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ABSTRACT

Variable-coefficient equations can be used to describe certain phenomena when inhomogeneous media and nonuniform boundaries are
taken into consideration. Describing the fluid dynamics of shallow-water wave in an open ocean, a (2þ 1)-dimensional generalized variable-
coefficient Hirota–Satsuma–Ito equation is investigated in this paper. The integrability is first examined by the Painlev�e analysis method.
Secondly, the one-soliton and two-soliton solutions and lump solutions of the (2þ 1)-dimensional generalized variable-coefficient Hirota–
Satsuma–Ito equations are derived by virtue of the Hirota bilinear method. In the exact solutions, parameter values and variable-coefficient
functions are chosen and analyzed for different effects on the shallow-water waves.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0193477

I. INTRODUCTION

Nonlinear partial differential equations (NLPDEs) have impor-
tant applications in physics, aerodynamics, fluid mechanics, atmo-
spheric physics, ocean physics, explosion physics, chemistry,
physiology, biology, ecology, and other fields.1–3 In order to under-
stand and explore the nature of these nonlinear physical phenomena,
it is necessary to deeply study the exact solutions and qualitative prop-
erties of these mathematical physics equations.4,5 The (2þ 1)-dimen-
sional Hirota–Satsuma–Ito equation finds significant application in
fluid physics, allowing for the description of phenomena such as soli-
tons and wave patterns.6–9 This implies its capability to explain the
propagation of solitary waves in fluids, including phenomena observed
in oceans, lakes, and other behaviors of solitary waves in fluid dynam-
ics. Furthermore, the equation describes nonlinear wave dynamics,
enabling it to explain wave phenomena with complex nonlinear char-
acteristics, which is essential for understanding vortices, shock waves,

and other irregular wave dynamics phenomena. Additionally, certain
fluid phenomena may result in wave breaking or compressibility
effects, and this equation provides a framework to study these phe-
nomena, aiding our understanding of these complex fluid behaviors.
Finally, the equation can also be utilized to explore complex dynamics
phenomena within fluid systems, such as chaos and nonlinear reso-
nance.10,11 Therefore, the (2þ 1)-dimensional Hirota–Satsuma–Ito
equation serves as a powerful tool in fluid physics, allowing us to
explain and explore a wide range of complex wave and nonlinear phe-
nomena, thereby deepening our understanding of fluid behavior.
Integrability plays a crucial role in finding analytical solutions. The
Painlev�e analysis proposed in 1983 by Weiss, Tabor, and Carnevale
provides an accurate description of the integrability of NLPDEs.12–14

The Painlev�e analysis approach is one of the most reliable methods to
characterize the integrability of NLPDEs. It is well known that the
Hirota bilinear method is a direct and powerful technique for
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generating solitonic solutions. The availability of computer symbolic
systems such as Maple and Mathematica enables us to perform more
complex and tedious algebraic computations in the investigation of
exact closed-form solutions of NLPDEs.15

Research of solutions to NLPDEs plays an important role in the
field of nonlinearity. Therefore, search for efficient solution methods
has gained increasing attention. To date, there are several effective
methods that have been commonly used by mathematicians, such as
Darboux transformation, B€acklund transformation, Hirota bilinear
method, and hyperbolic method.16–21 Among them, the Hirota bilinear
method proposed by Hirota is a straightforward method for finding
exact solutions of NLPDEs. The exact solutions to NLPDEs are of great
value in many areas, such as resonant soliton solutions under Bell pol-
ynomials and Hirota bilinear method, N-rational solutions by the
long-wave limit method, M-lump solution and the Wronskian solu-
tions by the long-wave limit method,22–24 lump and lump-multi-kink
solutions via the test function method.25

In 1981, Hirota and Satsuma presented a Hirota–Satsuma (HS)
shallow-water wave equation based on a B€acklund transformation of
the Boussinesq equation.26–28 It described the propagation of unidirec-
tional shallow-water waves and interactions of two long waves with
different dispersion relations. Among the NLPDEs, (2þ 1)-dimen-
sional HSI equation can be written in the following form:

wt ¼ uxxt þ 3uut � 3uxvt þ ux; wx ¼ �uy; vx ¼ �u; (1)

where u ¼ uðx; y; tÞ is the physical field, while the functions v and
w are the potentials of physical field derivatives. uxxt signifies the spatial
and temporal evolution of u; 3uut indicates a non-linear relationship in
the temporal development of a wave packet; �3uxvt describes the inter-
action between two fields; and ux denotes the rate of change of u with
respect to x. Equation (1) describes the propagation of small amplitude
surface waves in a channel or a large channel where the depth and width
change slowly. Liu et al.29 analyzed the HSI equation with constant coef-
ficient using the Hirota bilinear method and obtained some interactions
of different types of solutions. Kumar et al.30 studied the HSI equation
by Lie symmetry analysis and obtained multiple soliton solutions and
interactions of soliton solutions.

However, to describe the phenomena in the realistic world, the
variable-coefficient NLPDEs have been constructed and studied.
Variable-coefficient equations can be used to describe certain phenom-
ena when the inhomogeneous media and nonuniform boundaries are
taken into consideration.31–33 In this paper, we investigate a variable-
coefficient extension of Eq. (1), i.e.,

wt ¼ aðtÞuxxt þ bðtÞuut � bðtÞuxvt þ cðtÞux;
wx ¼ �uy; vx ¼ �u;

(2)

where u ¼ uðx; y; tÞ; v ¼ vðx; y; tÞ; andx ¼ xðx; y; tÞ are analytic
functions of the space variables x, y, and time variables t, and where
a(t), b(t), and c(t) are some differentiable functions of t. The dispersive
term is aðtÞuxxt , and aðtÞuxxt denotes the time-dependent coefficient
a(t) multiplied by the second derivative of u with respect to x and its
derivative with respect to time, describing the spatial and temporal
evolution of u; bðtÞuut indicates the time-dependent coefficient b(t)
multiplied by the product of u and ut, describing the relationship
between the temporal development of a wave packet and
itself; �bðtÞuxvt describes the interaction between two fields; c(t) is

the linear phase speed and dependent on time t. Equation (2) can
be seen as an extension of Eq. (1) with variable coefficients. In this
case, the equations consider time-dependent coefficients, reflecting
the characteristics of the physical system as it changes over time.
When simulating and exploring complex nonlinear phenomena in
various physical backgrounds, the nonlinear evolution equation
with variable coefficient34–37 is more necessary to study than the
nonlinear evolution equation with constant coefficient, and can
reflect the essence of the problem. Therefore, in recent years, the
study of the nonlinear evolution equation with the variable coeffi-
cient has received further attention.38–45

The outline of the paper is as follows. In Sec. II, Eq. (2) is tested
for integrability through Painlev�e analysis. The criterion of Painlev�e
property is that the solutions of the NLPDEs should have no singulari-
ties other than poles. The result gives the condition that Eq. (2) can be
Painlev�e integrable. In Sec. III, the one-soliton and two-soliton solu-
tions will be derived and discussed. The process of motion of the soli-
ton solution will be indicated by a set of diagrams at different times t.
In Sec. IV, the lump solutions will be determined through symbolic
computations with Maple. For a special presented lump solution,
three-dimensional plots and contour plots will be made via the Maple
plot tool to shed light on the characteristics of the presented lump sol-
utions. A few concluding remarks will be given in Sec. V. The variable-
coefficient Hirota–Satsuma–Ito equation provides a closer representa-
tion of real systems by accommodating varying system characteristics
over time or space, offering more flexibility in modeling as parameters
change and demonstrating broader applicability to a wide range of
phenomena. As a result, it delivers more accurate results when describ-
ing nonlinear wave phenomena and fluid behaviors.

II. PAINLEV�E ANALYSIS

A NLPDE has the Painlev�e property when its solutions are
single-valued about all the movable singularity manifold.46 We will dis-
cuss whether Eq. (2) is Painlev�e-integrable by virtue of the Weiss–
Tabor–Carnevale method. Assuming that the singularity manifold is

uðx; y; tÞ ¼ 0: (3)

We seek a solution to Eq. (2) in the following form:

u ¼
X1
j¼0

ujðx; y; tÞuðx; y; tÞjþa; (4)

where a is a negative integer, ujðx; y; tÞ and uðx; y; tÞ are analytic
functions in the neighborhood of Eq. (3).

Substituting u � u0uðaÞ into Eq. (2) and balancing the dominant

term, we find that a ¼ �1 and u0 ¼ 2aðtÞ
bðtÞ ux by a leading order analy-

sis. Substituting u � u0u�1 þP1
j¼1 uju

j�1 into Eq. (2) and making

the coefficient of uj�6 to zero lead to the resonance values
j ¼ �1; 1; 4; 6. The resonance j¼�1 means that u is arbitrary.
Thinking about u1, u4 and u6 are free functions, we find the integrable
conditions that a(t) and b(t) reduce into constants.

III. SOLITON SOLUTIONS
A. One-soliton solution

When the constraint bðtÞ ¼ 3aðtÞ is satisfied, Eq. (2) is converted
into
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wt ¼ aðtÞuxxt þ 3aðtÞuut � 3aðtÞuxvt þ cðtÞux;
wx ¼ �uy; vx ¼ �u:

(5)

Through the dependent variable transformation,

u ¼ 2 ln f ðx; y; tÞ½ �xx: (6)

Equation (5) enjoys the bilinear form

ðDyDt þ aðtÞD3
xDt þ cðtÞD2

xÞf � f ¼ 0; (7)

where D is the Hirota bilinear operator47 defined by

Da
xD

b
yD

c
t ð f � gÞ ¼

@

@x
� @

@x0

� �a
@

@y
� @

@y0

� �b @

@t
� @

@t0

� �c

� f ðx; y; tÞg x0; y0; t0
� �jx0¼x;y0¼y;t0¼t : (8)

One basic property of the Hirota bilinear derivatives is that

DxDyf � g ¼ DxDyg � f : (9)

Expanding f into a power series of the small parameter e using
the standard perturbation method,

f ¼ 1þ ef1 þ e2f2 þ e3f3 þ � � � : (10)

Using the properties of the D-operator, effective truncation can be
applied to the function f.

The Hirota bilinear method derives solitary wave solutions by
solving the equation’s bilinear form, allowing for the representation of
localized waves or solitons that maintain their shape during propaga-
tion and enables the determination of precise two-soliton solutions by
manipulating the equation’s bilinear form, capturing the interaction
between two solitons as they move through a medium or space.
The Hirota bilinear method also involves discovering lump solutions,
representing nonsingular localized structures within integrable systems
and often arising from nonlinear wave equations, crucial for under-
standing complex system behaviors. The innovative concept of bilinear
derivatives is the key in the basic theory of exact solutions. The Hirota
bilinear method can be considered as the simplest and effective tech-
nique to investigate integrability aspect of a nonlinear equation. The
Hirota bilinear method concisely converts a nonlinear equation into a
bilinear form using a dependent variable transformation and produces
quasi-periodic wave solutions, rational solutions, lump solutions,
multi-soliton solutions, and other exact solutions via the bilinear form.

To find the one-soliton solution, f is given by

f ¼ 1þ eg1 ; (11)

where
g1 ¼ p1x þ q1y þ X1ðtÞ; (12)

X1ðtÞ ¼ �
ð

cðtÞp21
aðtÞp31 þ q1

dt; (13)

where p1 and q1 are constants, and X1ðtÞ is the function of t; thus, the
one-soliton solutions for Eq. (2) under constraint Eq. (12) can be written as

FIG. 1. One-soliton solutions via Eq. (14) with cðtÞ ¼ �2t, a(t)¼ 1, p1 ¼ 2; q1 ¼ 1; X1ðtÞ ¼ 4
7 t

2. (a) x¼ 1, (b) t¼ 1, (c) y¼ 1, and (d)–(f) are the density figures of (a)–(c).
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u ¼ 2p21e
p1xþq1y�

Ð cðtÞp2
1

aðtÞp3
1
þq1

dt

1þ e
p1xþq1y�

Ð cðtÞp2
1

aðtÞp3
1
þq1

dt
� 2p21e

2

�
p1xþq1y�

Ð cðtÞp2
1

aðtÞp3
1
þq1

dt

�

1þ e
p1xþq1y�

Ð cðtÞp2
1

aðtÞp3
1
þq1

dt

� �2 : (14)

Figures 1 and 2 show the effect of parameters a(t) and c(t) on
nonlinear wave depicted by Eq. (14). Their physical structures are
described in some 3D plots. A parabolic-shape rational solution is pre-
sented in Fig. 1, and the solitary wave has an amplitude of 2, with the
velocity in the x and y directions being vx ¼ � 8

7 t; vy ¼ � 8
7 t

� �
. A

periodic-shape rational solution is plotted in Fig. 2. The solitary wave
solution has an amplitude of 12, with the velocities in the x and y direc-

tions being ðvx ¼ sinðtÞ
cosðtÞþ1 ; vy ¼ sinðtÞ

cosðtÞþ1Þ. These solitary waves main-

tain their shape and size unchanged during the process of movement.
Due to the presence of variable coefficients, the speed of solitary wave
movement will depend on the time t. The one-soliton solution to Eq.
(7) is related to the variable coefficient, and when different parameters
are selected, the one-soliton solution to Eq. (11) will adjust
accordingly.

B. Two-soliton solutions

To find the two-soliton solution, f is given by

f ¼ 1þ ep1xþq1yþX1ðtÞ þ ep2xþq2yþX2ðtÞ

þ A12e
p1xþq1yþX1ðtÞþp2xþq2yþX2ðtÞ; (15)

where

XiðtÞ ¼ �
ð

cðtÞp2i
aðtÞp3i þ qi

dt; i ¼ 1; 2; (16)

A12¼�ðX0
1ðtÞ�X0

2ðtÞÞððq1�q2ÞþaðtÞðp1�p2Þ3ÞÞþbðtÞðp1�p2Þ2
ðX0

1ðtÞþX0
2ðtÞÞððq1þq2ÞþaðtÞðp1þp2Þ3ÞÞþbðtÞðp1þp2Þ2

:

(17)

We obtain the two-soliton solutions under constraint Eq. (15) as

u ¼ 2ðp21eg1 þ p22e
g2 þ A12ðp1 þ p2Þ2eg1þg2Þ

1þ eg1 þ eg2 þ A12eg1þg2

� 2ðp1eg1 þ p2eg2 þ A12ðp1 þ p2Þeg1þg2Þ2
ð1þ eg1 þ eg2 þ A12eg1þg2Þ2 : (18)

Figures 3 and 4 show the effect of parameters a(t) and c(t)
on nonlinear wave depicted by Eq. (18). Figure 4 shows the dynamical
behavior of the two-solitons in (x, y) plane. It is clear that the
position of the two-solitons changes along the x axis with time from

FIG. 2. One-soliton solutions via Eq. (14) with cðtÞ ¼ sinðtÞ; aðtÞ ¼ cosðtÞ; p1 ¼ 1; q1 ¼ 1; X1ðtÞ ¼ lnðcosðtÞ þ 1Þ. (a) x¼ 1, (b) t¼ 1, (c) y¼ 1, and (d)–(f) are the den-
sity figures of (a)–(c).
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Figs. 4(a)–4(c). The speeds of two solitary waves in the x and y direc-
tions are v1x ¼ � 4

7 t; v1y ¼ � 8
7 t

� �
and v2x ¼ � 2

3 t; v2y ¼ � 2
3 t

� �
,

respectively. The movement velocities of the two solitary waves are
dependent on the values of the variable coefficients. However, the
amplitude and the waveform of the two-solitons remain the same.
Figures 4(d)–4(f) are their corresponding density plots. Figure 5 illus-
trates the interaction between the two solitons. Moreover, the ampli-
tudes of the two solitary waves are 2, and the interaction between the
two solitons is seen to be elastic in the sense that the velocities and
amplitudes of the two solitons remain constant after interaction except
for a phase shift.

IV. LUMP SOLUTIONS

A lump solution is a rational function solution, which is real
analytic and decays in all directions of space variables. Lump func-
tions provide appropriate prototypes to model rogue wave dynam-
ics in both oceanography48 and nonlinear optics.49 The lump
solutions presented in the context of the shallow-water wave equa-
tion exhibit nonsingular localized structures. Their significance lies
in their ability to represent specific concentrated features within
the broader wave system, offering a means to depict phenomena
such as wave interactions, energy concentration, and localized dis-
turbances. To search for quadratic function solutions to the

(2þ 1)-dimensional generalized variable-coefficient Hirota–
Satsuma–Ito equations in Eq. (7), we begin with

f ¼ g2 þ h2 þ a7ðtÞ; g ¼ a1ðtÞx þ a2ðtÞy þ a3ðtÞ;
h ¼ a4ðtÞx þ a5ðtÞy þ a6ðtÞ;

(19)

where aiðtÞ; 1 � i � 7 are real parameters to be determined. A direct
Maple symbolic computation with f generates the following set of con-
straining equations for the parameters:

a1ðtÞ ¼ a1ðtÞ; a2ðtÞ ¼ c3a1ðtÞ; a3ðtÞ ¼ a3ðtÞ;

a4ðtÞ ¼ c4a1ðtÞ; a5ðtÞ ¼ � 2c3c4a1ðtÞ
c24 � 1

;

a6ðtÞ ¼ c2a1ðtÞ; a7ðtÞ ¼ c1a1ðtÞ2;

aðtÞ ¼ � c1c3c24
3c44 � 3

; cðtÞ ¼
c3
da3ðtÞ
dt

a1ðtÞ � da1ðtÞ
dt

a3ðtÞ
ðc24 � 1Þa1ðtÞ2

;

(20)

where ðc24 � 1Þa1ðtÞ2 6¼ 0, c1, c2, c3 and c4 are constants, c1 > 0.
This set leads to a class of positive quadratic function solutions to

the (2þ 1)-dimensional generalized variable-coefficient Hirota–
Satsuma–Ito equations in Eq. (6),

FIG. 3. Two-soliton solutions via Eq. (18) with a(t)¼ 1, cðtÞ ¼ �2t; p1 ¼ 2; p2 ¼ 2; q1 ¼ 1; q2 ¼ 2; X1ðtÞ ¼ 4
7 t

2; X2ðtÞ ¼ 2
3 t

2. (a) x¼ 1, (b) t¼ 1, (c) y¼ 1, and (d)–(f)
are the density figures of (a)–(c).
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f ¼ ða1ðtÞx þ c3a1ðtÞy þ a3ðtÞÞ2

þ ðc4a1ðtÞx � 2c3c4a1ðtÞ
c24 � 1

y þ c2a1ðtÞÞ2 þ c1a1ðtÞ2; (21)

and the resulting class of quadratic function solutions, in turn, yields a
class of lump solutions to the (2þ 1)-dimensional generalized
variable-coefficient Hirota–Satsuma–Ito equations in Eq. (2) through
the transformation u ¼ 2½ln f ðx; y; tÞ�xx,

FIG. 4. Two-soliton solutions via Eq. (18) with a(t)¼ 1, cðtÞ ¼ �2t; p1 ¼ 2; p2 ¼ 2; q1 ¼ 1; q2 ¼ 2; X1ðtÞ ¼ 4
7 t

2; X2ðtÞ ¼ 2
3 t

2. (a) t¼ 1, (b) t¼ 4, (c) t¼ 8, and (d)–(f)
are the density figures of (a)–(c).

FIG. 5. Spatial structure of the two-soliton solution with (a) t¼ 1, (b) t¼ 4, and (c) t¼ 8.
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u ¼ 4ða1ðtÞ þ a4ðtÞÞf � 8ða1ðtÞg þ a4ðtÞhÞ2
f 2

; (22)

where the function f is defined by Eq. (19), and the functions of g and
h are given as follows:

g ¼ a1ðtÞx þ c3a1ðtÞy þ a3ðtÞ; (23)

h ¼ c4a1ðtÞx � 2c3c4a1ðtÞ
c24 � 1

y þ c2a1ðtÞ: (24)

In this set of lump solutions, all two involved parameters of
a1ðtÞ and a3ðtÞ are arbitrary provided that the solutions are well
defined, i.e., if the determinant condition ðc24 � 1Þa1ðtÞ2 6¼ 0 is satis-
fied. That determinant condition precisely means that two directions
(a1ðtÞ; a2ðtÞ) and (a4ðtÞ; a5ðtÞ) in the (x, y)-plane are not parallel.

Note that the solutions in Eq. (21) are analytic in the (x, y)-plane
if and only if the parameter a7ðtÞ > 0. The analyticity of the solutions
in Eq. (21) is guaranteed if ðc24 � 1Þa1ðtÞ2 6¼ 0 and c1> 0 hold.

FIG. 6. Lump solutions via Eq. (21) with a1ðtÞ ¼ t2; a2ðtÞ ¼ 2t2; a3ðtÞ ¼ t2; a4ðtÞ ¼ t2; a5ðtÞ ¼ 0; a6ðtÞ ¼ � 3
2 lnðtÞt2 � 1

8 þ t2; a7ðtÞ ¼ 4t2. (a) t¼ 1, (b) t¼ 2, (c) t¼ 5,
and (d)–(f) are the contour figures of (a)–(c), and (g)–(i) are the 2D-plots for x¼ 0 of (a)–(c).
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The dynamics of the solution u show that one lump wave is initially
moving. Its amplitude and velocity are dependent on the values of the
variable coefficients. The plots of function u at t¼ 1, 2, and 5 are
shown in Fig. 6.

The coordinates of the center points are obtained by means of the
extreme points found by Maple. In general, the maximum point coor-
dinates can be used to study and represent the properties of lump
wave in the process of motion, such as the change of velocity and
waveform. After software calculation, the extreme values and extreme
points are obtained as follows:

ðumax; uminÞ ¼ 20t4;� 5
2
t4

� �
; (25)

ðx; yÞ ¼
�
5
6
;� 5t2 þ 6lnðtÞ

12t2

�
;

ðx; yÞ ¼
� 5t2 � 6

ffiffiffiffiffi
15

p

5
6t2

;� 5t2 þ 6lnðtÞ
12t2

�
;

ðx; yÞ ¼
 
5t2 � 6

ffiffiffiffiffi
15

p

5
6t2

;� 5t2 þ 6lnðtÞ
12t2

!
:

(26)

The peak height of lump wave is represented by umax, and the
trough height of lump wave is represented by umin. From the above-
mentioned expression, it can be concluded that the amplitude of u and
the coordinates of extreme value points are related to t, which means
that different shapes of the lump wave can be obtained when different
values are assigned to t.

From the coordinates of maximum points, the lump wave motion
in the x and y axis directions is considered as x ¼ xðtÞ; y ¼ yðtÞ. The
velocity of lump wave at specific time are xt ¼ 0; yt ¼ � 10tþ6

t
12t2

þ 5t2þ6lnðtÞ
6t3 . At the time t, lump wave moves along the y axis with the

velocity of yt, which is reflected in the image that lump wave always
moves along the y axis. The minimum velocity of the lump wave is

xt ¼ 5
3t �

5t2þ6
ffiffiffi
15

p
5

3t3 ; yt ¼ � 10tþ6
t

12t2 þ 5t2þ6lnðtÞ
6t3 .

By comparing the velocity of the maximum lump wave with the
velocity of the minimum lump wave, it is found that the motion veloc-
ity is different. Therefore, it can be concluded that the moving speed of
the lump wave is related to the variable coefficient, and as t¼ 1, t¼ 2,
t¼ 5, the amplitude of the lump wave increases. The lump solutions
play a crucial role in understanding the impact of varying coefficients
on the formation and behavior of localized structures within the equa-
tions, shedding light on how the coefficient variations affect the
dynamics and stability of such solutions.

V. CONCLUSIONS

Investigated in this paper is a (2þ 1)-dimensional generalized
variable-coefficient Hirota–Satsuma–Ito equations, i.e., Eq. (2). We
have systematically checked its Painlev�e-integrability by performing
the Painlev�e test. It has been shown that Eq. (2) is Painlev�e-integrable
when a(t) and b(t) reduce into constants are satisfied. By virtue of the
Hirota bilinear method, one-soliton solutions [Eq. (14)], two-soliton
solutions [Eq. (18)], and lump solutions [Eq. (21)] have been con-
structed. The variable-coefficient Hirota–Satsuma–Ito equations intro-
duce several innovations in fluid physics compared to its constant
coefficient counterpart. It offers improved simulation of real fluid

systems by accommodating their time and space-varying properties,
providing a broader applicability that explains a wider range of fluid
phenomena, and better representation of nonlinear effects. As a result,
these equations provide a more accurate and flexible framework for
understanding and modeling intricate fluid dynamics, thereby foster-
ing innovation in the field of fluid physics. Due to the diverse forms of
the variable-coefficient parameters, the resulting solutions are naturally
different when various values are assigned, which can produce more
intriguing and peculiar interaction phenomena. It is hoped that the
exploration of the variable-coefficient equations presented in this
paper can be used as a basis for the subsequent study of some complex
physical phenomena.
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