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The commutator of enlarged vector fields was explicitly computed for integrable cou-
pling systems associated with semidirect sums of Lie algebras. An algebraic structure
of zero curvature representations is then established for such integrable coupling sys-
tems. As an application example of this algebraic structure, the commutation relations
of Lax operators corresponding to the enlarged isospectral and nonisospectral AKNS
flows are worked out, and thus a 7-symmetry algebra for the AKNS integrable couplings
is engendered from this theory.
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1. Introduction

The theories of integrable couplings have been receiving increasing attention in
recent decades,’? among which is an algebraic approach to integrable couplings
recently presented on base of the concept of semidirect sums of Lie algebra.®* We
notice that an arbitrary Lie algebra can be decomposed into a semidirect sum of a
solvable Lie algebra and a semisimple Lie algebra.® There exist plenty of examples
of both continuous and discrete integrable couplings belonging to such a class of
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integrable equations.! %13 The corresponding results show various mathematical
structures that integrable equations possess, such as Lax representations, infinitely
many symmetries, conserved quantities and bi-Hamiltonian structures, etc., which
also provide powerful tools to analyze integrable equations.

Let G be a matrix loop algebra and we assume that a pair of matrix spectral
problems

0o =Up=Uu,Ng, @=Vo=V(u,\Np, M\=Ff(), (1.1)

where z, t € R, u = u(x,t) = (ui(z,t), uz(x,t),...,uy(x,t))T are the potentials,
U,V € G are of same order square matrices, which are called a Lax pair and A\ € C
is a spectral parameter and f(\) € C'*°(C), determines an integrable equation

ur = K = K(x,t,u), (1.2)
through the zero curvature equation
U, -V, +[U,V]=0. (1.3)
This means that a triple (U, V, K) satisfies
U'(w)[K]+ fONUN =V, +[U, V] =0, (1.4)
where Uy = OU/9X and U’ (u)[K] denotes the Gateaux derivative
0

UK = 5|

U(u+eK). (1.5)

The Lie algebraic structure for such triple (U,V,K) has been discussed'* and
applied to nonisospectral flows.1%

To generate integrable couplings of Eq. (1.2), take a semidirect sum of G with
another matrix loop algebra G, as introduced in Refs. 3 and 4:

G=Ged.. (1.6)
Note that the conception of semidirect sums implies that G and G, satisfy
[Gv Gc] g Gc 5

where [G,G.] = {[A, B]|A € G, B € G.}. Obviously, G, is an ideal Lie subalgebra of
G. Here and hereafter, the subscript ¢ indicates a contribution to the construction
of integrable couplings. Then, choose a pair of enlarged matrix spectral problems
of initial matrix spectral problems (1.1) as follows:

Py = 1750 = U(ﬂv )\)(,0, Pt = VSO = V(ﬂa )‘)Qaa At = f(>‘)a (17)
where
U= (uTva>T , U= u(xvt) - (Ul(l‘,t), UQ(mat)v cee 7UQ(mat))T )

v=1uv(z,t) = (vi(z,t),v2(z,t),..., 04 (x,1)7,
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_ U U, _ vV V.
U = ¢ 5 V = ¢ ) (18)
0 U 0o Vv
with U, = U,.(v,\) and V., = V. (u, v, \) have the same size as U and V.

Thus, the corresponding enlarged zero curvature equation

U —V,+[U,V]=0, (1.9)

and

determines an integrable coupling system for Eq. (1.2):

= K = K.t 1) = <;§) . <Kfifttu“)v)) . (1.10)

This means that an enlarged triple (U, V, K) satisfies

U'(@)[K]+ f\U\ -V, +[U, V] =0, (1.11)
where
R =t
U'(u)[K] = 5 ’
0 5.U(u+ eK) B
_ <U’(u)[K] Ué(v)[Kc]>
0 U'(u)[K) )’
and precisely presents
U'(w)[K]+ f(NUx = Vo + [U,V] =0, (1.12a)
ULW)Kc] + fF(NUex = Vew + [U, Vo] + [Ue, V] = 0. (1.12b)

Stimulated by Refs. 14 and 15, in the present paper, we will be interested in
the algebraic structure of integrable couplings of Eq. (1.2), i.e. the enlarged triple
(U,V, K) satisfying (1.11). This paper is organized as follows. In Sec. 2, we will
show that the enlarged vector fields constitute a Lie algebra under the enlarged
commutator. In Sec. 3, we will establish the algebraic structure of zero curvature
representations associated with integrable coupling systems. Finally, we will illus-
trate our approach by an application example for the AKNS soliton hierarchy and
a T-symmetry algebra will be engendered for the enlarged AKNS soliton hierarchy
presented in Ref. 11.

2. The Lie Algebra of Enlarged Vector Fields

For convenience, let us first fix the notation as follows: we denote by B all
complex (or real) functions P = P(x,t,u,v) which are C *°-differentiable with
respect to x,t and C'°°-Gateaux differentiable with respect to u and v, and set



1312 L. Luo, W.-X. Ma & E.-G. Fan

B" = {(Py,...,P.)T|P; € B}. Moreover, by V", we denote all 7 x r matrix integra-
differential operators:

Vo= |J D Vi Vi = {(P0")rxr| Pij = Pijla.t,u,0) € B} .

n=—oo k=0

Define
V=V @M Vg =V @ NAT

K<;§) , S<5‘>€Bq+‘h, (2.1)

where K, S € B? and K, S. € B%. The Gateaux derivative is defined as follows:

‘We now set

, ReV" or B, (2.2)

R'K] = 2R(u +0K,v+0K.)
a6 5—0

and in particular, we have

0

0
/ _ Y / _ Y
K'[S] = 65K(u+ 4S) o S’ K] GGS(queK) ) (2.3a)
K([S] = K([S]+ K[S]
*EK(quéS) +iK(’u+5S) (2.3b)
= 95 c 5o 856 c cPe 50:07 .
SelK] = Si[K] + S{K.]
—ES(U—FGK) +iS(U+€K) (2.3¢)
- 0e ¢ o Oe € e 2o '

Lemma 2.1. Let P = P(z,t,u,v) € B, K = (]1((); S = (5) € Bit4e. Then we

have the relation

(P'[K])[S] = (P'[S])'[K]
= P'(u)[K'[S] = S"[K]] + P'(0)[K([S] = S[K] + K([Se] — SU[KC]]. (24)

Proof. By the definition of the Gateaux derivative, we have

Eczo)lm

+ iP(’u +eK.)

(P'[K))'[S] = <%P(u+eK) T

0 0
0

d=e=0

L 00
25 Oe.

Plo+eK.(u+9dS))

d=e.=0
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0
00, O¢.

(V4 6cSc + € Ke(v+6c5e))

de=€.=0
0

8(582 (u+0S+eK + edK'[S])
L8

d=e=0

6 P+ e K.+ e.0K.[S])

d=e.=0

I p
Oec

9 /
5—(U+5S‘+QK—+Q6KWSD

+

e

de=€.=0

)
ey 000 De,

0 0

(v+0cSc + €. K.)

dc.=€.=0

+ D ply 4 prliS))

+ 2 plu+ uk1S)) o

o

pn=0 pn=0

0
—P K'[S.
+ P+ K S0)

=0
At the same time, we similarly have

(P'[S]Y[K] = a% gP(u +65 + €eK)
o 9

658

6=e=0

(v+0c5. + €. Ke)

d.=€.=0

9 /
+ a—uP(u + pS'[K))

9 /
+ a—uP(’u + pS [ K])

n=0 =0

0
—P 'K,
+ 5 P+ uSIKL)

p=0
These two equalities engender our required equality (2.4). The proof is finished. O
From the above Lemma, we can easily deduce the following corollary.
Corollary 2.1. Let ®(u,v,\) € V" and K, S € B9 . Then we have
(®'[K])'[S] — (®'[S])'[K]
= ©'(u)[K'[S] — S[K]] + @' (v)[K.[S] = Sc[K] + K([Se] — S[RC]]. (2.5)

Thus, for U. = U.(v,A) € ]}(TO), we obtain

(ULEC])'[S] = (UL[Se])'[K] = ULIKLLS] — SelK] + Ki[Se] — Se[KC]] . (26)

Here, we have noted that U. = U.(v, A) has nothing to do with u.
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Evidently, we can also compute the commutator of two enlarged vector fields
K, § € Bt as follows:

_ o K, S
IK,5) 2 R[] - §'[K] = ( 1%, 5] ) , (27)
where
(K, 8] = K'[S] - S'[K], [K,S]c = K¢[S] = SL[K] + K([Sc] — Se[K].
In the following, we directly verify that this is a Lie bracket for the space Bt9e,
Theorem 2.1. The product (2.7) defines a Lie algebra structure over vector fields

m BqJFQC .

Proof. Let K = (II({ ), S = ( S ), L= (LL ) € B979 . From the definition of the

product (2.7), we have

K, 8], L]

I
| — |
VN
e
LN wn
— A
N———
VR
el
N———

l( K'[S] - S'[K] ) <L>
~ |\ K[S) - SUK] + KU[S.) - UK. ) "\ Le
([{K,S],L])
1K, 5], L],
0

0
[K,S], L] = o %K(u—l—nL—l-éS)

1>

with

6=n=0

o 9

e=n=0
+ K'[S[L)] = S'[K'[L]] = L'IK'[S]] + L[S"[K]],

([, ), Lle = (K[S] = SLIK] + K([Se] = Sc[Ke])'[L] = Le[K'[S] = S"[K]]

+ (Ke[S] = Se[K] + Ki[Se] = Si[Ke])'[Le]

— Le[KG[S] = SeIK] + K([Se] — Si[K]]

0 0
=— —K,_ L
ar 36 (u+86S+nL)

6=n=0

o 0
e

+ Ke(v+6cSc + neLe)

6e=nc=0

ane 0
9 0
an Esc(u +eK +nl)

e=n=0
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0o 0
- c cKc ch
o _GGCS (v+e +neL.)

€c=ne=0
+ K[S'[L]] = SLIK'[L]] + L [S'[K]] — L [K'[S]]
+ KU[SUL]] — SLKLILY) + LS — LLKL[S])
+ KL[SLLe]] — SLKLL] + LLISLK.]) — LLIKL[S.]
So by a simple calculation, we have
[[K,S], L] + cycle(K,S,L) =0,
(K, S], L], + cycle(K, S, L) = 0,
that is
K, 5], L] + cycle(K, S, L) = 0.

This implies that (2.7) defines a Lie algebra structure over vector fields in B47%
indeed. The proof is completed. O

3. Algebraic Structure of Lax Operators

In this section, we aim to discuss the algebraic structure of zero curvature repre-
sentations for integrable coupling systems.

First, the commutator of two smooth functions f, g € C>°(C) (as vector fields
over C) is defined as

[£:91(N) = f'(Ng(X) = FNg' (), AeC. 3.1

The bracket (3.1) defines a Lie algebra structure over € C*°(C), indeed (see Ref. 15).
In what follows, we always assume that the enlarged spectral operator U € V(QOT)

has an injective Gateaux derivative operator U’ : B4td — 1}(25).

Definition 3.1. Let V € \}(26) If there exist K € B97% and f € C'*°(C) such that
(1.11) holds, then V is called an enlarged Lax pair operator corresponding to f(\),
and K is called an enlarged eigenvector field of V' corresponding to f()).

Assume that P(U) denotes all triple (V, K, f) € 1}(203 x Batde x C'>°(C) satisfying
(1.11) and for f(A\) € C*°(C), we set

MU, f)={V € V§,|3K € B9*% so that (V, K, f) € P(U)}, (3.2)
i.e. all Lax operators corresponding to f, and
EM(U, f) = E;M(U, f)
={K € B1%|3V € M(U, F) so that (V, K, f) € P(U)}, (3.3)

i.e. all eigenvector fields of M (U, f) corresponding to f.
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For (V,K,f), (W,S,g) € P(U), the product [V, W] € V2"

(0) (see Ref. 15 for
definition) can be computed as follows

[V, W] = V'[S] = W[K] + [V, W] + gVs — fW),
A v,W] Ve, W]
= ( 0 [V, W] > (3.4a)
where
[V,W] =V'[S] = WK]+ [V, W]+ gV — fW), (3.4b)

[Ve, Wel = VI[S] = WEIK] + [V, We] + [Ve, W]+ gVea = fWer . (340)

This shows a special structure of the commutator of enlarged Lax operators and
play a crucial role in our computation.

In what follows, we would like to show that the product [V, W] is associated
with the commutator of enlarged vector fields [K, S].

Theorem 3.1. Let (V, K, f), (W,S,g) € P(U). Then ([V,W],[K,S],[f,q]) be-
longs to P(U), too. That is to say

U,[[K’ S]] + [[fa g]]()‘)UA - [[Va V_V]]z + [U7 [[‘7’ W]]] =0, (3'5)
which is equivalent to the following two equations:
U'IIK, S|+ [f, gl(NUN = [V, W], + [U,[V,W]] = (3.6a)
UL, Sle] + [, gl(MUex = [Ve, Wel, + [U, [Ve, Wel] + [Ue, [V, W]] = 0. (3.6b)
Proof. Since (V, K, f), (W,S,g) € P(U), we have
ViIS] = (U'[K])[S] + fUIS] + [U, V]'[ST, (3.7a)
WiIK] = (U'[S)[K] + gUy[K] + [U, W]'[K], '
UNK] = Vax = [U, V]x = faUx — fUxx, (3.7h)
ULLS] = Wax = [U,W]x — gaUx — gUxx,
VAIS] = (WIKVIS] + FULIS + 0. VS 4 0 VITS),
Wi [K] = (U[Se))' K] + gUL\ K] + [U, W [K] + [Ue, W'[K], '
ULIK] = Vear — [U, Vela = [Ue, VIx = faUex — fUcrx (3.8b)

Ué/\[S] = Wean — [U, Wc]A - [Ucv W]/\ = g\Ucx — gUcax .
Let us define

0 = V'[S] - W'[K] + [V, W]

(VIS - WK+ [V, W] VI[S] = WI[K] + [V, We] + [Ve, W] (3.9)
B 0 V'[S] = W'[K] + [V, W] '
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Then, we have
0, — [U,0] = V][S] - W,[K] + [V, W],
— [0, V'[S] - W'[K] + [V, W]]

a [(Qu1 Qoo
£ 1
< 0 922> , (3.10a)

where

Qll = Q22 = U/[[K S]] + fWa:)\ - f[Ua W)\] - gVa:)\ + g[Ua V/\] + [[fa g]]U)\ ) (310b)
Qo = V/,[S] = WLIEK] + [V, Welo + [Ve, Wlo — [U, Ve[S] — W/IK]

C

+ [V, We] + [Ve, W] = [Ue, V'[S] = W/[K] + [V, W]].. (3.10¢)
Making full use of (3.7) and (3.8), we can compute that

Mz = (UKL [S] = (U[SC)) (K] + fUA[S]
— gUL[K] + [U, Ve]'[S] + [Ue, V']
+ [ULK] + fUex + (U Ve] + [Ue, V], W]
+ [V, [U, W] + U'[S] + gUa]
U, V/[S] = W[K] + [V, We] + [Ve, W]|
Ue, V'[S] = W'[K] + [V, W]]
Wl [K] = [Ue, W]'[K] + [[U, V] + U'[K] + fUx, W]
+ [V, U[Se] + gUex + [U, We] + [Ue, W]
= (UL[EC])[S] = (UL[Se)) [K] + [Wean — f[U, W]
= flUe; Wx] = gVeax + glU, Vea] + g[Ue, V] + [f; 9]Ucx
= UIKC[S] = SUK] + K¢[Se] — S[K]]
+ fWean — fIUWer] = flUe, Wi
= gVear + g[U, Vel + g[Ue, VA] + [f, 9]Uc -

[
=
=
-

On the other hand, according to (3.4b), (3.4c) and (3.9), we have

o ([[V,W]]—f—fWA_QVA [[Vc,Wc]]ﬂLchk—g‘/cA) , (3.11)

0 [V.W] + fWx — gVa
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and thus
- A (Q1 Qo
_ S - 12
0.~ 061> (3 Gt (3.120)
where
Qi1 = Qoo = [V, W], + fWar — gVar — [U, [V, W] + fWy — gWA], (3.12b)

fz12 = H‘fm WC]];C - [U; [[‘/:27 WC]]] - [U67 |I‘/7 W]” + ch:EA
- g‘/ca:)\ - f[Ua Wc/\] + g[Ua ‘/;A] - f[Uca W)\] + g[Um V/\] . (312C)
Comparing (3.10) and (3.12), we immediately obtain (3.6). Thus, (3.5) holds. This
means that ([V, W], [K,S],[f,g]) belongs to P(U). The proof is completed. |

We remark that (3.6a) is exactly the result presented in Ref. 15. Conversely, the
whole equality (3.6) is also a consequence of the general result of Ref. 15.

It follows from the above theorem that if two enlarged evolution equations u; =
K,u; =S, (K,S € Bit4) are the compatibility conditions of the following spectral
problems:

p.=Up, @=Vep, VeVi, l\=a\m,
po=Up, @r=Wg, WeVi, X\=>b\",
where a, f) are constants and m,n > 0, respectively, then the product equation
ty = [K, S] is the compatibility condition of the following spectral problems:
Pa=Up, @=[V.,Wlg, X\ =ab(m—n)A"*""1,
where
[V, W] =V'[S] = W'K]+ [V,W]+ gV\ — fW)

v, w] [V, Wc]]>
. .

[v.w]

Therefore, we see that

[M(TU,0), M(U,\™)] € M(U,0), m>0, (3.13)

and further, we have
[M(U,0),[MU,0), M({U,\™)]] =0, m=>0. (3.14)
This implies that
[EM(U,0),[EM(U,0), EM(U,X™")]] =0, m=>0, (3.15)

provided that M (U, 0) is commutative.
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Now by using Theorem 3.1, we can prove the following two results.
Corollary 3.1. Let (V;, K;, f;) € P(U), i =1,2,3. If [V1, Vo] = V3 and [f1, f2] =
f3, then [K1, Ko] = K3.
Proof. By Theorem 3.1, namely (3.6), and the assumption, we have
U'[[Ky1, K2]] = —[f1, f2lUx = [Va, Val, + [U, [Va, V2]
= —f3Ux — Va, + [U, V3] = U'[K3],
=[f1, folUex + [Vie, Vacl, = [U, [Vie, Vael] = [Ue, [V1, V2]]
= —fsUcx + Vaaz — (U, Vac] — [Ue, V3] = U/[K3.]

UK, Ko].]

where we have noticed that [V;, V2] = V3 implies [V1, V2] = V3 and [Vi., Vac] = Vae.
It now follows that [Ki, K] = K3 and [K1, K3, = Kae, ie. [K1,Ks] = K3,
since U’ is injective. The proof is completed. O

Because we assume that U’ is injective, a Lax operator in M (U, 0) has only an
eigenvector field corresponding to f = 0. Suppose that

UK| -V, +[U,V]=0, U[S]-W,+[UW]=

we define

[V, Wl = V'[S] = W[K] + [V, W],
which is well defined. This moment M (U,0) constitutes an algebra with regard to
[V,W], and thus (EM(U,0),[-,-]) is a Lie algebra. Set

R(0) = {V € Wy |V, = [0,V]}

Obviously, K (U) is a subspace of M (U, 0) and the bracket [, -], over K (U) reduces
to the matrix commutator [-,-]. Moreover by Theorem 3.1, we may see that

[K(0), M(U,0)],, [M(U,0), K(U)], € K(T).

)Mo €
Therefore, K(U) is an ideal subalgebra of <M (U,0),[,]o)- In this way, we can
generate a quotient algebra (M (U,0)/K(U),[-,]o)-

can acquire the following result.

[.1o
By using Theorem 3.1, we

Theorem 3.2. The quotient algebra (CL(M(U,0))

= M(U,0)/K(T),[--]o) is a
Lie algebra and isomorphic to the Lie algebra (EM (U,

0),[,-]) under the mapping
p: CL(M(U,0)) = M(U,0)/K({U) — EM(U,0),

CL(V) 2 (W € M(T,0)|W -V € K{O)} — K,

where V € M(U,0), K € EM(U,0) satisfy U'|K] -V, +[U,V] =0
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4. Application

In this section, we shall in detail illustrate our construction process by an concrete
example in the AKNS case and establish the corresponding 7-symmetry algebra.

4.1. The isospectral and nonisospectral AKNS hierarchies

The AKNS spectral problem is given by
QDQLZU@v U:U(U,)\):(_)\ U;) 5 u:(u1> ’ (41)

u2

where u; = u;(x,t), i = 1,2 are two dependent variables.
Suppose that the associated temporal spectral problem is as follows:

or=Ve, V=V = (Cc‘ _ba> eVl . (4.2)

Clearly the compatibility condition U; — V,, + [U,V] = 0 in this case gives
equivalently

At = —agz +ujc — ugb, (4.3a)

w1y = by + 2M\b + 2uqa, (4.3b)

Ugp = Cp — 2MC — 2uqa. (4.3¢)

From (4.3a), we have
a=—Mx+ 0 *(uic —ugb).
Therefore, (4.3b) and (4.3¢c) become
w1y = by + 220 + 2u10~(urc — uzb) — 2us Mz, (4.4)
Uy = Cz — 2X¢ — 2u20 L (urc — ugb) + 2us M\ .
Case 1: A\ =0

Substituting the following expansions:

b= bA"I, e=) AT (4.5)
§=0 §=0

into (4.4), and comparing the same powers of both sides in A, we arrive at
bo=co=0, bi=u, c1=u2,

and

u = Ky = “2mi1) O(u)" Ky, m>0, (4.6a)
2Cm+1
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where

1

—584— ula_lug ula_lul

CID(U) = 1 y KO = <
— 50" Tugy 55‘ — w0 My

This is the isospectral (A; = 0) AKNS hierarchy.

Case 2: My = A™T1
Similarly, substituting (4.5) into (4.4), we arrive at

1

bo =wix, co=usx, b= —§(u1x)x , 01 = =(ua®),,

N =

and

Ut = Pm = 72bm+1 = (I)(u)mpo, po = (UIm)m s m Z 07 (47)
2Cm+1 :

which is the nonisospectral (A; = A™*1) AKNS hierarchy.

4.2. The enlarged isospectral and nonisospectral AKNS hierarchies

We define the corresponding enlarged AKNS spectral problem by semidirect sums

of Lie algebras as follows:!

0. =Up, U=Uu,\ = <Ié [[]]‘> €GeG,.,
(4.8)
o . 0 (%1
Uc - Uc(v) - (U2 0 ) )
where v; = v;(z,t), i = 1,2 are two new dependent variables and
v = (vlva)T7 u = (UT7UT)T = (u17u2701702)T
The associated enlarged temporal spectral problem is assumed to be
_ = _ = o vV ~
‘Pt:V@; V:V(ua)‘):(o V>€VZIO)’
(4.9)
e f
Ve = Ve(u,v) = .
g —e
Then the corresponding enlarged zero curvature equation U; — V, + [U ,‘7] =0
becomes
U -V, +[U,V]=0,
(4.10)

Uct_‘/:,1+[U7‘/<,]+[U67V] 207
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which are equivalent to

U1y = by + 22 + 2u107  (urc — ugb) — 2u M\,

U = Cz — 2X¢ — 2u20 L (u1c — ugb) + 2us M,

(4.11)
v1g = fo + 20f + 2ure + 201 [Nz + O H(urc — ugb)],
V2t = go — 2uge — 2 e — 2Ag — 2”2[*>\t1' + 871(11410 — UQb)] .
Set
e = Zej)\m—] , f= Z fj)\m—] . g= Zgj)\m—] : (4.12)
j=0 j=0 =0

and thus, we can derive the enlarged isospectral and nonisospectral AKNS hier-
archies as follows.

Case 1: A\ =0
Substituting the expansions of (4.5) and (4.12) into (4.11) leads to

fo=g0=0, fi=ur+v1, ¢g1=us+uvy

and
Uy —2bm+1
_ U2 = Ky, 2Cm41 Fm o
= = = = = > .
Uy o K, (ch) o P"Ky, m=>0, (4.13a)
Vo . 29m+1
where

5 (grtomn) 0l

o ( ) v16_1u2 + ula_l’Ug vla_lul + ula_lvl
c\u,v) = )
—’Uga_l’u,g — UQa_lvg —’U28_1U1 — uga_lvl (4 13b)
—211,1
= KO 2“2
Ky = =
0 <KOC> —2u1 — 2’U1
2ug + 2v9

Thus, this enlarged isospectral (A\; = 0) AKNS hierarchy (4.13a) (see Ref. 11 for
its Hamiltonian structure) has the recursion relation

o K, ®(u) K1
p— p— = > . .
U = Kom (Km) (@C(u, ) Km_1 + @(u)Kml,c)  m20. (414
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Case 2: Ay = A™T1
In this case, substituting the expansions of (4.5) and (4.12) into (4.11) leads to

1 1
fo=viz, go=wvew, f1= —§(U1$)x7 g1 = §(U2$)x,
and
72bm+1
~ = Pm 2cm+1 FM =
Ut Pm (pmc> *2fm+1 Po, M=V,
2gm+1
where
(u12)z
_ Po (u2)z
= = 5 4.15
=)= (4.15)
(v2)2

and ®.(u,v) is defined as in (4.13). Therefore, this enlarged nonisospectral (A\; =
A™+1) AKNS hierarchy has a recursion relation

Ts = = (p’”> — ( ®(u)pm—1 ) , o m>1. (4.16)

Pme ‘I)c(%U)Pm—l + (I)(U)Pm—l,c

Next let us consider how to compute the corresponding 7-symmetry algebra
for the obtained integrable coupling systems. The procedure below is an application
of the idea in Ref. 16 and can be applied to other cases. As in Ref. 16, we first make
the following computation at @ = O:

_ K,,
Kmlﬂ:O = (K

_ pn
Pnla=0 =
nl (pnc)

where m, n > 0. We denote by V,,, and W,, the Lax operators corresponding to the
vector fields K, and p,,, respectively (see Ref. 17 for nonisospectral Lax operators).
Then as in Ref. 16, we compute that

) ‘ = ™ Kolag—0 =0,
“=0 (4.17)

= ®"pola=o =0,
=0

1.0 -1 0
. Vi Vine 01 01
Vmﬂf — m mc — )\m
a0 <0 Vin ) luco 00 -1 0 ’
00 01
-1 0 -1 0
_ _ 01 0 1|
Vimala=0 = (Vinla=0)x =m 00 -1 ol? '
00 01
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—Xx O 0 0
- W, Whe 0 AT 0 0
nlu=0 — = )\n,
Wala=o (0 Wn>u=0 0 0 —Ax 0
0 0 0 AT
—Ax 0 0 0
_ _ 0 X 0 0 |.._
Wirla=o = Whla=o)r = (n + 1) 0 0 —xr 0 AmL

0 0 0 A

where m, n > 0. Now we can find by the definition (3.4) of the product of Lax
operators that

[Vin, Valla=o = 0, m,n >0,
vaa Wn]”ﬂ:O = mVpinla=o, m,n >0, (4.18)
Wi, Walla=o = (m — n)Wiinla=o, m,n>0.
For example, we can compute that
Vi, Walla=o = [Vin, Wa] + A" WVinslazo = mVinsnlamo, m,n > 0.

Because [Vin, Vol [Vin, Wal = mVintn, [Win, Wa] — (m —n)Vingn, m, n > 0, are all
isospectral (A; = 0) Lax operators belonging to 17?0) by Theorem 3.1, based upon
(4.18), we obtain a Lax operator algebra by the uniqueness property of the enlarged
spectral problem (4.8):

[[Vma Vn]]
Wi, Wal = mVingn m,n >0, (4.19)

Wiy, Wal = (m —n)Woin, m,n>0.

0, m,n >0,

Further, due to the injective property of U’, we finally obtain a vector field algebra
of the enlarged isospectral and nonisospectral AKNS hierarchies:

[I_(makn]zo7 m;n207
(Ko pn] = MK pin m,n >0, (4.20)
[Pms pu] = (M —n)pmtn, myn >0,

which automatically give rise to the 7-symmetry algebra'® for the enlarged isospec-
tral AKNS hierarchy (4.13a).
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