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1. Introduction

The theories of integrable couplings have been receiving increasing attention in

recent decades,1,2 among which is an algebraic approach to integrable couplings

recently presented on base of the concept of semidirect sums of Lie algebra.3,4 We

notice that an arbitrary Lie algebra can be decomposed into a semidirect sum of a

solvable Lie algebra and a semisimple Lie algebra.5 There exist plenty of examples

of both continuous and discrete integrable couplings belonging to such a class of
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integrable equations.1–4,6–13 The corresponding results show various mathematical

structures that integrable equations possess, such as Lax representations, infinitely

many symmetries, conserved quantities and bi-Hamiltonian structures, etc., which

also provide powerful tools to analyze integrable equations.

Let G be a matrix loop algebra and we assume that a pair of matrix spectral

problems

ϕx = Uϕ = U(u, λ)ϕ , ϕt = V ϕ = V (u, λ)ϕ , λt = f(λ) , (1.1)

where x, t ∈ R, u = u(x, t) = (u1(x, t), u2(x, t), . . . , uq(x, t))T are the potentials,

U , V ∈ G are of same order square matrices, which are called a Lax pair and λ ∈ C

is a spectral parameter and f(λ) ∈ C ∞(C), determines an integrable equation

ut = K = K(x, t, u) , (1.2)

through the zero curvature equation

Ut − Vx + [U, V ] = 0 . (1.3)

This means that a triple (U, V, K) satisfies

U ′(u)[K] + f(λ)Uλ − Vx + [U, V ] = 0 , (1.4)

where Uλ = ∂U/∂λ and U ′(u)[K] denotes the Gateaux derivative

U ′(u)[K] =
∂

∂ε

∣∣∣∣
ε=0

U(u + εK) . (1.5)

The Lie algebraic structure for such triple (U, V, K) has been discussed14 and

applied to nonisospectral flows.15

To generate integrable couplings of Eq. (1.2), take a semidirect sum of G with

another matrix loop algebra Gc as introduced in Refs. 3 and 4:

Ḡ = G A Gc . (1.6)

Note that the conception of semidirect sums implies that G and Gc satisfy

[G, Gc] ⊆ Gc ,

where [G, Gc] = {[A, B]|A ∈ G, B ∈ Gc}. Obviously, Gc is an ideal Lie subalgebra of

Ḡ. Here and hereafter, the subscript c indicates a contribution to the construction

of integrable couplings. Then, choose a pair of enlarged matrix spectral problems

of initial matrix spectral problems (1.1) as follows:

ϕ̄x = Ūϕ = Ū(ū, λ)ϕ , ϕ̄t = V̄ ϕ = V̄ (ū, λ)ϕ , λt = f(λ) , (1.7)

where

ū = (uT , vT )T , u = u(x, t) = (u1(x, t), u2(x, t), . . . , uq(x, t))T ,

v = v(x, t) = (v1(x, t), v2(x, t), . . . , vqc
(x, t))T ,
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and

Ū =

(
U Uc

0 U

)
, V̄ =

(
V Vc

0 V

)
, (1.8)

with Uc = Uc(v, λ) and Vc = Vc(u, v, λ) have the same size as U and V .

Thus, the corresponding enlarged zero curvature equation

Ūt − V̄x + [Ū , V̄ ] = 0 , (1.9)

determines an integrable coupling system for Eq. (1.2):

ūt = K̄ = K̄(x, t, ū) =

(
K

Kc

)
=

(
K(x, t, u)

Kc(x, t, u, v)

)
. (1.10)

This means that an enlarged triple (Ū , V̄ , K̄) satisfies

Ū ′(ū)[K̄] + f(λ)Ūλ − V̄x + [Ū , V̄ ] = 0 , (1.11)

where

Ū ′(ū)[K̄] =




∂

∂ε
U(u + εK)

∣∣∣∣
ε=0

∂

∂εc

Uc(v + εcKc)

∣∣∣∣
εc=0

0
∂

∂ε
U(u + εK)

∣∣∣∣
ε=0




=

(
U ′(u)[K] U ′

c(v)[Kc]

0 U ′(u)[K]

)
,

and precisely presents

U ′(u)[K] + f(λ)Uλ − Vx + [U, V ] = 0 , (1.12a)

U ′

c(v)[Kc] + f(λ)Ucλ − Vcx + [U, Vc] + [Uc, V ] = 0 . (1.12b)

Stimulated by Refs. 14 and 15, in the present paper, we will be interested in

the algebraic structure of integrable couplings of Eq. (1.2), i.e. the enlarged triple

(Ū , V̄ , K̄) satisfying (1.11). This paper is organized as follows. In Sec. 2, we will

show that the enlarged vector fields constitute a Lie algebra under the enlarged

commutator. In Sec. 3, we will establish the algebraic structure of zero curvature

representations associated with integrable coupling systems. Finally, we will illus-

trate our approach by an application example for the AKNS soliton hierarchy and

a τ -symmetry algebra will be engendered for the enlarged AKNS soliton hierarchy

presented in Ref. 11.

2. The Lie Algebra of Enlarged Vector Fields

For convenience, let us first fix the notation as follows: we denote by B all

complex (or real) functions P = P (x, t, u, v) which are C ∞-differentiable with

respect to x, t and C ∞-Gateaux differentiable with respect to u and v, and set
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Br = {(P1, . . . , Pr)
T |Pi ∈ B}. Moreover, by Vr, we denote all r × r matrix integra-

differential operators:

Vr =

∞⋃

n=−∞

n∑

k=0

Vr
(k) , Vr

(k) =
{
(Pij∂

k)r×r |Pij = Pij(x, t, u, v) ∈ B
}

.

Define

Ṽr = Vr ⊗ [λ, λ−1] , Ṽr
(0) = Vr

(0) ⊗ [λ, λ−1] .

We now set

K̄ =

(
K

Kc

)
, S̄ =

(
S

Sc

)
∈ Bq+qc , (2.1)

where K, S ∈ Bq and Kc, Sc ∈ Bqc . The Gateaux derivative is defined as follows:

R′[K̄] =
∂

∂δ
R(u + δK, v + δKc)

∣∣∣∣
δ=0

, R ∈ Ṽr or Br , (2.2)

and in particular, we have

K ′[S] =
∂

∂δ
K(u + δS)

∣∣∣∣
δ=0

, S′[K] =
∂

∂ε
S(u + εK)

∣∣∣∣
ε=0

, (2.3a)

K ′

c[S̄] = K ′

c[S] + K ′

c[Sc]

=
∂

∂δ
Kc(u + δS)

∣∣∣∣
δ=0

+
∂

∂δc

Kc(v + δcSc)

∣∣∣∣
δc=0

, (2.3b)

S′

c[K̄] = S′

c[K] + S′

c[Kc]

=
∂

∂ε
Sc(u + εK)

∣∣∣∣
ε=0

+
∂

∂εc

Sc(v + εcKc)

∣∣∣∣
εc=0

. (2.3c)

Lemma 2.1. Let P = P (x, t, u, v) ∈ B, K̄ =
(

K

Kc

)
, S̄ =

(
S

Sc

)
∈ Bq+qc . Then we

have the relation

(P ′[K̄])′[S̄] − (P ′[S̄])′[K̄]

= P ′(u)[K ′[S] − S′[K]] + P ′(v)[K ′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc]] . (2.4)

Proof. By the definition of the Gateaux derivative, we have

(P ′[K̄])′[S̄] =

(
∂

∂ε
P (u + εK)

∣∣∣∣
ε=0

+
∂

∂εc

P (v + εcKc)

∣∣∣∣
εc=0

)
′

[S̄]

=
∂

∂δ

∂

∂ε
P (u + δS + εK(u + δS))

∣∣∣∣
δ=ε=0

+
∂

∂δ

∂

∂εc

P (v + εcKc(u + δS))

∣∣∣∣
δ=εc=0
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+
∂

∂δc

∂

∂εc

P (v + δcSc + εcKc(v + δcSc))

∣∣∣∣
δc=εc=0

=
∂

∂δ

∂

∂ε
P (u + δS + εK + εδK ′[S])

∣∣∣∣
δ=ε=0

+
∂

∂δ

∂

∂εc

P (v + εcKc + εcδK
′

c[S])

∣∣∣∣
δ=εc=0

+
∂

∂δc

∂

∂εc

P (v + δcSc + εcKc + εcδcK
′

c[Sc])

∣∣∣∣
δc=εc=0

=
∂

∂δ

∂

∂ε
P (u + δS + εK)

∣∣∣∣
δ=ε=0

+
∂

∂δc

∂

∂εc

P (v + δcSc + εcKc)

∣∣∣∣
δc=εc=0

+
∂

∂µ
P (u + µK ′[S])

∣∣∣∣
µ=0

+
∂

∂µ
P (v + µK ′

c[S])

∣∣∣∣
µ=0

+
∂

∂µ
P (v + µK ′

c[Sc])

∣∣∣∣
µ=0

.

At the same time, we similarly have

(P ′[S̄])′[K̄] =
∂

∂δ

∂

∂ε
P (u + δS + εK)

∣∣∣∣
δ=ε=0

+
∂

∂δc

∂

∂εc

P (v + δcSc + εcKc)

∣∣∣∣
δc=εc=0

+
∂

∂µ
P (u + µS′[K])

∣∣∣∣
µ=0

+
∂

∂µ
P (v + µS′

c[K])

∣∣∣∣
µ=0

+
∂

∂µ
P (v + µS′

c[Kc])

∣∣∣∣
µ=0

.

These two equalities engender our required equality (2.4). The proof is finished.

From the above Lemma, we can easily deduce the following corollary.

Corollary 2.1. Let Φ(u, v, λ) ∈ Ṽr and K̄, S̄ ∈ Bq+qc . Then we have

(Φ′[K̄])′[S̄] − (Φ′[S̄])′[K̄]

= Φ′(u)[K ′[S] − S′[K]] + Φ′(v)[K ′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc]] . (2.5)

Thus, for Uc = Uc(v, λ) ∈ Ṽr
(0), we obtain

(U ′

c[Kc])
′[S̄] − (U ′

c[Sc])
′[K̄] = U ′

c[K
′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc]] . (2.6)

Here, we have noted that Uc = Uc(v, λ) has nothing to do with u.
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Evidently, we can also compute the commutator of two enlarged vector fields

K̄, S̄ ∈ Bq+qc as follows:

[K̄, S̄] , K̄ ′[S̄] − S̄′[K̄] =

(
[K, S]

[K, S]c

)
, (2.7)

where

[K, S] = K ′[S] − S′[K], [K, S]c = K ′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc] .

In the following, we directly verify that this is a Lie bracket for the space Bq+qc .

Theorem 2.1. The product (2.7) defines a Lie algebra structure over vector fields

in Bq+qc .

Proof. Let K̄ =
(

K

Kc

)
, S̄ =

(
S

Sc

)
, L̄ =

(
L

Lc

)
∈ Bq+qc . From the definition of the

product (2.7), we have

[[K̄, S̄], L̄] =

[(
[K, S]

[K, S]c

)
,

(
L

Lc

)]

=

[(
K ′[S] − S′[K]

K ′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc]

)
,

(
L

Lc

)]

,

(
[[K, S], L]

[[K, S], L]c

)

with

[[K, S], L] =
∂

∂η

∂

∂δ
K(u + ηL + δS)

∣∣∣∣
δ=η=0

−
∂

∂η

∂

∂ε
S(u + ηL + εK)

∣∣∣∣
ε=η=0

+ K ′[S′[L]] − S′[K ′[L]] − L′[K ′[S]] + L′[S′[K]] ,

[[K, S], L]c = (K ′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc])
′[L] − L′

c[K
′[S] − S′[K]]

+ (K ′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc])
′[Lc]

− L′

c[K
′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc]]

=
∂

∂η

∂

∂δ
Kc(u + δS + ηL)

∣∣∣∣
δ=η=0

+
∂

∂ηc

∂

∂δc

Kc(v + δcSc + ηcLc)

∣∣∣∣
δc=ηc=0

−
∂

∂η

∂

∂ε
Sc(u + εK + ηL)

∣∣∣∣
ε=η=0
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−
∂

∂ηc

∂

∂εc

Sc(v + εcKc + ηcLc)

∣∣∣∣
εc=ηc=0

+ K ′

c[S
′[L]] − S′

c[K
′[L]] + L′

c[S
′[K]] − L′

c[K
′[S]]

+ K ′

c[S
′

c[L]] − S′

c[K
′

c[L]] + L′

c[S
′

c[K]] − L′

c[K
′

c[S]]

+ K ′

c[S
′

c[Lc]] − S′

c[K
′

c[Lc]] + L′

c[S
′

c[Kc]] − L′

c[K
′

c[Sc]] .

So by a simple calculation, we have

[[K, S], L] + cycle(K, S, L) = 0 ,

[[K, S], L]c + cycle(K, S, L) = 0 ,

that is

[[K̄, S̄], L̄] + cycle(K̄, S̄, L̄) = 0 .

This implies that (2.7) defines a Lie algebra structure over vector fields in Bq+qc ,

indeed. The proof is completed.

3. Algebraic Structure of Lax Operators

In this section, we aim to discuss the algebraic structure of zero curvature repre-

sentations for integrable coupling systems.

First, the commutator of two smooth functions f , g ∈ C ∞(C) (as vector fields

over C) is defined as

[[f, g]](λ) = f ′(λ)g(λ) − f(λ)g′(λ) , λ ∈ C . (3.1)

The bracket (3.1) defines a Lie algebra structure over ∈ C ∞(C), indeed (see Ref. 15).

In what follows, we always assume that the enlarged spectral operator Ū ∈ Ṽ2r
(0)

has an injective Gateaux derivative operator Ū ′ : Bq+qc → Ṽ2r
(0).

Definition 3.1. Let V̄ ∈ Ṽ2r
(0). If there exist K̄ ∈ Bq+qc and f ∈ C ∞(C) such that

(1.11) holds, then V̄ is called an enlarged Lax pair operator corresponding to f(λ),

and K̄ is called an enlarged eigenvector field of V̄ corresponding to f(λ).

Assume that P (Ū) denotes all triple (V̄ , K̄, f) ∈ Ṽ2r
(0)×Bq+qc×C∞(C) satisfying

(1.11) and for f(λ) ∈ C ∞(C), we set

M(Ū , f) =
{
V̄ ∈ Ṽ2r

(0)|∃K̄ ∈ Bq+qc so that (V̄ , K̄, f) ∈ P (Ū)
}

, (3.2)

i.e. all Lax operators corresponding to f , and

EM(Ū , f) = Ef M(Ū , f)

= {K̄ ∈ Bq+qc |∃V̄ ∈ M(Ū , F ) so that (V̄ , K̄, f) ∈ P (Ū)} , (3.3)

i.e. all eigenvector fields of M(Ū , f) corresponding to f .
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For (V̄ , K̄, f), (W̄ , S̄, g) ∈ P (Ū), the product [[V̄ , W̄ ]] ∈ Ṽ2r
(0) (see Ref. 15 for

definition) can be computed as follows

[[V̄ , W̄ ]] = V̄ ′[S̄] − W̄ ′[K̄] + [V̄ , W̄ ] + gV̄λ − fW̄λ

=

(
[[V, W ]] [[Vc, Wc]]

0 [[V, W ]]

)
, (3.4a)

where

[[V, W ]] = V ′[S] − W ′[K] + [V, W ] + gVλ − fWλ , (3.4b)

[[Vc, Wc]] = V ′

c [S̄] − W ′

c[K̄] + [V, Wc] + [Vc, W ] + gVcλ − fWcλ . (3.4c)

This shows a special structure of the commutator of enlarged Lax operators and

play a crucial role in our computation.

In what follows, we would like to show that the product [[V̄ , W̄ ]] is associated

with the commutator of enlarged vector fields [K̄, S̄].

Theorem 3.1. Let (V̄ , K̄, f), (W̄ , S̄, g) ∈ P (Ū). Then ([[V̄ , W̄ ]], [K̄, S̄], [[f, g]]) be-

longs to P (Ū), too. That is to say

Ū ′[[K̄, S̄]] + [[f, g]](λ)Ūλ − [[V̄ , W̄ ]]x + [Ū , [[V̄ , W̄ ]]] = 0 , (3.5)

which is equivalent to the following two equations :

U ′[[K, S]] + [[f, g]](λ)Uλ − [[V, W ]]x + [U, [[V, W ]]] = 0 , (3.6a)

U ′

c[[K, S]c] + [[f, g]](λ)Ucλ − [[Vc, Wc]]x + [U, [[Vc, Wc]]] + [Uc, [[V, W ]]] = 0 . (3.6b)

Proof. Since (V̄ , K̄, f), (W̄ , S̄, g) ∈ P (Ū), we have

V ′

x[S] = (U ′[K])′[S] + fU ′

λ[S] + [U, V ]′[S] ,

W ′

x[K] = (U ′[S])′[K] + gU ′

λ[K] + [U, W ]′[K] ,
(3.7a)

U ′

λ[K] = Vxλ − [U, V ]λ − fλUλ − fUλλ ,

U ′

λ[S] = Wxλ − [U, W ]λ − gλUλ − gUλλ ,
(3.7b)

V ′

cx[S̄] = (U ′

c[Kc])
′[S̄] + fU ′

cλ[S̄] + [U, Vc]
′[S̄] + [Uc, V ]′[S̄] ,

W ′

cx[K̄] = (U ′

c[Sc])
′[K̄] + gU ′

cλ[K̄] + [U, Wc]
′[K̄] + [Uc, W ]′[K̄] ,

(3.8a)

U ′

cλ[K̄] = Vcxλ − [U, Vc]λ − [Uc, V ]λ − fλUcλ − fUcλλ ,

U ′

cλ[S̄] = Wcxλ − [U, Wc]λ − [Uc, W ]λ − gλUcλ − gUcλλ .
(3.8b)

Let us define

Θ = V̄ ′[S̄] − W̄ ′[K̄] + [V̄ , W̄ ]

=

(
V ′[S] − W ′[K] + [V, W ] V ′

c [S̄] − W ′

c[K̄] + [V, Wc] + [Vc, W ]

0 V ′[S] − W ′[K] + [V, W ]

)
. (3.9)
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Then, we have

Θx − [Ū , Θ] = V̄ ′

x[S̄] − W̄ ′

x[K̄] + [V̄ , W̄ ]x

− [Ū , V̄ ′[S̄] − W̄ ′[K̄] + [V̄ , W̄ ]]

,

(
Ω11 Ω12

0 Ω22

)
, (3.10a)

where

Ω11 = Ω22 = U ′[[K, S]] + fWxλ − f [U, Wλ] − gVxλ + g[U, Vλ] + [[f, g]]Uλ , (3.10b)

Ω12 = V ′

cx[S̄] − W ′

cx[K̄] + [V, Wc]x + [Vc, W ]x − [U, Vc[S̄] − W ′

c[K̄]

+ [V, Wc] + [Vc, W ]] − [Uc, V
′[S] − W ′[K] + [V, W ]] . (3.10c)

Making full use of (3.7) and (3.8), we can compute that

Ω12 = (U ′

c[Kc])
′[S̄] − (U ′

c[Sc])
′[K̄] + fU ′

cλ[S̄]

− gU ′

cλ[K̄] + [U, Vc]
′[S̄] + [Uc, V ]′[S̄]

+ [U ′

c[Kc] + fUcλ + [U, Vc] + [Uc, V ], W ]

+ [Vc, [U, W ] + U ′[S] + gUλ]

− [U, V ′

c [S̄] − W ′

c[K̄] + [V, Wc] + [Vc, W ]]

− [Uc, V
′[S] − W ′[K] + [V, W ]]

− [U, Wc]
′[K̄] − [Uc, W ]′[K̄] + [[U, V ] + U ′[K] + fUλ, Wc]

+ [V, U ′

c[Sc] + gUcλ + [U, Wc] + [Uc, W ]]

= (U ′

c[Kc])
′[S̄] − (U ′

c[Sc])
′[K̄] + fWcxλ − f [U, Wcλ]

− f [Uc, Wλ] − gVcxλ + g[U, Vcλ] + g[Uc, Vλ] + [[f, g]]Ucλ

= U ′

c[K
′

c[S] − S′

c[K] + K ′

c[Sc] − S′

c[Kc]]

+ fWcxλ − f [U, Wcλ] − f [Uc, Wλ]

− gVcxλ + g[U, Vcλ] + g[Uc, Vλ] + [[f, g]]Ucλ .

On the other hand, according to (3.4b), (3.4c) and (3.9), we have

Θ =

(
[[V, W ]] + fWλ − gVλ [[Vc, Wc]] + fWcλ − gVcλ

0 [[V, W ]] + fWλ − gVλ

)
, (3.11)
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and thus

Θx − [Ū , Θ] ,

(
Ω̃11 Ω̃12

0 Ω̃22

)
, (3.12a)

where

Ω̃11 = Ω̃22 = [[V, W ]]x + fWxλ − gVxλ − [U, [[V, W ]] + fWλ − gVλ] , (3.12b)

Ω̃12 = [[Vc, Wc]]x − [U, [[Vc, Wc]]] − [Uc, [[V, W ]]] + fWcxλ

− gVcxλ − f [U, Wcλ] + g[U, Vcλ] − f [Uc, Wλ] + g[Uc, Vλ] . (3.12c)

Comparing (3.10) and (3.12), we immediately obtain (3.6). Thus, (3.5) holds. This

means that ([[V̄ , W̄ ]], [K̄, S̄], [[f, g]]) belongs to P (Ū). The proof is completed.

We remark that (3.6a) is exactly the result presented in Ref. 15. Conversely, the

whole equality (3.6) is also a consequence of the general result of Ref. 15.

It follows from the above theorem that if two enlarged evolution equations ūt =

K̄, ūt = S̄, (K̄, S̄ ∈ Bq+qc) are the compatibility conditions of the following spectral

problems:

ϕ̄x = Ū ϕ̄ , ϕ̄t = V̄ ϕ̄ , V̄ ∈ Ṽ2r
(0) , λt = aλm ,

ϕ̄x = Ū ϕ̄ , ϕ̄t = W̄ ϕ̄ , W̄ ∈ Ṽ2r
(0) , λt = bλn ,

where a, b are constants and m, n ≥ 0, respectively, then the product equation

ūt = [K̄, S̄] is the compatibility condition of the following spectral problems:

ϕ̄x = Ū ϕ̄ , ϕ̄t = [[V̄ , W̄ ]]ϕ̄ , λt = ab(m − n)λm+n−1 ,

where

[[V̄ , W̄ ]] = V̄ ′[S̄] − W̄ ′[K̄] + [V̄ , W̄ ] + gV̄λ − fW̄λ

=

(
[[V, W ]] [[Vc, Wc]]

0 [[V, W ]]

)
.

Therefore, we see that

[[M(Ū , 0), M(Ū , λm)]] ⊆ M(Ū , 0) , m ≥ 0 , (3.13)

and further, we have

[[M(Ū , 0), [[M(Ū , 0), M(Ū , λm)]]]] = 0 , m ≥ 0 . (3.14)

This implies that

[[EM(Ū , 0), [[EM(Ū , 0), EM(Ū , λm)]]]] = 0 , m ≥ 0 , (3.15)

provided that M(Ū , 0) is commutative.
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Now by using Theorem 3.1, we can prove the following two results.

Corollary 3.1. Let (V̄i, K̄i, fi) ∈ P (Ū), i = 1, 2, 3. If [[V̄1, V̄2]] = V̄3 and [[f1, f2]] =

f3, then [K̄1, K̄2] = K̄3.

Proof. By Theorem 3.1, namely (3.6), and the assumption, we have

U ′[[K1, K2]] = −[[f1, f2]]Uλ − [[V1, V2]]x + [U, [[V1, V2]]]

= −f3Uλ − V3x + [U, V3] = U ′[K3] ,

U ′

c[[K1, K2]c] = −[[f1, f2]]Ucλ + [[V1c, V2c]]x − [U, [[V1c, V2c]]] − [Uc, [[V1, V2]]]

= −f3Ucλ + V3ax − [U, V3c] − [Uc, V3] = U ′

c[K3c] ,

where we have noticed that [[V̄1, V̄2]] = V̄3 implies [[V1, V2]] = V3 and [[V1c, V2c]] = V3c.

It now follows that [K1, K2] = K3 and [K1, K2]c = K3c, i.e. [K̄1, K̄2] = K̄3,

since Ū ′ is injective. The proof is completed.

Because we assume that Ū ′ is injective, a Lax operator in M(Ū , 0) has only an

eigenvector field corresponding to f = 0. Suppose that

Ū ′[K̄] − V̄x + [Ū , V̄ ] = 0 , Ū ′[S̄] − W̄x + [Ū , W̄ ] = 0 ,

we define

[[V̄ , W̄ ]]0 = V̄ ′[S̄] − W̄ ′[K̄] + [V̄ , W̄ ] ,

which is well defined. This moment M(Ū , 0) constitutes an algebra with regard to

[[V̄ , W̄ ]]0 and thus 〈EM(Ū , 0), [ · , · ]〉 is a Lie algebra. Set

K̄(Ū) =
{
V̄ ∈ Ṽr

(0) | V̄x = [Ū , V̄ ]
}

.

Obviously, K̄(Ū) is a subspace of M(Ū , 0) and the bracket [[ · , · ]]0 over K̄(Ū) reduces

to the matrix commutator [ · , · ]. Moreover by Theorem 3.1, we may see that

[[K̄(Ū), M(Ū , 0)]]0, [[M(Ū , 0), K̄(Ū)]]0 ⊆ K̄(Ū) .

Therefore, K̄(Ū) is an ideal subalgebra of 〈M(Ū , 0), [[, ]]0〉. In this way, we can

generate a quotient algebra 〈M(Ū , 0)/K̄(Ū), [[ · , · ]]0〉. By using Theorem 3.1, we

can acquire the following result.

Theorem 3.2. The quotient algebra 〈CL(M(Ū , 0)) , M(Ū , 0)/K̄(Ū), [[ · , · ]]0〉 is a

Lie algebra and isomorphic to the Lie algebra 〈EM(Ū , 0), [ · , · ]〉 under the mapping

ρ : CL(M(Ū , 0)) = M(Ū , 0)/K̄(Ū) → EM(Ū , 0) ,

CL(V̄ ) , {W̄ ∈ M(Ū , 0) |W̄ − V̄ ∈ K̄(Ū)} → K̄ ,

where V̄ ∈ M(Ū , 0), K̄ ∈ EM(Ū , 0) satisfy Ū ′[K̄] − V̄x + [Ū , V̄ ] = 0.
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4. Application

In this section, we shall in detail illustrate our construction process by an concrete

example in the AKNS case and establish the corresponding τ -symmetry algebra.

4.1. The isospectral and nonisospectral AKNS hierarchies

The AKNS spectral problem is given by

ϕx = Uϕ , U = U(u, λ) =

(
−λ u1

u2 λ

)
, u =

(
u1

u2

)
, (4.1)

where ui = ui(x, t), i = 1, 2 are two dependent variables.

Suppose that the associated temporal spectral problem is as follows:

ϕt = V ϕ , V = V (u, λ) =

(
a b

c −a

)
∈ Ṽ2

(0) . (4.2)

Clearly the compatibility condition Ut − Vx + [U, V ] = 0 in this case gives

equivalently

λt = −ax + u1c − u2b , (4.3a)

u1t = bx + 2λb + 2u1a , (4.3b)

u2t = cx − 2λc − 2u2a . (4.3c)

From (4.3a), we have

a = −λtx + ∂−1(u1c − u2b) .

Therefore, (4.3b) and (4.3c) become

u1t = bx + 2λb + 2u1∂
−1(u1c − u2b) − 2u1λtx ,

u2t = cx − 2λc − 2u2∂
−1(u1c − u2b) + 2u2λtx .

(4.4)

Case 1 : λt = 0

Substituting the following expansions:

b =

m∑

j=0

bjλ
m−j , c =

m∑

j=0

cjλ
m−j (4.5)

into (4.4), and comparing the same powers of both sides in λ, we arrive at

b0 = c0 = 0 , b1 = u1 , c1 = u2 ,

and

ut = Km =

(
−2bm+1

2cm+1

)
= Φ(u)mK0 , m ≥ 0 , (4.6a)
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where

Φ(u) =



−

1

2
∂ + u1∂

−1u2 u1∂
−1u1

−u2∂
−1u2

1

2
∂ − u2∂

−1u1


 , K0 =

(
−2u1

2u2

)
. (4.6b)

This is the isospectral (λt = 0) AKNS hierarchy.

Case 2 : λt = λ
m+1

Similarly, substituting (4.5) into (4.4), we arrive at

b0 = u1x , c0 = u2x , b1 = −
1

2
(u1x)x , c1 =

1

2
(u2x)x ,

and

ut = ρm =

(
−2bm+1

2cm+1

)
= Φ(u)mρ0 , ρ0 =

(
(u1x)x

(u2x)x

)
, m ≥ 0 , (4.7)

which is the nonisospectral (λt = λm+1) AKNS hierarchy.

4.2. The enlarged isospectral and nonisospectral AKNS hierarchies

We define the corresponding enlarged AKNS spectral problem by semidirect sums

of Lie algebras as follows:11

ϕ̄x = Ūϕ̄ , Ū = Ū(ū, λ) =

(
U Uc

0 U

)
∈ G A Gc ,

Uc = Uc(v) =

(
0 v1

v2 0

)
,

(4.8)

where vi = vi(x, t), i = 1, 2 are two new dependent variables and

v = (v1, v2)
T , ū = (uT , vT )T = (u1, u2, v1, v2)

T .

The associated enlarged temporal spectral problem is assumed to be

ϕ̄t = V̄ ϕ̄ , V̄ = V̄ (ū, λ) =

(
V Vc

0 V

)
∈ Ṽ4

(0) ,

Vc = Vc(u, v) =

(
e f

g −e

)
.

(4.9)

Then the corresponding enlarged zero curvature equation Ūt − V̄x + [Ū , V̄ ] = 0

becomes

Ut − Vx + [U, V ] = 0 ,

Uct − Vcx + [U, Vc] + [Uc, V ] = 0 ,
(4.10)
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which are equivalent to

u1t = bx + 2λb + 2u1∂
−1(u1c − u2b) − 2u1λtx ,

u2t = cx − 2λc − 2u2∂
−1(u1c − u2b) + 2u2λtx ,

v1t = fx + 2λf + 2u1e + 2b1[−λtx + ∂−1(u1c − u2b)] ,

v2t = gx − 2u2e − 2λe − 2λg − 2v2[−λtx + ∂−1(u1c − u2b)] .

(4.11)

Set

e =

m∑

j=0

ejλ
m−j , f =

m∑

j=0

fjλ
m−j , g =

m∑

j=0

gjλ
m−j , (4.12)

and thus, we can derive the enlarged isospectral and nonisospectral AKNS hier-

archies as follows.

Case 1 : λt = 0

Substituting the expansions of (4.5) and (4.12) into (4.11) leads to

f0 = g0 = 0 , f1 = u1 + v1 , g1 = u2 + v2

and

ūt =




u1

u2

v1

v2




t

= K̄m =

(
Km

Kmc

)
=




−2bm+1

2cm+1

−2fm+1

2gm+1


 = Φ̄mK̄0 , m ≥ 0 , (4.13a)

where

Φ̄ ,

(
Φ(u) 0

Φc(u, v) Φ(u)

)
,

Φc(u, v) =

(
v1∂

−1u2 + u1∂
−1v2 v1∂

−1u1 + u1∂
−1v1

−v2∂
−1u2 − u2∂

−1v2 −v2∂
−1u1 − u2∂

−1v1

)
,

K̄0 =

(
K0

K0c

)
=




−2u1

2u2

−2u1 − 2v1

2u2 + 2v2


 .

(4.13b)

Thus, this enlarged isospectral (λt = 0) AKNS hierarchy (4.13a) (see Ref. 11 for

its Hamiltonian structure) has the recursion relation

ūt = K̄m =

(
Km

Kmc

)
=

(
Φ(u)Km−1

Φc(u, v)Km−1 + Φ(u)Km−1,c

)
, m ≥ 0 . (4.14)
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Case 2 : λt = λ
m+1

In this case, substituting the expansions of (4.5) and (4.12) into (4.11) leads to

f0 = v1x , g0 = v2x , f1 = −
1

2
(v1x)x , g1 =

1

2
(v2x)x ,

and

ūt = ρ̄m =

(
ρm

ρmc

)
=




−2bm+1

2cm+1

−2fm+1

2gm+1


 = Φ̄mρ̄0 , m ≥ 0 ,

where

ρ̄0 =

(
ρ0

ρ0c

)
=




(u1x)x

(u2x)x

(v1x)x

(v2x)x


 , (4.15)

and Φc(u, v) is defined as in (4.13). Therefore, this enlarged nonisospectral (λt =

λm+1) AKNS hierarchy has a recursion relation

ūt = ρ̄m =

(
ρm

ρmc

)
=

(
Φ(u)ρm−1

Φc(u, v)ρm−1 + Φ(u)ρm−1,c

)
, m ≥ 1 . (4.16)

Next let us consider how to compute the corresponding τ -symmetry algebra

for the obtained integrable coupling systems. The procedure below is an application

of the idea in Ref. 16 and can be applied to other cases. As in Ref. 16, we first make

the following computation at ū = 0:

K̄m|ū=0 =

(
Km

Kmc

) ∣∣∣∣
ū=0

= Φ̄mK̄0|ū=0 = 0 ,

ρ̄n|ū=0 =

(
ρn

ρnc

) ∣∣∣∣
ū=0

= Φ̄nρ̄0|ū=0 = 0 ,

(4.17)

where m, n ≥ 0. We denote by V̄m and W̄n the Lax operators corresponding to the

vector fields K̄m and ρ̄n, respectively (see Ref. 17 for nonisospectral Lax operators).

Then as in Ref. 16, we compute that

V̄m|ū=0 =

(
Vm Vmc

0 Vm

) ∣∣∣∣
ū=0

=




−1 0 −1 0

0 1 0 1

0 0 −1 0

0 0 0 1


λm ,

V̄mλ|ū=0 = (V̄m|ū=0)λ = m




−1 0 −1 0

0 1 0 1

0 0 −1 0

0 0 0 1


λm−1 ,
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W̄n|ū=0 =

(
Wn Wnc

0 Wn

) ∣∣∣∣
ū=0

=




−λx 0 0 0

0 λx 0 0

0 0 −λx 0

0 0 0 λx


λn ,

W̄nλ|ū=0 = (W̄n|ū=0)λ = (n + 1)




−λx 0 0 0

0 λx 0 0

0 0 −λx 0

0 0 0 λx


λn−1 ,

where m, n ≥ 0. Now we can find by the definition (3.4) of the product of Lax

operators that

[[V̄m, V̄n]]|ū=0 = 0 , m, n ≥ 0 ,

[[V̄m, W̄n]]|ū=0 = mV̄m+n|ū=0 , m, n ≥ 0 ,

[[W̄m, W̄n]]|ū=0 = (m − n)W̄m+n|ū=0 , m, n ≥ 0 .

(4.18)

For example, we can compute that

[[V̄m, W̄n]]|ū=0 = [V̄m, W̄n] + λn+1V̄mλ|ū=0 = mV̄m+n|ū=0 , m, n ≥ 0 .

Because [[V̄m, V̄n]], [[V̄m, W̄n]]−mV̄m+n, [[W̄m, W̄n]]− (m−n)V̄m+n, m, n ≥ 0, are all

isospectral (λt = 0) Lax operators belonging to Ṽ4
(0) by Theorem 3.1, based upon

(4.18), we obtain a Lax operator algebra by the uniqueness property of the enlarged

spectral problem (4.8):

[[V̄m, V̄n]] = 0 , m, n ≥ 0 ,

[[V̄m, W̄n]] = mV̄m+n , m, n ≥ 0 ,

[[W̄m, W̄n]] = (m − n)W̄m+n , m, n ≥ 0 .

(4.19)

Further, due to the injective property of Ū ′, we finally obtain a vector field algebra

of the enlarged isospectral and nonisospectral AKNS hierarchies:

[K̄m, K̄n] = 0 , m, n ≥ 0 ,

[K̄m, ρ̄n] = mK̄m+n , m, n ≥ 0 ,

[ρ̄m, ρ̄n] = (m − n)ρ̄m+n , m, n ≥ 0 ,

(4.20)

which automatically give rise to the τ -symmetry algebra18 for the enlarged isospec-

tral AKNS hierarchy (4.13a).
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