find by the definition (3.12) of the product of Lax

operators that

[[V̂m, V̂n]]|û=0 = 0 , m, n ≥ 0 ,

[[V̂m, Ŵn]]|û=0 = mV̂m+n|û=0 , m, n ≥ 0 ,

[[Ŵm, Ŵn]]|û=0 = (m− n)Ŵm+n|û=0 , m, n ≥ 0 .

(4.28)

Because [[V̂m, V̂n]], [[V̂m, Ŵn]] −mV̂m+n, [[Ŵm, Ŵn]] − (m − n)Ŵm+n, m, n ≥ 0,

are all isospectral (λt = 0) Lax operators belonging to Ṽ6
(0) by Theorem 3.2, based
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upon (4.28), we obtain a Lax operator algebra by the uniqueness property of the

enlarged spectral problem (4.13):

[[V̂m, V̂n]] = 0 , m, n ≥ 0 ,

[[V̂m, Ŵn]] = mV̂m+n , m, n ≥ 0 ,

[[Ŵm, Ŵn]] = (m− n)Ŵm+n , m, n ≥ 0 .

(4.29)

Further, due to the injective property of Û ′, we finally obtain a vector field algebra

for the coupled integrable couplings of the isospectral and nonisospectral AKNS

hierarchies:

[K̂m, K̂n] = 0 , m, n ≥ 0 ,

[K̂m, Ŝn] = mK̂m+n , m, n ≥ 0 ,

[Ŝm, Ŝn] = (m− n)Ŝm+n , m, n ≥ 0 ,

(4.30)

which implies that Ŝn, n ≥ 0, are all master symmetries of each equation ût = K̂l,

l ≥ 0 in the isospectral hierarchy (4.19), and the symmetries

K̂m , m ≥ 0 , and τ̂ ln = t[K̂l , Ŝn] + Ŝn = tlK̂n+l + Ŝn , n, l ≥ 0 , (4.31)

constitute an infinite-dimensional τ -symmetry algebra, whose commutator satisfies

[K̂m, K̂n] = 0 , m, n ≥ 0 ,

[K̂m, τ̂ ln] = mK̂m+n , m, n, l ≥ 0 ,

[τ̂ lm, τ̂ ln] = (m− n)τ̂ lm+n , m, n, l ≥ 0 .

(4.32)

This is a union of infinitely many τ -symmetry algebras, offering a supplement to the

structure of τ -algebras introduced in Ref. 9. However, it is still an open question

to us if the variational identities30 can generate Hamiltonian structures for the

isospectral coupled AKNS hierarchy (4.19).
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