World Scientific

Vol. 25, Nos. 23 & 24 (2011) 3237-3252
www.worldscientific.com

© World Scientific Publishing Company
DOI: 10.1142/S0217979211101351

International Journal of Modern Physics B \\
N

AN ALGEBRAIC STRUCTURE OF
ZERO CURVATURE REPRESENTATIONS ASSOCIATED WITH
COUPLED INTEGRABLE COUPLINGS AND
APPLICATIONS TO 7-SYMMETRY ALGEBRAS

LIN LUO*§, WEN-XIU MATY and ENGUI FAN®% I

* Department of Mathematics, Shanghai Second Polytechnic University,
Shanghai 201209, P. R. China
T Department of Mathematics and Statistics, University of South Florida,
Tampa, FL 33620-5700, USA
tSchool of Mathematical Sciences, Fudan University,
Shanghai 200433, P. R. China
§ luolinmath@yahoo.cn
I mawz@cas.usf.edu
I faneg@fudan. edu.cn

Received 20 May 2009
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1. Introduction

It is well-known that there is a close connection between the integrability proper-
ties of differential equations and their infinitely many symmetries. An extensive
literature on this subject already exists, including continuous and discrete non-
linear equations.' 2! Moreover, these symmetries form nice and interesting algebraic
structures, such as: Virasoro algebras,'®!* W, ., algebras,?0-2!
algebras’? and so on.

master symmetry

In recent years, there has been an increasing interest in the theories of inte-
grable couplings on the basis of the concept of semidirect sums of Lie algebras,?3 25
in particular, loop algebras.2628 Ones have constructed plenty of examples of both
continuous and discrete integrable couplings for given classes of integrable equa-
tions.?2 2% The corresponding results show various mathematical structures that
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integrable equations possess, such as Lax representations, infinitely many symme-
tries, conserved quantities and bi-Hamiltonian structures, and also provide powerful
tools to analyze integrable equations.

Very recently, Ma and Gao®! put forward a new result on generating integrable
couplings by coupled integrable couplings. Such new integrable couplings are asso-
ciated with Lie algebras possessing two sub-Lie algebras in the form of semidirect
sums of Lie algebras, and infinitely many commuting symmetries and recursion
operators are presented for such coupled integrable couplings by Ma and Gao.3! In
this paper, we are concerned with an algebraic structure of zero curvature represen-
tations of the coupled integrable couplings and apply such a structure to the coupled
integrable couplings of the AKNS systems to obtain their 7-symmetry algebras.

This paper is organized as follows. In Sec. 2, we briefly introduce coupled
integrable couplings. In Sec. 3, we compute the Lie algebra of the correspond-
ing enlarged vector fields under the enlarged commutator, and further, establish an
algebraic structure of zero curvature representations associated with coupled inte-
grable coupling systems. Finally, we apply such a structure to the coupled integrable
couplings of the AKNS systems to propose an approach for generating 7-symmetry
algebras of coupled integrable couplings.

2. Coupled Integrable Coupling Systems
Let us consider an integrable evolution equation
up = K = K(u) = K(x,t, U, Uy, Ugz, - - ) (2.1)

T

where z, t € R and v = (u1, ug,...,u,)" is a potential vector. Assume that it has

a zero curvature representation
U~ Ve +[U,V] =0, (2.2)

where the Lax matrices U and V belong to a matrix loop algebra g. This means
that a triple (U, V, K) satisfies

U'(u)[K]+ f(NUx = Vo + [U, V] =0, (2.3)
where \; = f(A) € C°(C), Uy = 0U/0X and U’ (u)[K| = 0/0¢€|c=oU (u + eK).

Now let us assume Eq. (2.1) has two integrable couplings

i1y = Ky (1) = (;51) ; (2.4)
and
sy = Ko(ilg) = (II(Z) ; (2.5)

and their corresponding zero curvature representations read as

Ui (@) K] + f(NUix = Vie + Ui, Vi] = 0, (2.6)
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with the Lax pairs being given by

0 U(u
(u) Vi(@) 0
— =, v (V(u) Vi(u;
o= = (Y V)
where i = 1,2 and @1 = (u?, 1), iy = (uT,w)T, v = (vi,v9,...,v4)", w =
(w1, wa, ..., wg,)T.

The algebraic structures for zero curvature representations (2.3) and (2.6) were
discussed systematically in Refs. 13, 14 and 29.
To generate coupled integrable couplings of (2.4) and (2.5) as

K U
ﬁt = K(z)) = K1 5 ﬂt = v 5 (28)
K2 w

let us now form a matrix Lie algebra ¢ consisting of square matrices of the following
block form as introduced in Ref. 31:

P 0 P
P=(o P Pp|, (2.9)
0 0 P

where P, Py, P» are the same size square submatrices as U and V. This Lie algebra
g has two sub-Lie algebras

g1 ={P|P, =0}, go={P|P =0}, (2.10)
which can be written as semidirect sums of sub-Lie algebras
g1 = g1lpi=0 € Gilp=0, G2 = G2|P,=0 € G2|P=0, (2.11)

and thus, the Lie algebra g is nonsemisimple.
So, the coupled integrable couplings (2.8) are determined by the following
enlarged zero curvature representation

U -V, +[U,V]=0, (2.12)
where
u o U, vV o W
U=|0 U U,|, V=[0 Vv W%n]. (2.13)
0 0 U 0o 0 V

This implies that an enlarged triple (0, VK ) satisfies

U)K+ fNUN =V +[U, V] =0, \=f(\), (2.14)
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with
a—U(u+eK) » 0 &Ul(v‘*‘ﬁKl) »
U'(0)[K] = 0 gU(u +eK) —Us(w + €K>)
€ e=0 € e=0
0

0 0 &U(u +eK) .

U'(u)[K] 0 Uy (v)[ K]

= 0 U'(u)[K] Uj(w)[K2] |,
0 0 U'(u)[K]

which precisely presents

U'(uw)[K]+ f(NUx = Vo + [U, V] =0,

Ui{(v)[K1] + fF(N) Uy — Vig + [U, VA] + [U1, V] = 0, (2.15)
Us(w)[Ka] + f(N)Uax — Vag + [U, Vo] + [Ua, V] = 0.

K
K

3. Algebraic Structure of Zero Curvature Representation for
Coupled Integrable Couplings

In this section, we aim to discuss the algebraic structure of zero curvature rep-
resentations for coupled integrable coupling systems (2.8), i.e. the enlarged triple
(U,V,K) satisfying (2.14).

For the sake of convenience, let us first fix the notation as in Refs. 13 and 29.
We denote by B all complex (or real) functions P = P(z,t,u, v, w) which are C*>°-
differentiable with respect to z, ¢t and C*°-Gateaux differentiable with respect to
u,v and w, and set B" = {(Py,..., P.)T|P; € B}. Moreover, by V", we denote all
r X r matrix integrable-differential operators:

V' = {(Psj)rxr|Pij = Pij(x,t, u, v, w)-integra-differential operators, 1 <4, j <r},
and by V(To)’ we denote all following r x r matrices:
V{O) = {(Pij)rX7*|Pij = Pij(x,t,u,v,w) eB, 1<i, 7< 7‘}.
Define
V=V MNATY, Vi =V @A AT
We now set

K S
K=K |, S=|[5 | eprtatae, (3.1)
Ko So
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where K, S € BY, Ky, S1 € B% and Ky, So € B%. The Gateaux derivative is
defined as follows:

N o -
R'[K] = ER(U—FGK,U—&—eKl,w—&—ng) , ReV'orB", (3.2)
e=0

and in particular, we have
K{[8] = K{[S] + K{[S1),  SiK] = Si[K] + Si[Kq], (3.3)
K3[S] = Kj[S] + K3[Se] . SyIK] = Sy[K] + S3[ K], (3.4)
By a direct computation, we have the following result:

Theorem 3.1. Let ®(u,v,\) € V" and K, S € BI*0+% . Then we have

(P[K])[S] — (¢'[S))'[K]

= O (u)[K'[S] = S'[K]] + @' (v)[K1[S] - S1[K] + K{[S1] — Si[EK]]
+ @' (w)[K3[S] — Sy[K] + K5[Sa] — S5{K]]- (3.5)

Thus, for Uy = Ui(v,A), Uz = Us(w, X) € Vi), we can obtain

(UKL [S] = (U [S1])'[K] = U{[K[S] — S[K] + K7 [S1] = Si[Ku]l,  (3.6)
and

(U3[K])'[S] — (Us[S2])'[K] = U3[K3[S] — Sy[K] + K3[So] — Sy[]]. (3.7)

Here we have noted that Uy = Uy (v, X) and Uy = Us(w, ) have nothing to do with
the original potential vector uw. Evidently, we can also compute the commutator of
two enlarged vector fields K, S € Bitai+e qs follows:

(K, S]
[K,8] 2 K'[S) - S'K]=| [K,S], |, (3.8)
[Kv 5]2

where
(K, 5] = K'[S] = S'[K],
(K, S|y = K1[S] = Si[K] + K{[S1] = S1[KA],
[, S]2 = K3[S] = S5[K] + K5[Sa] — S5[Ka] .-
which implies (3.8) defines a Lie algebra structure over vector fields in BIT91+42,

The commutator of two smooth functions f, g € C°°(C) (as vector fields over
C) is defined as

[£,91(N) = f'(Ng(N) = FNg' (), AeC, (3.9)
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which defines a Lie algebra structure over C*°(C). In what follows, we always assume
that the enlarged spectral operator U e V(o) has an injective Gateaux derivative

operator U’ - Batatae _ V3’

We further assume that P( 7) denotes all triple (V, K, f) € V3’ X Batataz x
C>(C) satisfying Eq. (2.14), and for f(\) € C*(C), we set

MU, f) = {V € Vi |3K € BT o that (V, K, f) € P(U)}, (3.10)
M(U, f) = {K € BT+ |3V € M(U, f) so that (V, K, f) € P(U)}. (3.11)

For (V,K,f), (W,g, g) € P(U)7 the product [[V,W]] € 13(36) can be computed as
follows (see Ref. 13):

=V'[S + [V, W]+ gV — fW
[[v W] 0 [Vi, Wi]
v,

Wl Ve, W] | (3.12)
0 VW]

where
[V.W] = V'[S] = W/[K] + [V.W]+ gVx — fWy,
[Vi, Wil = V/[S] = W{[K] + [V, Wh] + [Vi, W]+ gVix — fWin,  (3.13)
[Va, Wa] = V3[S] — WH[K] + [V, Wa] + [V, W] + gVax — fWax .

This shows a special structure of the commutator of enlarged Lax operators and
play a crucial role in our following computation.

Theorem 3.2. Let (V,K,f),(W,S,g) € P(U). Then ([V,W],[K,S],[f,g]) be-
longs to P(U), too. That is to say
U'[K, S]]+ [f, gl(NOx = [V, W], + [U, [V, W]] =0, (3.14)
which is equivalent to the following three equations:
UK ST+ [f, gl (NUX = [V, W, + [U, [V, W]] = 0,
UL Shl + [f, gl(NUix = Vi, W], + U, [V, WA + [U, [V, W] = 0, (3.15)
U3l[K, Slo] + [f, gl(N)Uzx — [Va, Wa],, + [U, [Va, Wa]] + [Us, [V, W]] = 0
Proof. Since (V, K, f),(W,S,g) € P(U), we have
Vi8] = (U[K])[S] + fUX[S] + [U, VI[S],
W, K] = (U'[S])[K] + gU[K] + [U,W]'[K], (3.16)
ULK] = Vox = [U,Vx = faUx = fUnx,
UAIS] = Wax = [U,W]x = gaUx — gUxx;
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VI,[S] = (U{[K1))[S] + FULLIS) + (U, VAL [S] + (U, V][9]
W1, [K] = (U{[$1])'[K] + gU{\[K] + [U, W) [K] + [Ur, W]'[K]
UK = Vigx = [U,Va = (UL, VIa = faUis = [
UiL\[S] = Wiga — [U, Whlx — [Ur, W]x — gaUix — gUixx;
and
V3, [S] = (U1 [Ka))'[S] + fUS\[S] + [U, Vo] [S] + [Ua, V]'[S],
W5, [K] = (Us[Sa])'[K] + gUs,\[K] + [U, W2 [K] + [Ua, W]'[K],

Il
5
8
>

|
<
5
=

|
=
3
>

|
e}
>
N
>

|
Q
S
>
<

Let us define

0 =V'[S] - W'[K] + [V, W]

where Q = V'[S] — W/[K] + [V, W], then we have
— [0, V'[S] = W[K] + [V, W]

Q0 O
210 Q 9|,
0 0 Q

Q =U'[[K, S]] + [Wax = fIU WAl = gVex + glU, VA] + [f, 9]Ux,
O =V, [S] = WL IK] + [V, Wile + [Vi, W],

— [UVA[S] = W{[K] + [V, Wh] + [V, W]]

— [0, V'[S] = W/[K] + [V, W]],

where

and
Oy = V3, [S] = W3, [K] + [V, Wal, + [Vo, W],
— [U,Va[S] = W3 (K] + [V, Wa] + [Vo, W]]
— U2, V'[S] = W[K] + [V, W]].

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Making full use of (3.16) and (3.17), we can compute that
Q= (UI[EL))'[S] = (U1 [S1)) [K] + fULLLS) = gUL K] + [U, VA]'[S] + (U3, V]'[S]
+ U1K
— [U, V(8] = WH[K] + [V, W] + [V, W]]
= [0 V'[S] = WK+ [V.W]] = [UWA)[K] = [U2, W'[K]
+[[U, V] 4+ U'K] + fUx, W1] + [V, U{[S1] + gUr + [U, W1] + [Ur, W]
= Ui[K1[S] = S1[K] + K{[$1] = S{[K]] + fWiax
= flU W] = flU1, WAl = gVizx + g[U, Via] + g[Ur, VAl + [f, g[Usx . (3.24)

+ fUN+ [U,Vi] + [Ur, V], W] + [V, [U, W] 4 U'[S] + gU,]

Similarly, from (3.16) and (3.18), we obtain that
Qp = U3[K3[S] — So[ K] + K3[Sa] — S5[Ea]] + fWaz — fU, W]
— flU2, Wi] = gVaux + g[U, Vax] + g[U2, VA] + [f, 9]U2x - (3.25)

On the other hand, according to (3.13) and (3.19), we have

Q 0 [Vi,Wi]+ fWix —gVia
o=10
0

Q [Va, Wa] + fWar — gVay | (3.26)
0 Q

where Q = [V,W] + fWy — gVy. Thus, we obtain

Q 0 O
0,—[U,e]4 (0 Q QQ) , (3.27)
0 0 Q
where
Q=[V,W], + fWar — gVir — [U, [V, W] 4 fWy — gW], (3.28)
Qi = [Vi, Wa], — [U, [Vi, WA]] = (U, [V, W] + fWizx — gViex
— fIU, WA + g[U, Via] — f[UL, Wa] + g[U1, Vi, (3.29)
and

Qo = [Vo, Wa], — [U, [Va, Wa]] — [Usz, [V, W]] + fWazx — gVaux
— fIU,Wax] + glU, Vx| — f[Uz, Wi + g[Uz, Vi] . (3.30)

Comparing Q, Q1, Qs with Q, Q1, Qs, we immediately obtain (3.15) . Thus, (3.14)
holds. This means that ([V, W], [K, S], [f,g])) belongs to P(U). The proof is com-
pleted. O
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Remark. The first two equations in (3.15) is exactly the result presented in
Refs. 13 and 29. The whole equality (3.15) is an application but also a general-
ization of the result in Refs. 13 and 29.

It follows from the above theorem that if two enlarged evolution equations
= K, = S, (K,S € BIT0749) are the compatibility conditions of the spectral
problems

@m:U(ﬁa @t:V(ﬁa Vef)(ro)v
P =U¢, ¢=W¢, WeVy, I=aq\",

)\t :p>\m7

where p, ¢ are constants and m, n > 0, respectively, then the product equation
Gy = [K, S] is the compatibility condition of the following spectral problems

Ga=Up, ¢y =[V,W]@, M\ =ab(m—n)A"""1,

where

[V, W] = V'[S] = W[K] + [V, W] + gVx — W}

[V,w] 0 [Vi, W]
0 [ViW]  [Va, Wa]
o 0 VW]

This will give us an approach for generating 7-symmetry algebras of coupled inte-
grable couplings.

4. Application

In this section, we shall illustrate our construction process by a concrete example
in the AKNS case and establish the corresponding T-symmetry algebra.

4.1. The isospectral and nonisospectral AKNS hierarchies

The AKNS spectral problem is given by
(pm:U(pa U:U(U7)\): <_/\ u)\1>a u:(U1>a (41)

U9 U2

where u; = u;(x,t), i = 1,2, are two dependent variables.
Suppose that the associated temporal spectral problem is as follows:

b ~
Yt = V<P7 V= V(u7 A) = (Z ) S V(zo) ) (42)

—a
where @ = 377" (a; A", b = 3T b A and ¢ = 33T ;A" Clearly, the
compatibility condition U; — V,, 4+ [U, V] = 0 in this case gives equivalently

U1y = by 4+ 200 + 20107 (g ¢ — ugh) — 2ui Nz, (4.3)

Ugt = Cp — 2M\C — 2uQ8_1(ulc — u2b) + 2us A . (4.4)
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For the isospectral case (\; = 0), if we choose
bo=co=0, br=ur, c1=us, (4.5)

and set integration constants to be zero, then the corresponding isospectral AKNS
hierarchy reads (see Ref. 7):

—92b —2u
=K,, = ) — ()" Ky, Ko = ! > 4.
u (T = et ke, Ka=(T30). w0, @9

where the hereditary operator ®(u) is determined by

1
—§3+u18’1uQ w10 ug

D(u) = (4.7)
1
_U28_1U2 56 — uga_lul
For the nonisospectral (A\; = A™*+1) case, if we choose
1 1
bo =urx, co=ugxr, b= —§(u1x)m, = 5(“21’);3, (4.8)

then we can arrive at the nonisospectral AKNS hierarchy (see Ref. 7):

Uy = Sy = <_2bm+1> =®(u)"Sy, So= ((ulm)w> , m>0. (4.9

2Cm+1 ULT) g

4.2. Coupled integrable couplings of the isospectral and
nonisospectral AKNS hierarchies

Following Refs. 25 and 29, we know that each of the isospectral and nonisospectral
AKNS hierarchies, (4.6) and (4.9), can have two hierarchies of integrable couplings:

_ Ko, [ Sm
KlnL - (K1m> ) Slm - <51m> (410)
and
% Km o o Sm
o= (50, s (5) iy

with the corresponding zero curvature equation being given by
Uit = Vie + [Us, Vil =0, i=1,2, (4.12)

where



An Algebraic Structure of Zero Curvature Representations 3247

Now we define enlarged AKNS spectral problem as follows:3!

X X X u o0 U
G, =Up, U=U(u,\N)=|0 U U |,
0o 0 U
_ _(0 u (4.13)
U1—U1(U)— (vg O)’
- o -1 w1
Uy = Us(w) = (w2 1 )7

where v; = v;(x,t), i = 1,2, w; = w;(x,t), i = 1,2 are new dependent variables and
N T T T\ T
U= (U , U, w ) = (u1,u2,v1,v2, w1, Wa)

The associated enlarged temporal spectral problem is assumed to be

) o vV oo W i
pe=Vo, V=V@ =0 V Vi|eVy,
0o 0 V
=t = (1), (4.14)
g1 —€
vzzwm,w):(e? fQ).
g2 —€2

Then the corresponding enlarged zero curvature equation becomes
U —Ve+[U,V]=0,
U = Vie + [UVA] + [U1, V] =0, (4.15)
Uzt = Voo + [U, Vo] + [U2, V] =0,
which are equivalent to
U1y = by + 22 + 2107 (urc — ugb) — 2u M\
Uz = Cp — 22 — 2u20 ™ L (ure — ugb) + 2ug Nz,
V1 = flz + 2Af1 + 2ureq + 2b1 [Nz + 07 (uge — ugd)], (416)
Voy = g1z — 2uge1 — 2Ag1 — 2v2[— M\ + 07 (urc — ugd)],
w1 = for + 2Af2 + 2uies + 2wszb + 2wy [—M\w + 0L (urc — ugb)],
W = gow — 2Ag2 — 2uzen — 2wsc — 2wa[— Az + O~ H(u1c — uzb)].

Set
€= e N" L fi=Y Nt gi=) g\t i=12, (417)
=0 =0 =0

and then, we can derive the isospectral and nonisospectral coupled integrable cou-
plings for the isospectral and nonisospectral AKNS hierarchies, respectively.
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(i) For the isospectral case (A = 0), we choose

fio=910=0, fu=w+vi, g1 =u+va, (4.18)
foo=020=0, for=wu1+wi, go1=uz+ws,

then we obtain the isospectral coupled integrable couplings of the isospectral AKNS
hierarchy:

u Km
i = | v =Kn = Kim
W/ Kom
_2b7n+1
207n+1
o 2fimn | g amp
= =P¢(u)"Ko, m=>0. (4.19)
291 m—+1
—2f2 m41
292 m—+1
Here the hereditary operator (i) reads
O (u) 0
o) = P1(u,v) P(w) 0 |, (4.20)

with ®; and @, being given by

v10 Y ug + w0 M 010 Yug + w0~
1 (u, v) = 1 2 1 2 1 1 1 1 ’ (4.21)
090"  ug — us0 e —120 MUy — w0ty
and
w10 ug +u 0wy — 1 w10 'uy + w0 tw
oy (1, W) = 1 2 1 2 1 1 1 1 7 (4.22)
—w28_1UQ — uz8_1w2 —w28_1u1 — UQa_l’LUl -1
and the initial coupled vector field is
—2u1
KO 2“2
~ —2u1 — 21)1
Koy = = 4.23
0 Ko 2ug + 2v9 ( )
Ko —2uy — 2w,

2ug + 2wo
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(ii) For the nonisospectral case (\; = A *1), we choose

fio = niz, gio = V2T,
1 1
f11 = —§(Ul$)x7 gi1 = §(U2$)x7
(4.24)
f20=w1$7 g20 = w2,
1 1
for = —5(11/156):1:, —uixr, g21 = §(w2$)z — U2,

then the nonisospectral coupled integrable couplings of the nonisospectral AKNS
hierarchy reads

_Qbm+1
2cm+1
Sn
N A ' —2f1m+1 S me
Uy = Sm = Slm = = CI)(U) 507 m 2 O7 (425)
SQm 291 m—+1
—2fam+1
2927n+1

where the nonisospectral (A\; = A) initial coupled vector field is

(u1)
s (u2@)z
0
So=1| S0 | = (012), , (4.26)
S20 (v2)a
(w1x)z + 2urx

and ®(a) is defined as in (4.20).

Let us next consider how to compute the corresponding 7-symmetry algebra for
the coupled integrable coupling systems generated above. As in Ref. 13, we first
make the following computation at 4 = 0

K.,
Kpli=o = | Kim = 9" Kola—o =0,
K2m

=0

(4.27)
Sn

Snla=o = | Sin = 0" Sp|a=0 =0,
SZn

u=0
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where m, n > 0. We denote by Vm and Wn the Lax operators corresponding to the
vector fields K, and S,,, respectively, we compute that

-1 0 00 -1 0
0 1 0 0 0 1
Vi 0 Vip
) 00 -1 0 -1 0 m
Vm|ﬁ:O: 0 Vi Vom = A ’
0 0 0 1 0 1
0 0 Vi /|
=0 0 0 00 —-1 0
0 0 0 0 0 1
-1 0 00 -1 0
0 1 0 0 0 1
. ) 00 -1 0 -1 0
Vm a=0 = Vm U= =m Am717
Ala=0 = (Vinla=0)x 00 01 01
0 0 00 -1 0
0 0 0 0 0 1
—Xx 0 0 0 0 0
0 Xx 0 0 0 0
Wn 0 Wln
nlu=0 — n 2n - 0 0 A 0 0 7
0 0o w,
=0 0 0 0 —)\.1' 0
0 0 0 0 0 A
-Axr 0 0 0 0 0
0O X 0 0 0 0
A . 0 0 —X 0 0 0
Wirla=0 = (Wh|a= = +1 )\n717
la=0 = Wala=o)r = (n +1) 0 0 0 XM O 0
0 0 0 =Xz O
0 0 0 /\J}

where m, n > 0. Now we can find by the definition (3.12) of the product of Lax
operators that

[[Vmavn]”ﬁ:O:Oa m,n207
[[‘A/Tm Wn]”ﬁ:O = mvm+n|&=0 s m,n >0, (428)

[[Wm7 Wn]”ﬁ:O = (m - n)Wm+n|&=0 , m,n>0.

Because [[‘A/Tm VH]L [[‘A/Tm Wn]] - mvm—&-na [[Wnu Wn]] - (m - n)Wm+n7 m, n > 0,
are all isospectral (\; = 0) Lax operators belonging to V(Go) by Theorem 3.2, based
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upon (4.28), we obtain a Lax operator algebra by the uniqueness property of the
enlarged spectral problem (4.13):

ﬂvW?Vn]]:(]’ m7n207
[[‘A/wm Wn]] = mvm—&-n , m,n >0, (429)

Wi, W] = (m — n)Wppsn, m,n>0.

Further, due to the injective property of U, we finally obtain a vector field algebra
for the coupled integrable couplings of the isospectral and nonisospectral AKNS
hierarchies:

[mef(n]207 m,nZO,
[K’,m S’n] = mka“ m,n >0, (4.30)

[gm7gn] = (m_n)Sm+n7 m,n >0,

which implies that S,,n> 0, are all master symmetries of each equation 4, = K, B
[ > 0 in the isospectral hierarchy (4.19), and the symmetries

K., m>0, and ATZL:t[IA(l, §7L]+§n:tlkn+l+§7L, n,l >0, (4.31)

constitute an infinite-dimensional 7-symmetry algebra, whose commutator satisfies

[Kmvf(n]:ov m,n >0,
(K, 7] = mEpin m,n,1>0, (4.32)
[’f—jna ’TA-TZL] = (m - n)%jn+n7 m,n,l > 0.

This is a union of infinitely many 7-symmetry algebras, offering a supplement to the
structure of 7-algebras introduced in Ref. 9. However, it is still an open question
to us if the variational identities®® can generate Hamiltonian structures for the
isospectral coupled AKNS hierarchy (4.19).
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