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a b s t r a c t

Associated with the prime number p = 3, the generalized bilinear operators are adopted
to yield an extended Kadomtsev-Petviashvili-like (eKP-like) equation. With symbolic
computation, eighteen classes of rational solutions to the resulting eKP-like equation are
generated from a search for polynomial solutions to the corresponding generalized bilinear
equation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, rogue waves have become the subject of intensive investigations in oceanography [1] and nonlinear
optics [2]. Actually, rogue waves belong to a kind of rational solutions [3,4], and it is of interest and importance for us
to discuss about rational solutions to a new kind of nonlinear differential equations associated with generalized bilinear
equations [5,6]. By involving different prime numbers, Hirota bilinear equations have been generalized to generate diverse
nonlinear differential equations possessing potential applications [5,6].

For example, via the dependent variable transformation u(x, t) = 2

ln f (x, t)


xx, the Korteweg–de Vries (KdV) equation

ut + 6 u ux + uxxx = 0, (1)

enjoys the bilinear representation in the sense of Hirota as

(DxDt + D4
x)f · f = 0, (2)

where the Hirota derivatives Dx, Dt and D4
x [7] are defined by
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Based on a prime number p, the generalized differential operators have been introduced in [5] as:
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where

αs
p = (−1)rp(s), s = rp(s) mod p. (3)

Under the rule given by Eq. (3), we find that if p = 2k (k ∈ N), all bilinear differential operators defined above turn out to
be the Hirota bilinear operators, since D2k,x = Dx [7]. If p = 3, we particularly have

α3 = −1, α2
3 = α3

3 = 1, α4
3 = −1, α5

3 = α6
3 = 1, . . . .

We can correspondingly extend the Hirota bilinear equation (2), with p = 3, into

(D3,xD3,t + D4
3,x)f · f = 2 fxt f − 2fx ft + 6 f 2xx = 0, (4)

which is a generalized bilinear KdV-like equation [5].
In this paper, we would like to introduce an extended Kadomtsev-Petviashvili-like (eKP-like) equation by using a

generalized bilinear differential equation of KP type. Based on polynomial solutions to the associated generalized bilinear
equation, we will construct eighteen classes of rational solutions to the presented eKP-like equation with symbolic
computation [8], and some of the solutions will be described graphically. Finally, a few concluding remarks will be given at
the end of the paper.

2. An extended Kadomtsev-Petviashvili-like equation

As a (2 + 1)-dimensional generalization of KdV Eq. (1), the well-known Kadomtsev-Petviashvili equation reads [9,7]
ut + 6 u ux + uxxx


x + uyy = 0, (5)

which enjoys the bilinear representation in the sense of Hirota as

(DxDt + D4
x + D2

y)f · f = 0 (6)

through the transformation u = 2

ln f (x, y, t)


xx.

Based on the theory of generalized differential operators introduced in [5], it is natural to extend Eq. (6) into

(D3,xD3,t + D4
3,x + D2

3,y + D2
3,z)f · f = 2fxt f − 2fxft + 6f 2xx + 2fyyf − 2f 2y + 2fzz f − 2f 2z = 0, (7)

which is a generalized bilinear equation. Bell polynomial theories (see, e.g., [5,10]) motivate us to consider a dependent
variable transformation

u = 2

ln f (x, y, z, t)


x
= 2

fx(x, y, z, t)
f (x, y, z, t)

, (8)

and find that
(D3,xD3,t + D4

3,x + D2
3,y + D2

3,z)f · f

f 2


x

=


ut +

3
2
u2
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3
8
u4

+
3
2
u2ux


x

+ uyy + uzz . (9)

Then Equality (9) shows that we can treat Eq. (7) as a generalized bilinear representation of the following eKP-like equation
ut +

3
2
u2
x +

3
8
u4

+
3
2
u2ux


x

+ uyy + uzz = 0, (10)

which is a (3 + 1)-dimensional model.
Attention should be emphasized on (A) the eKP-like equation (10) possesses more terms and higher nonlinearity than

the standard KP Eq. (5), (B) if f solves Eq. (7), then u = 2

ln f (x, y, z, t)


x
will present a solution to the eKP-like Eq. (10),

and (C) the Transformation (8) provides us with a formula of rational solutions.

3. Rational solutions by Maple

Within the framework of investigation on resonant solutions to generalized bilinear equations, we find that Eq. (10) does
not satisfy the conditions given in Refs. [5,11] for resonant solutions. In this paper, we will discuss rational solutions to the
eKP-like Eq. (10) based on polynomial solutions to the generalized bilinear equation (7).
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We will use the computer algebra system Maple to search for polynomial solutions to the generalized bilinear equation
(7). With symbolic computation, a direct substitution of

f =

4
i=0

3
j=0

3
k=0

5
l=0

ci,j,k,lxiyjzkt l

into Eq. (7) solves the polynomial solutions. In turn, the polynomial solutions lead to eighteen classes of rational solutions
to the presented eKP-like Eq. (10) through the Transformation (8).

The first class of rational solutions to Eq. (10) reads

u1 =
2 c1,1,0,2

x c1,1,0,2 + c0,1,0,2
. (11)

The second class of rational solutions to Eq. (10) reads

u2 =
2 c21,0,0,0

x c21,0,0,0 − t c20,1,0,0 + εy c1,0,0,0c0,1,0,0 + εc1,0,0,0c0,0,0,0
(12)

with ε = ±1.
The third class of rational solutions to Eq. (10) reads

u3 =
2 c20,1,1,1

x c20,1,1,1 − t c20,1,0,2 + εz c0,1,1,1c0,1,0,2 + εc0,1,0,1c0,1,0,2
(13)

with ε = ±1.
The fourth class of rational solutions to Eq. (10) reads

u4 =
2 c21,0,0,0

x c21,0,0,0 − t (c20,0,1,0 + c20,1,0,0) + y c0,1,0,0c1,0,0,0 + z c0,0,1,0c1,0,0,0 + c0,0,0,0c1,0,0,0
. (14)

The fifth class of rational solutions to Eq. (10) reads

u5 =
2p
q

(15)

with

p = t c30,0,0,2c2,0,0,1c0,1,0,1 − 2x c30,1,0,1c0,0,0,2c2,0,0,1 + y c20,0,0,2c
2
0,1,0,1c2,0,0,1 + c20,0,0,2c0,0,0,1c2,0,0,1c0,1,0,1

− c30,0,0,2c0,1,0,0c2,0,0,1 + c50,1,0,1 − 12c30,1,0,1c
2
2,0,0,1,

q = t x c30,0,0,2c2,0,0,1c0,1,0,1 − x2 c30,1,0,1c0,0,0,2c2,0,0,1 + x y c20,0,0,2c
2
0,1,0,1c2,0,0,1 + x (c20,0,0,2c0,0,0,1c2,0,0,1c0,1,0,1

− c30,0,0,2c0,1,0,0c2,0,0,1 + c50,1,0,1 − 12c30,1,0,1c
2
2,0,0,1) − t c30,1,0,1c

2
0,0,0,2 − y c40,1,0,1c0,0,0,2

− c30,1,0,1c0,0,0,2c0,0,0,1 + c20,0,0,2c
2
0,1,0,1c0,1,0,0.

The sixth class of rational solutions to Eq. (10) reads

u6 =
2p
q

(16)

with

p = c21,0,0,3(t c
2
1,0,0,3c1,1,0,2 − 2x c31,1,0,2 + y c21,1,0,2c1,0,0,3 + c1,0,0,2c1,0,0,3c1,1,0,2 − c21,0,0,3c1,1,0,1),

q = t x c41,0,0,3c1,1,0,2 − x2 c31,1,0,2c
2
1,0,0,3 + x y c31,0,0,3c

2
1,1,0,2 + x c21,0,0,3(c1,0,0,2c1,0,0,3c1,1,0,2 − c21,0,0,3c1,1,0,1)

+ t c31,0,0,3c0,0,0,3c1,1,0,2 + y c21,0,0,3c
2
1,1,0,2c0,0,0,3 + c31,1,0,2c

2
0,0,0,3 + c21,0,0,3c0,0,0,3c1,0,0,2c1,1,0,2

− c31,0,0,3c0,0,0,3c1,1,0,1 − 12c51,1,0,2.

The seventh class of rational solutions to Eq. (10) reads

u7 =
2p
q

(17)
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with

p = c0,0,1,3(108 x2 c23,0,0,2 − c20,0,1,2),

q = 36 x3 c23,0,0,2c0,0,1,3 − x c20,0,1,2c0,0,1,3 + 1296 t c23,0,0,2c0,0,1,3 + 36 z c0,0,1,2c0,0,1,3c3,0,0,2
+ 36 c3,0,0,2(c0,0,0,3c0,0,1,2 − 36 c0,0,1,2c3,0,0,2).

The eighth class of rational solutions to Eq. (10) reads

u8 =
6p
q

(18)

with

p = c0,0,1,2(x2 c20,0,0,3 + 24x c0,0,0,3c2,0,0,2 − 12c20,0,1,2 − 12c20,1,0,2 + 144c22,0,0,2),

q = x3 c20,0,0,3c0,0,1,2 + 36x2 c0,0,0,3c0,0,1,2c2,0,0,2 − 36x c0,0,1,2(c20,0,1,2 + c20,1,0,2 − 12c22,0,0,2) + 36 t c20,0,0,3c0,0,1,2
+ 36 c0,0,0,3c0,0,1,2(y c0,1,0,2 + z c0,0,1,2) + 36 c0,0,0,3(c0,0,0,2c0,0,1,2 − c0,0,0,3c0,0,1,1).

The ninth class of rational solutions to Eq. (10) reads

u9 =
2p
q

(19)

with

p = c21,0,0,1

t c21,0,0,1 − 2x (c21,0,1,0 + c21,1,0,0) + c1,0,0,1(y c1,1,0,0 + z c1,0,1,0) + c1,0,0,0c1,0,0,1


,

q = t x c41,0,0,1 − x2 c21,0,0,1(c
2
1,0,1,0 + c21,1,0,0) + c31,0,0,1(x y c1,1,0,0 + x z c1,0,1,0) + x c31,0,0,1c1,0,0,0

− 12(c21,0,1,0 + c21,1,0,0)
2.

The tenth class of rational solutions to Eq. (10) reads

u10 =
2p
q

(20)

with

p = (c21,0,1,1 + c21,1,0,1)

t c1,0,1,1(c21,0,1,1 + c21,1,0,1) − c1,0,1,1c2,0,0,1(2x c2,0,0,1 + y c1,1,0,1 + z c1,0,1,1 + c1,0,0,1)

− c1,0,1,0(c21,0,1,1 + c21,1,0,1)

,

q = t x c1,0,1,1(c21,0,1,1 + c21,1,0,1)
2
− c2,0,0,1c1,0,1,1(c21,0,1,1 + c21,1,0,1)(x

2 c2,0,0,1 + xy c1,1,0,1 + xz c1,0,1,1)

− x (c21,0,1,1 + c21,1,0,1)(c1,0,0,1c1,0,1,1c2,0,0,1 + c21,0,1,1c1,0,1,0 + c21,1,0,1c1,0,1,0) − 12c42,0,0,1c1,0,1,1.

The eleventh class of rational solutions to Eq. (10) reads

u11 =
2p
q

(21)

with

p = c2,0,0,1c0,0,1,1(t c30,0,0,2 − 2x c20,0,1,1c0,0,0,2 + z c20,0,0,2c0,0,1,1 + c20,0,0,2c0,0,0,1 − 12c20,0,1,1c2,0,0,1)

− c30,0,0,2c0,0,1,0c2,0,0,1 + c50,0,1,1,

q = c0,0,0,2c2,0,0,1c0,0,1,1(t x c20,0,0,2 − x2 c20,0,1,1 + x z c0,0,0,2c0,0,1,1) − c0,0,0,2c30,0,1,1(t c0,0,0,2 + z c0,0,1,1)

+ x (c20,0,0,2c0,0,0,1c2,0,0,1c0,0,1,1 − c30,0,0,2c2,0,0,1c0,0,1,0 + c50,0,1,1 − 12c30,0,1,1c
2
2,0,0,1)

+ c20,0,1,1c0,0,0,2(c0,0,0,2c0,0,1,0 − c0,0,0,1c0,0,1,1).

The twelfth class of rational solutions to Eq. (10) reads

u12 =
2p
q

(22)

with

p = c30,0,0,3c1,0,0,3(t c
2
0,0,0,3 − 2x c20,0,1,2 + z c0,0,0,3c0,0,1,2) − c20,0,1,2(c

4
0,0,0,3 − 12c21,0,0,3c

2
0,0,1,2),

q = c30,0,0,3c1,0,0,3(t x c
2
0,0,0,3 − x2 c20,0,1,2 + x z c0,0,0,3c0,0,1,2) − x c20,0,1,2(c

4
0,0,0,3 − 12c21,0,0,3c

2
0,0,1,2)

+ c50,0,0,3(t c0,0,0,3 + z c0,0,1,2).
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The thirteenth class of rational solutions to Eq. (10) reads

u13 =
2p
q

(23)

with

p = c0,1,0,1c1,0,1,0(c20,0,1,0 + c20,1,0,0)

t c21,0,1,0(c

2
0,0,1,0 + c20,1,0,0) − c2,0,0,0c0,0,1,0(2x c0,0,1,0c2,0,0,0

+ y c0,1,0,0c1,0,1,0 + z c0,0,1,0c1,0,1,0)

− c21,0,1,0c0,0,0,1c2,0,0,0c0,0,1,0c0,1,0,0(c

2
0,0,1,0 + c20,1,0,0)

− c30,0,1,0c
2
2,0,0,0c0,1,0,1(c

2
0,0,1,0 + c20,1,0,0 + 12c22,0,0,0) − c31,0,1,0c0,1,0,0(c

2
0,0,1,0 + c20,1,0,0)

2,

q = c0,1,0,1c1,0,1,0(c20,0,1,0 + c20,1,0,0)

t x c21,0,1,0(c

2
0,0,1,0 + c20,1,0,0) − c2,0,0,0c0,0,1,0(x2 c0,0,1,0c2,0,0,0 + x y c0,1,0,0c1,0,1,0

+ x z c0,0,1,0c1,0,1,0 + y c0,0,1,0c0,1,0,0 + z c20,0,1,0)

− x


c21,0,1,0c0,0,0,1c2,0,0,0c0,0,1,0c0,1,0,0(c

2
0,0,1,0 + c20,1,0,0)

+ c30,0,1,0c
2
2,0,0,0c0,1,0,1(c

2
0,0,1,0 + c20,1,0,0 + 12c22,0,0,0) + c31,0,1,0c0,1,0,0(c

2
0,0,1,0 + c20,1,0,0)

2
− c0,0,1,0c0,1,0,0c1,0,1,0(c20,0,1,0 + c20,1,0,0)


c0,0,0,1c2,0,0,0c0,0,1,0 + c1,0,1,0(c20,0,1,0 + c20,1,0,0)


.

The fourteenth class of rational solutions to Eq. (10) reads

u14 =
2p
q

(24)

with

p = c20,0,0,2c0,1,0,1c1,1,0,1c0,0,1,1

t c20,0,0,2 − 2x (c20,0,1,1 + c20,1,0,1) + y c0,0,0,2c0,1,0,1 + z c0,0,1,1c0,0,0,2

+ c0,0,0,2c0,0,0,1

− c20,0,0,2c0,1,0,1(c

2
0,0,0,2c0,0,1,0c1,1,0,1 + c30,0,1,1c0,1,0,1 + c30,1,0,1c0,0,1,1)

+ 12c21,1,0,1c0,0,1,1(c
2
0,0,1,1 + c20,1,0,1)

2,

q = c20,0,0,2c0,1,0,1c1,1,0,1c0,0,1,1

x t c20,0,0,2 − x2 (c20,0,1,1 + c20,1,0,1) + x y c0,0,0,2c0,1,0,1 + x z c0,0,1,1c0,0,0,2


+ x c20,0,0,2c0,1,0,1(c0,0,0,2c0,0,0,1c0,0,1,1c1,1,0,1 − c20,0,0,2c0,0,1,0c1,1,0,1 − c30,0,1,1c0,1,0,1 − c30,1,0,1c0,0,1,1)

+ 12x c21,1,0,1c0,0,1,1(c
2
0,0,1,1 + c20,1,0,1)

2
+ c30,0,0,2c

2
0,1,0,1c0,0,1,1(t c0,0,0,2 + y c0,1,0,1 + z c0,0,1,1)

+ c30,0,0,2c
2
0,1,0,1(c0,0,1,1c0,0,0,1 − c0,0,0,2c0,0,1,0).

The fifteenth class of rational solutions to Eq. (10) reads

u15 =
2p
q

(25)

with

p = (c20,0,1,1 + c20,1,0,1)

t c31,0,1,1(c

2
0,0,1,1 + c20,1,0,1) − 2x c20,0,1,1c

2
2,0,0,1c1,0,1,1 − y c21,0,1,1c0,0,1,1c0,1,0,1c2,0,0,1

− z c20,0,1,1c
2
1,0,1,1c2,0,0,1


− c30,0,1,1c

2
2,0,0,1(c

2
0,0,1,1 + c20,1,0,1 − 12c22,0,0,1),

q = (c20,0,1,1 + c20,1,0,1)

t x c31,0,1,1(c

2
0,0,1,1 + c20,1,0,1) − x2 c20,0,1,1c

2
2,0,0,1c1,0,1,1 − x y c21,0,1,1c0,0,1,1c0,1,0,1c2,0,0,1

− x z c20,0,1,1c
2
1,0,1,1c2,0,0,1 + t c21,0,1,1c0,0,1,1(c

2
0,0,1,1 + c20,1,0,1) − y c20,0,1,1c0,1,0,1c1,0,1,1c2,0,0,1

− z c30,0,1,1c1,0,1,1c2,0,0,1

− x c30,0,1,1c

2
2,0,0,1(c

2
0,0,1,1 + c20,1,0,1 − 12c22,0,0,1).

The sixteenth class of rational solutions to Eq. (10) reads

u16 = −
2p
q

(26)

with

p = (c40,0,1,2c
2
2,0,0,1 + c60,1,1,1)


t (c40,0,1,2c

2
2,0,0,1 + c60,1,1,1) − c2,0,0,1c0,1,1,1c0,0,1,2(2x c2,0,0,1c0,1,1,1c0,0,1,2

− y c20,0,1,2c2,0,0,1 − z c30,1,1,1 + c1,0,0,1c0,1,1,1c0,0,1,2)

,

q = (c40,0,1,2c
2
2,0,0,1 + c60,1,1,1)


c20,1,1,1c0,0,1,2(t

2 c20,1,1,1c0,0,1,2 + t y c30,1,1,1 + t z c20,0,1,2c2,0,0,1)

+ c0,0,1,2c0,1,1,1c2,0,0,1(x2 c0,0,1,2c0,1,1,1c2,0,0,1 − x y c20,0,1,2c2,0,0,1 − x z c30,1,1,1 + y z c20,1,1,1c0,0,1,2

+ x c0,0,1,2c0,1,1,1c1,0,0,1 − y c20,0,1,2c1,0,0,1) − t c40,0,1,2c1,0,0,1c2,0,0,1 − t x (c40,0,1,2c
2
2,0,0,1 + c60,1,1,1)


+ 12c40,0,1,2c

4
0,1,1,1c

4
2,0,0,1.
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The seventeenth class of rational solutions to Eq. (10) reads

u17 = −
2p
q

(27)

with

p = c2,0,0,0(c40,0,1,1c
2
2,0,0,0 + c60,1,1,0)


t (c40,0,1,1c

2
2,0,0,0 + c60,1,1,0) − c2,0,0,0c0,0,1,1c0,1,1,0(2x c2,0,0,0c0,1,1,0c0,0,1,1

− ε y c20,0,1,1c2,0,0,0 − ε z c40,1,1,0 + c1,0,0,0c0,0,1,1c0,1,1,0)

,

q = (c40,0,1,1c
2
2,0,0,0 + c60,1,1,0)


c2,0,0,0c0,0,1,1c0,1,1,0(t2 c30,1,1,0c0,0,1,1 + ε t y c40,1,1,0 + ε t z c20,0,1,1c0,1,1,0c2,0,0,0

+ x2 c22,0,0,0c0,0,1,1c0,1,1,0 − ε x y c20,0,1,1c
2
2,0,0,0 − ε x z c30,1,1,0c2,0,0,0 + y z c20,1,1,0c0,0,1,1c2,0,0,0

− ε z c30,1,1,0c1,0,0,0) − t x c2,0,0,0(c40,0,1,2c
2
2,0,0,1 + c60,1,1,1) − t c60,1,1,0c1,0,0,0 + x c20,0,1,1c

2
0,1,1,0c

2
2,0,0,0c1,0,0,0


+ 12c52,0,0,0c

4
0,0,1,1c

4
0,1,1,0,

ε = ±1.

The eighteenth class of rational solutions to Eq. (10) reads

u18 = −
2p
q

(28)

with

p = (c40,0,1,1c
2
2,0,0,0 + c60,1,1,0)


t c0,1,0,0(c40,0,1,1c

2
2,0,0,0 + c60,1,1,0) − 2x c22,0,0,0c

2
0,0,1,1c0,1,0,0 + ε y c22,0,0,0c0,1,1,0c0,1,0,0

+ ε z c40,1,1,0c0,0,1,1c0,1,0,0c2,0,0,0 + ε(c30,0,1,1c
2
2,0,0,0c0,1,1,0c0,0,0,0 + c30,1,1,0c

2
0,1,0,0c0,0,1,1c2,0,0,0)


− 12c52,0,0,0c

5
0,0,1,1c

3
0,1,1,0,

q = (c40,0,1,1c
2
2,0,0,0 + c60,1,1,0)


t2 c40,1,1,0c

2
0,0,1,1c0,1,0,0 − t x c0,1,0,0(c40,0,1,1c

2
2,0,0,0 + c60,1,1,0) + ε t y c50,1,1,0c0,0,1,1c0,1,0,0

+ ε t z c30,0,1,1c
2
0,1,1,0c0,1,0,0c2,0,0,0 + x2 c22,0,0,0c

2
0,0,1,1c

2
0,1,1,0c0,1,0,0 − ε x y c30,0,1,1c

2
2,0,0,0c0,1,0,0c0,1,1,0

− ε x z c40,1,1,0c2,0,0,0c0,1,0,0c0,0,1,1 + y z c30,1,1,0c
2
0,0,1,1c2,0,0,0c0,1,0,0 + y c20,0,1,1c

2
0,1,0,0c

2
0,1,1,0c2,0,0,0

+ c20,0,1,1c
2
0,1,1,0c2,0,0,0c0,1,0,0c0,0,0,0


+ ε t


(c40,0,1,1c

2
2,0,0,0 + c60,1,1,0)(c

5
0,1,1,0c0,0,1,1c0,0,0,0

+ c30,0,1,1c
2
0,1,0,0c0,1,1,0c2,0,0,0) − 12c70,1,1,0c

3
0,0,1,1c

3
2,0,0,0


− ε x


(c40,0,1,1c

2
2,0,0,0 + c60,1,1,0)

× (c30,0,1,1c
2
2,0,0,0c0,1,1,0c0,0,0,0 + c30,1,1,0c

2
0,1,0,0c0,0,1,1c2,0,0,0) − 12c52,0,0,0c

5
0,0,1,1c

3
0,1,1,0


,

ε = ±1.

Hereby, we give some figures to describe the rational solutions graphically. Two special cases of rational solutions (16)
and (17) with

ci,j,k,l = 1 + i2 + j2 + k2 + l2

turn out, respectively, to be

u =
204974t − 166012x + 130438y

195657t − 41503x2 + 65219xy − 2662x + 59290y − 169804
, (29)

and

u =
12936x2 − 22

77616t + 2156x3 − 11x + 924z + 41496
. (30)

4. Concluding remarks

With the generalized bilinear operators based on a prime number p = 3, an extended Kadomtsev-Petviashvili-like
equation was proposed (see Eq. (10)), which possesses more terms and higher nonlinearity than the standard KP Eq. (5).
Eighteen classes of rational solutions were constructed based on polynomial solutions to the generalized bilinear equation
(7) by using symbolic computation softwareMaple. Note that the rational solutions (11), (12), (15) and (16) are independent
of the variable z, while the others depend on z. Finally, we give some figures to describe the shape and surface for the rational
solutions (29) and (30) as seen in Figs. 1 and 2, respectively. We hope our work in this paper contributes to the study of
multi-dimensional and higher order rogue waves.
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Fig. 1. Shape and surface for rational solution (29) with t = 0: (a) 3d plot and (b) density plot.
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Fig. 2. Shape and surface for rational solution (30) with t = 0: (a) 3d plot and (b) density plot.
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