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a b s t r a c t

We directly construct a bilinear Bäcklund transformation (BT) of a (2+1)-
dimensional Korteweg–de Vries-like model. The construction is based on a so-
called quadrilinear representation. The resulting bilinear BT is in accordance with
the auxiliary-independent-variable-involved one derived with the Bell-polynomial
scheme. Moreover, by applying the gauge transformation and the Hirota perturba-
tion technique, multisoliton solutions are iteratively computed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of nonlinear partial differential equations of mathematical physics, the Bäcklund transforma-
tion (BT) provides a means to construct new solutions from known ones [1–20]. BTs can connect solutions
of different equations or the same equation [6,11]. In the latter case, BTs are generally called auto-BTs. In
soliton theory, BTs are also closely related to integrable properties such as Lax pairs, nonlinear superposition
formulas, and infinitely many conservation laws [3–5,12].

Among others, the Hirota bilinear method [2,3,5,12,13,16] is a powerful approach to solving soliton
equations and deriving bilinear BTs. Some generalization of bilinear forms has been given, including a natural
extension: multilinear forms [17]. A class of generalized Hirota derivatives has been introduced by assigning
specific signs to derivatives [18], and as a result, some generalized nonlinear differential equations have been
built and studied, for which the linear superposition principle [19] can be applied to the construction of
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sub-spaces of solutions [20]. For example, the Korteweg–de Vries (KdV) model [3,4,11],

ut + 6uux + uxxx = 0 (1)

enjoys the bilinear representation, via the dependent variable transformation u(x, t) = 2

ln f(x, t)


xx

, as
follows

(DxDt +D4
x)f · f = 0, (2)

where the Hirota derivatives Dx, Dt and D4
x [3] are bilinear operators defined by

DαxD
β
yD
γ
t (f · g) =

 ∂
∂x
− ∂
∂x′

α ∂
∂y
− ∂
∂y′

β ∂
∂t
− ∂
∂t′

γ
f(x, y, t)g(x′, y′, t′)


x′=x,y′=y,t′=t.

Based on the bilinear Eq. (2), it is easy to derive the following bilinear BT for the KdV model [3],

(D2
x + λ)g · f = 0, (3a)

(D3
x +Dt − 3λDx)g · f = 0, (3b)

where λ is an arbitrary constant, and g = g(x, t) is another solution of Eq. (2).
Generally speaking, there exist some difficulties in applying the Hirota bilinear method to construct bi-

linear BTs for nonlinear equations. In some cases, employing the Bell-polynomial technique and introducing
the auxiliary independent variable(s) are helpful [7,9,10].

The following (2+1)-dimensional KdV-like model,

ut + 6uux + uxxx + 4uuy + uxxy + 2ux

uy dx = 0,

which is firstly proposed with the Lax pair generating technique [14], can be converted into

ut + 6uux + uxxx + 4uuy + uxxy + 2v ux = 0, (4)

via uy = vx. The auxiliary-independent-variable-involved bilinear form of Eq. (4) has been derived with the
Bell-polynomial scheme [15]:

(D4
x −mDxDs)τ · τ = 0, (5a)

(DxDt + 2
3 D

3
xDy + m3 DyDs +mDxDs)τ · τ = 0, (5b)

where u = 2

ln τ(x, y, t)


xx

, v = 2

ln τ(x, y, t)


xy

, s is an auxiliary independent variable, while m ̸= 0 is
an arbitrary constant. Through symbolic computation, the auxiliary-independent-variable-involved bilinear
BT, with τ ′ = τ ′(x, y, t) being another solution of Eq. (5), can be determined by [15]:

D2
x − λDx − k


τ ′ · τ = 0, (6a)

mDs −D3
x − 3 kDx


τ ′ · τ = 0, (6b)

Dt +D2
xDy +D3

x − λDxDy + (λ2 + 3 k)Dy + 3 kDx − ν(y, t)

τ ′ · τ = 0, (6c)

where λ and k are two arbitrary constants and ν(y, t) is an arbitrary function.
In this Letter, without employing the Bell-polynomial technique and introducing the auxiliary independent

variable, we will directly construct a bilinear BT for Eq. (4). We will firstly give a so-called quadrilinear
representation in Section 2, and directly derive a bilinear BT in Section 3. In Section 4, we will apply a gauge
transformation (GT) and the Hirota perturbation technique to compute multisoliton solutions iteratively.
Section 5 will be our concluding remarks.
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2. Quadrilinear representation

Substitution of the dependent variable transformation, u = 2

ln τ(x, y, t)


xx

and v = 2

ln τ(x, y, t)


xy

,
into Eq. (4) generates

ut + 6uux + uxxx + 4uuy + uxxy + 2v ux =


[τ2(DxDtτ · τ) + τ2(D4
xτ · τ)

+ (D2
xτ · τ)(DxDyτ · τ)]/τ4


x

+


[τ2(D4
xτ · τ)− 2(D2

xτ · τ)2]/τ4

y

= 1
τ4


Dx


DxDt +D4

x + 2
3D

3
xDy

τ · τ

· τ2 + 1

3Dy

D4
xτ · τ


· τ2


= 0.

Hereby, we can take

Dx


DxDt +D4

x + 2
3D

3
xDy

τ · τ

· τ2 + 1

3Dy

D4
xτ · τ


· τ2 = 0 (7)

as a quadrilinear representation of Eq. (4). If we introduce the auxiliary independent variable s via
(D4
x−mDxDs)τ ·τ = 0, then the auxiliary-independent-variable-involved bilinear form (5) can be decoupled

from Eq. (7). In the following, starting from Eq. (7), we will directly construct a bilinear BT of Eq. (4) without
any decoupling.

3. Bilinear BT

Assuming u′(x, y, t) = 2

ln τ ′(x, y, t)


xx

and v′(x, y, t) = 2

ln τ ′(x, y, t)


xy

to be another solution of Eq.
(4), we consider

0 = P ≡ τ
′4

Dx


DxDt +D4

x + 2
3D

3
xDy

τ · τ

· τ2 + 1

3Dy

D4
xτ · τ


· τ2


− τ4

Dx


DxDt +D4

x + 2
3D

3
xDy

τ ′ · τ ′


· τ
′2 + 1

3Dy

D4
xτ
′ · τ ′

· τ
′2


= (τ
′2)2

Dx


DxDt +D4

x + 2
3D

3
xDy

τ · τ

· τ2


+ (τ
′2)2
1

3Dy

D4
xτ · τ


· τ2


− (τ2)2

Dx


DxDt +D4

x + 2
3D

3
xDy

τ ′ · τ ′


· τ
′2

− (τ2)2

1
3Dy

D4
xτ
′ · τ ′

· τ
′2


= Dx

τ
′2DxDt +D4

x + 2
3D

3
xDy

τ · τ − τ2


DxDt +D4

x + 2
3D

3
xDy

τ ′ · τ ′


· τ2τ

′2

+ 1
3Dy

τ
′2D4

xτ · τ

− τ2

D4
xτ
′ · τ ′

· τ2τ

′2

= Dx

2Dt

Dxτ · τ ′


·

ττ ′


+ 2Dx

D3
xτ · τ ′


·

ττ ′

− 6Dx


D2
xτ · τ ′


·

Dxτ · τ ′


+ 2Dx


D2
xDyτ · τ ′


·

ττ ′

− 2Dx


D2
xτ · τ ′


·

Dyτ · τ ′


− 2

3Dy

D3
xτ · τ ′


·

ττ ′

− 2Dy


D2
xτ · τ ′


·

Dxτ · τ ′


· τ2τ

′2

− 2
3Dy

Dx

D3
xτ · τ ′


·

ττ ′

− 3Dx


D2
xτ · τ ′


·

Dxτ · τ ′


· τ2τ

′2. (8)

At this stage, if we take

D2
x(τ · τ ′) = λDx(τ · τ ′) + k ττ ′ (9a)

with λ and k as two arbitrary constants, Eq. (8) can be simplified into

P = Dx

Dx


2Dt + 2D3

x + 2D2
xDy + 6kDx − 2λDxDy + (6k + 2λ2)Dy


τ · τ ′

·

ττ ′

· τ2τ

′2,
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from which, we can assume
Dt +D3

x +D2
xDy + 3kDx − λDxDy + (3k + λ2)Dy


τ · τ ′ = ν(y, t)ττ ′, (9b)

where ν(y, t) is an arbitrary function, and then, the set of Eqs. (9) constitutes a bilinear BT for Eq. (4). We
remark that Eqs. (9) are as the same as Eqs. (6a) and (6c).

Solving Eqs. (9) with τ = 1 (corresponding to the vacuum solution u = 0), λ = 0 and ν(y, t) = 0, we can
obtain a solitary wave solution of Eq. (4) as follows:

u = 2

ln τ ′(x, y, t)


xx

= 2 k sech2
√
k x+ α y − 4 k (

√
k + α) t+ β


,

where α, β and k > 0 are arbitrary constants. Hereby, the existence of the above new solution u shows that
the BT, Eqs. (9), is powerful in solving Eq. (4). Based on the BT, Eqs. (9), multisoliton solutions can be
constructed iteratively.

4. Gauge transformation and multisoliton solutions

Noticing the arbitrariness of λ, k and ν(y, t) in the BT, Eqs. (9), we apply the following GT to Eqs. (9):

τ −→ eξτ, τ ′ −→ eητ ′, ξ = ω1 t+m1 x+ n1 y + ξ(0), η = σ1 t+ l1 x+ p1 y + η(0),

where ω1, m1, n1, ξ(0), σ1, l1, p1 and η(0) are all arbitrary constants. With symbolic computation, another
form of the bilinear BT (9) can be given by

(D2
x + 2κDx)τ · τ ′ = 0, (10a)

(Dt +D3
x +D2

xDy + 2κDxDy + 4κ2Dy)τ · τ ′ = 0, (10b)

upon taking
k = (m1 − l1)2,
ν(y, t) = (m1 − l1)2(n1 − p1) + 3k(m1 − l1)− λ(m1 − l1)(n1 − p1) + (3k + λ2)(n1 − p1),

setting λ = 0 and denoting m1 − l1 = κ.
Substituting the following expansions with a formal parameter ϵ

τ = 1 + ϵτ (1) + ϵ2τ (2) + ϵ3τ (3) + · · · ,
τ ′ = 1 + ϵ τ

′(1) + ϵ2τ
′(2) + ϵ3τ

′(3) + · · · ,

into Eqs. (10), and comparing the like powers of the coefficients of ϵ, we can derive multisoliton solutions of
Eq. (4) as follows.
• One-soliton solution: Taking τ ′ = 1 and κ = κ1 ̸= 0, and solving Eqs. (10), we can obtain the one-soliton

solution:

u = 2

ln(1 + eξ1)


xx

= 2κ21 sech2
ξ1

2


,

where ξ1 = −2κ1x+ µ1y + (8κ31 − 4κ21µ1)t+ ϕ1, while κ1, µ1 and ϕ1 are all arbitrary constants.
• Two-soliton solution: Setting κ = κ2 ̸= 0 and τ ′ = 1 + eξ1 corresponding to the one-soliton solution, we

can solve Eqs. (10) to obtain the two-soliton solution:

u = 2

ln


1 + A eξ1 + Beξ2 + Qeξ1+ξ2

xx

,

with A = κ1+κ2
κ2−κ1 , B = κ1+κ2

κ2−κ1 Q, where ξ2 = −2κ2x+µ2y+ (8κ32− 4κ22µ2)t+ϕ2, while κ2, µ2, ϕ2 and Q ̸= 0
are all arbitrary constants.
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• Three-soliton solution: Setting κ = κ3 ̸= 0 and τ ′ = 1 + A eξ1 + Beξ2 + Qeξ1+ξ2 corresponding to the
two-soliton solution, we can solve Eqs. (10) to obtain the three-soliton solution:

u = 2

ln


1 + A1e
ξ1 + A2e

ξ2 + A3e
ξ3 + A12e

ξ1+ξ2 + A13e
ξ1+ξ3 + A23e

ξ2+ξ3 + Reξ1+ξ2+ξ3

xx

,

with

A1 = (κ1 + κ2)(κ1 + κ3)
(κ1 − κ2)(κ1 − κ3) , A2 = (κ1 + κ2)(κ2 + κ3)

(κ1 − κ2)(κ2 − κ3)Q, A3 = (κ1 + κ3)(κ2 + κ3)R
(κ1 − κ3)(κ2 − κ3)Q ,

A12 = (κ1 + κ3)(κ2 + κ3)
(κ1 − κ3)(κ2 − κ3) , A13 = (κ1 + κ2)(κ2 + κ3)R

(κ1 − κ2)(κ2 − κ3)Q , A23 = (κ1 + κ2)(κ1 + κ3)
(κ1 − κ2)(κ1 − κ3)R,

where ξ3 = −2κ3x+ µ3y + (8κ33 − 4κ23µ3)t+ ϕ3, while κ3, µ3, ϕ3 and R ̸= 0 are all arbitrary constants.

5. Concluding remarks

Based on the quadrilinear representation [Eq. (7)], we have directly constructed the bilinear BT [Eqs. (9)]
for the (2+1)-dimensional Korteweg–de Vries-like model [Eq. (4)]. Without employing the Bell-polynomial
scheme, the construction of the bilinear BT is based on the quadrilinear representation, but not the bilinear
equations like normal bilinear BTs in the literature (see, e.g., [2,3,16]); and no auxiliary independent variable
has been introduced in our construction. Finally, we have applied the gauge transformation and the Hirota
perturbation technique on the bilinear BT to iteratively compute the specific multisoliton solutions. We hope
that the construction manner of the BT in this Letter would be useful in studying other soliton problems.
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