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Abstract Associated with the prime number p = 3,
a combined model of generalized bilinear Kadomtsev–
Petviashvili and Boussinesq equation (gbKPB for
short) in terms of the function f is proposed, which
involves four arbitrary coefficients. To guarantee the
existence of lump solutions, a constraint among these
four coefficients is presented firstly, and then, the lump
solutions are constructed and classified via searching
for positive quadratic function solutions to the gbKPB
equation. Different conditions posed on lump para-
meters are investigated to keep the analyticity and
rational localization of the resulting solutions. Finally,
3-dimensional plots, density plots and 2-dimensional
curves with particular choices of the involved para-
meters are given to show the profile characteristics of
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1 Introduction

Soliton solutions, as a kind of special solutions to inte-
grable nonlinear evolution equations (NLEEs) [1–13],
are exponentially localized in certain directions, while
lump solutions are rationally localized in all directions
in the space [14–19]. The Hirota bilinear representa-
tion of NLEEs plays an important role in searching
for soliton solutions as well as lump solutions [18–21].
In recent years, by involving different prime numbers,
Hirota bilinear operators have been generalized to gen-
erate diverse nonlinear differential equations possess-
ing potential applications [22–24]. Soliton and lump
solutions have both been studied for the Hirota bilinear
equations [18–20,25–28], and resonant N -wave solu-
tion and rational solutions have been solved for some
generalized Hirota bilinear equations [22–24,29–31].
Therefore, it is naturally interesting to investigate lump
solutions for NLEEs which possess generalized bilin-
ear forms.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-2905-z&domain=pdf


X. Lü et al.

For example, the Boussinesq equation [21]

utt + (u2)xx + uxxxx = 0, (1)

and the Kadomtsev–Petviashvili (KP) equation [20,
32–34]

(ut + 6 u ux + uxxx )x + uyy = 0, (2)

enjoy the following Hirota bilinear representation as

(D2
t + D4

x ) f · f = 2( ft t f − f 2t + fxxxx f

− 4 fxxx fx + 3 f 2xx ) = 0, (3)

and

(Dx Dt + D4
x + D2

y) f · f = 2( fxt f − fx ft

+ fxxxx f − 4 fxxx fx + 3 f 2xx + fyy f − f 2y ) = 0,

(4)

through the transformations u = 6 [ln f (x, t)]xx and
u = 2 [ln f (x, y, t)]xx , respectively, where the Hirota
bilinear derivatives D2

t , D
4
x , Dx Dt and D2

y [20] are
defined by

Dα
x D

β
y D

γ
t ( f · g) =

(
∂

∂x
− ∂

∂x ′

)α (
∂

∂y
− ∂

∂y′

)β

×
(

∂

∂t
− ∂

∂t ′

)γ

f (x, y, t)g(x ′, y′, t ′)
∣∣∣
x ′=x,y′=y,t ′=t.

Hereby, a combination version of the bilinear KP
Eq. (4) and the bilinear Boussinesq Eq. (3) in terms
of the function f reads

bKPB :=
(
c1Dx Dt + c2D

2
t + c3D

4
x + c4D

2
y

)
f · f

= 2
[
c1( fxt f − fx ft ) + c2( ftt f − f 2t )

+ c3( fxxxx f −4 fxxx fx +3 f 2xx )+c4( fyy f − f 2y )
]
=0,

(5)

with ci (1 ≤ i ≤ 4) as arbitrary real constants, which
can be regarded as the Hirota bilinear form of a com-
bined KP–Boussinesq equation

cKPB := c1uxt + c2utt + c3(6 ux uxx + uxxxx )

+ c4uyy = 0, (6)

through the transformation1 u = 2
[
ln f (x, y, t)

]
x .

Based on a prime number p, a kind of generalized
bilinear operators has been introduced [22–24] as

Dn1
p, x1 · · · DnM

p, xM ( f · g) =
M∏
i=1

( ∂

∂xi
+ α

∂

∂x
′
i

)ni

× f (x1, . . . , xM )g(x
′
1, . . . , x

′
M )

∣∣∣
x

′
1=x1, ..., x

′
M=xM ,

where n1, · · · , nM are arbitrary nonnegative integers
and for an integer m, the mth power of α is computed
as follows:

αm =(−1)r(m), if m≡r(m) mod p with 0≤ r(m)<p.
(7)

Under the rule given by Eq. (7), which indicates a way
to take the signs +1 or −1, we find that if p = 2k
(k ∈ N), all the bilinear operators defined above turn
out to be the Hirota bilinear operators, since D2k,x =
Dx [22–24]. If p = 3, we particularly have

α3=−1, α2
3 =α3

3 =1, α4
3 =−1, α5

3 =α6
3 =1, . . . .

With p = 3, we can generalize the Hirota bilinear
Boussinesq Eq. (3) and the Hirota bilinear KP Eq. (4),
respectively, into

(D2
3,t + D4

3,x ) f · f = 2
(
ft t f − f 2t + 3 f 2xx

)
= 0,

(8)

and(
D3,x D3,t + D4

3,x + D2
3,y

)
f · f = 2

(
fxt f − fx ft

+ 3 f 2xx + fyy f − f 2y ) = 0, (9)

and the combined bilinear KP–Boussinesq Eq. (5) can
be generalized as

1 The transformation employed here is motivated by the Bell
polynomial theories (see, e.g., [22–24,35–37]), and actually, we

have
[

bKPB
f 2

]
x

= cKPB.
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gbKPB := (c1D3,x D3,t + c2D
2
3,t + c3D

4
3,x + c4D

2
3,y) f · f

= 2
[
c1( fxt f − fx ft ) + c2( ft t f − f 2t )

+ 3 c3 f
2
xx + c4( fyy f − f 2y )

]
= 0. (10)

Eq. (10) is a generalized bilinear KP–Boussinesq
(gbKPB) equation, which is connected with the fol-
lowing scalar nonlinear differential equation in terms
of potential function u as

c1uxt + c2utt + 3

2
c3

(
u3 ux + 2 uu2x + u2uxx + 2 uxuxx

)

+ c4uyy = 0, (11)

through the transformation u = 2
[
ln f (x, y, t)

]
x .

Actually, the equality between f and u[
gbKPB

f 2

]
x

= c1uxt + c2utt

+ 3

2
c3

(
u3 ux + 2 uu2x + u2uxx + 2 uxuxx

)

+ c4uyy,

shows that if f is a solution to Eq. (10), then u =
2(ln f )x solves Eq. (11).

In this paper, we will be devoted to the gbKPB equa-
tion, i.e., Eq. (10), which is generated with bilinear dif-
ferential operator extension method and involves four
arbitrary coefficients, c1, c2, c3 and c4. By checking
the existence of lump solutions, a constraint among
these four coefficients will be presented firstly, and
then, the lump solutions will be constructed to Eq. (11)
via searching for positive quadratic function solutions
to Eq. (10). Four classes of lump solutions will be pre-

sented, and different conditions posed on lump para-
meters will be investigated to keep the analyticity and
rational localization of the resulting solutions. Finally,
a few concluding remarks will be given at the end of
the paper.

2 Lump solutions to the gbKPB equation

To find the lump solutions to potential function u in
Eq. (11), we search for quadratic function solutions to
Eq. (10) with the assumption

f = g2 + h2 + a9, (12)

with

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8,

where ai (1 ≤ i ≤ 9) are all real parameters to be deter-
mined. Symbolic computation on a direct substitution
of Eq. (12) into Eq. (10) generates the following set of
constraining equations on the parameters:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = c4

(
a3a26 − 2 a2a6a7 − a3a22

) − c2a3
(
a23 + a27

)
c1

(
a23 + a27

) , a2 = a2, a3 = a3, a4 = a4,

a5 = c4
(
a7a22 − 2 a2a3a6 − a7a26

) − c2a7
(
a23 + a27

)
c1

(
a23 + a27

) , a6 = a6, a7 = a7, a8 = a8,

a9 = −3
c3
c4

[
(c4a22 + c2a23)

2 + (c4a26 + c2a27)
2 + 2 (c4a2a6 + c2a3a7)2 − 2 c2c4(a2a7 − a3a6)2

]2

(a23 + a27)(a2a7 − a3a6)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

which needs to satisfy both

I :
{
c1c4 �= 0, c2 = c2, c3c4 < 0

}
, (13)

and

II :
{
a2a7 − a3a6 �= 0, (c4a

2
2 + c2a

2
3)

2 + (c4a
2
6 + c2a

2
7)

2

+ 2 (c4a2a6 + c2a3a7)
2 − 2 c2c4(a2a7 − a3a6)

2 �= 0
}
.

(14)
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It can be seen that the set of Condition I constrains
purely on the equation coefficients to realize the exis-
tence of lump solutions. Without loss of generality, we
will consider two cases as {c1 �= 0, c2 = c2, c3 =
1, c4 = −1} and {c1 �= 0, c2 = c2, c3 = −1, c4 = 1}.

2.1 {c1 �= 0, c2 = c2, c3 = 1, c4 = −1}

In this case, we can obtain two sets of constraining
equations on the parameters.

The first set of constraining equations on the para-
meters in this case is⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = a3a22 + 2 a2a6a7 − a3a26 − c2a3(a23 + a27)

c1(a23 + a27)
, a2 = a2, a3 = a3, a4 = a4,

a5 = a7a26 + 2 a2a3a6 − a7a22 − c2a7(a23 + a27)

c1(a23 + a27)
, a6 = a6, a7 = a7, a8 = a8,

a9 =
3

[
c22(a

2
3 + a27)

2 + 2 c2(a2a7 − a3a6)2 − 2 c2(a2a3 + a6a7)2 + (a22 + a26)
2
]2

c41(a
2
3 + a27)(a2a7 − a3a6)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (15)

which needs to satisfy the condition

a2a7 − a3a6 �= 0, (16)

to make the corresponding solutions f be well defined,
the condition

a2a3 + a6a7 �= 0, (17)

to guarantee the positiveness of f and the condition

c2(a
2
3 + a27) + a22 + a26 �= 0, (18)

to realize the localization of u in all directions in the
(x, y)-plane. The parameters in the set (15) yield the
first class of positive quadratic function solutions to
Eq. (10) as

f =
(
a3a22 + 2 a2a6a7 − a3a26 − c2a3(a23 + a27)

c1(a23 + a27)
x + a2y + a3t + a4

)2

+
(
a7a26 + 2 a2a3a6 − a7a22 − c2a7(a23 + a27)

c1(a23 + a27)
x + a6y + a7t + a8

)2

+
3

[
c22(a

2
3 + a27)

2 + 2 c2(a2a7 − a3a6)2 − 2 c2(a2a3 + a6a7)2 + (a22 + a26)
2
]2

c41(a
2
3 + a27)(a2a7 − a3a6)2

, (19)

which can be used to generate the first class of lump
solutions to Eq. (11) through the transformation

u(I) = 4(a1g + a5h)

f
, (20)

where the function f is defined by Eq. (19), and the
functions g and h are given as follows:

g =a3a22 + 2 a2a6a7 − a3a26 − c2a3(a23 + a27)

c1(a23 + a27)
x

+ a2y + a3t + a4,

h =a7a26 + 2 a2a3a6 − a7a22 − c2a7(a23 + a27)

c1(a23 + a27)
x

+ a6y + a7t + a8.

Note here that eight parameters c1, c2, a2, a3, a4, a6,
a7 and a8 are involved in the solution u(I), and they are
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demanded to satisfy conditions (16), (17) and (18) to
guarantee u(I) to be lump solutions.

The second set of constraining equations on the para-
meters in this case is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = a22 − a26 − c2a23

c1a3
, a2 = a2, a3 = a3, a4 = a4,

a5 = −2 c2a2a3a6
c1(a22 − a26)

, a6 = a6, a7 = 2 a2a3a6
a22 − a26

,

a8 = a8,

a9 =
3

[
c22a

4
3(a

2
2 + a26)

2 − 2 c2a23(a
2
2 − a26)

3 + (a22 − a26)
4
]2

c41a
4
3a

2
6(a

2
2 − a26)

4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(21)

which needs to satisfy the conditions

a3a6(a
2
2 − a26) �= 0, (22)

a2 �= 0, (23)

and

c2a
2
3(a

2
2 + a26) + (a22 − a26)

2 �= 0, (24)

to guarantee thewell-definedness of f , the positiveness
of f and the localization of u in all directions in the
space, respectively. The parameters in the set (21) yield
the second class of positive quadratic function solutions
to Eq. (10) as

f =
(
a22 − a26 − c2a23

c1a3
x + a2y + a3t + a4

)2

+
(

− 2 c2a2a3a6
c1(a22 − a26)

x + a6y + 2 a2a3a6
a22 − a26

t + a8

)2

+
3

[
c22a

4
3(a

2
2 + a26)

2 − 2 c2a23(a
2
2 − a26)

3 + (a22 − a26)
2
]2

c41a
4
3a

2
6(a

2
2 − a26)

4
,

(25)

which leads to the second class of lump solutions to
Eq. (11) through the transformation

u(II) = 4(a1g + a5h)

f
, (26)

where the function f is defined by Eq. (25), and the
functions g and h are given as follows:

g = a22 − a26 − c2a23
c1a3

x + a2y + a3t + a4,

h = − 2 c2a2a3a6
c1(a22 − a26)

x + a6y + 2 a2a3a6
a22 − a26

t + a8.

Note here that seven parameters c1, c2, a2, a3, a4, a6
and a8 are involved in the solution u(II), and they are
demanded to satisfy conditions (22), (23) and (24) to
guarantee u(II) to be lump solutions.

2.2 {c1 �= 0, c2 = c2, c3 = −1, c4 = 1}

In this case, we can obtain two sets of constraining
equations on the parameters as well.

The first set of constraining equations on the para-
meters is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = a3a26 − 2 a2a6a7 − a3a22 − c2a3

(
a23 + a27

)
c1

(
a23 + a27

) , a2 = a2, a3 = a3, a4 = a4,

a5 = a7a22 − 2 a2a3a6 − a7a26 − c2a7
(
a23 + a27

)
c1

(
a23 + a27

) , a6 = a6, a7 = a7, a8 = a8,

a9 =
3

[
c22(a

2
3 + a27)

2 − 2 c2(a2a7 − a3a6)2 + 2 c2(a2a3 + a6a7)2 + (a22 + a26)
2
]2

c41(a
2
3 + a27)(a2a7 − a3a6)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (27)
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which needs to satisfy the condition

a2a7 − a3a6 �= 0, (28)

to make the corresponding solutions f be well defined,
the condition

a2a3 + a6a7 �= 0, (29)

to guarantee the positiveness of f and the condition

a22 + a26 − c2
(
a23 + a27

)
�= 0, (30)

to realize the localization of u in all directions in the
(x, y)-plane. The parameters in the set (27) yield the

third class of positive quadratic function solutions to
Eq. (10) as

f =
(
a3a26 − 2 a2a6a7 − a3a22 − c2a3(a23 + a27)

c1(a23 + a27)
x + a2y + a3t + a4

)2

+
(
a7a22 − 2 a2a3a6 − a7a26 − c2a7(a23 + a27)

c1(a23 + a27)
x + a6y + a7t + a8

)2

+
3

[
c22(a

2
3 + a27)

2 − 2 c2(a2a7 − a3a6)2 + 2 c2(a2a3 + a6a7)2 + (a22 + a26)
2
]2

c41(a
2
3 + a27)(a2a7 − a3a6)2

, (31)

which can be used to generate the third class of lump
solutions to Eq. (11) through the transformation

u(III) = 4(a1g + a5h)

f
, (32)

where the function f is defined by Eq. (31), and the
functions g and h are given as follows:

g =a3a26 − 2 a2a6a7 − a3a22 − c2a3(a23 + a27)

c1(a23 + a27)
x

+ a2y + a3t + a4,

h =a7a22 − 2 a2a3a6 − a7a26 − c2a7(a23 + a27)

c1(a23 + a27)
x

+ a6y + a7t + a8.

Note here that eight parameters c1, c2, a2, a3, a4, a6,
a7 and a8 are involved in the solution u(III), and they
are demanded to satisfy conditions (28), (29) and (30)
to guarantee u(III) to be lump solutions.

The second set of constraining equations on the para-
meters in this case is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a1 = −a22 − a26 + c2a23

c1a3
, a2 = a2, a3 = a3, a4 = a4, a5 = −2 c2a2a3a6

c1(a22 − a26)
, a6 = a6, a7 = 2 a2a3a6

a22 − a26
,

a8 = a8, a9 =
3

[
c22a

4
3(a

2
2 + a26)

2 + 2 c2a23(a
2
2 − a26)

3 + (a22 − a26)
4
]2

c41a
4
3a

2
6(a

2
2 − a26)

4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (33)

which needs to satisfy the conditions

a3a6(a
2
2 − a26) �= 0, (34)

a2 �= 0, (35)

and

(a22 − a26)
2 − c2a

2
3(a

2
2 + a26) �= 0, (36)

to guarantee thewell-definedness of f , the positiveness
of f and the localization of u in all directions in the
space, respectively. The parameters in the set (33) yield
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Table 1 Summary of the lump solutions

Cases (A): c1 �= 0, c2 = c2, c3 = 1, c4 = −1 (B): c1 �= 0, c2 = c2, c3 = −1, c4 = 1

Lump solution u u(I) : Eq. (20) u(II): Eq. (26) u(III): Eq. (32) u(IV): Eq. (38)
Quadratic function f Eq. (19) Eq. (25) Eq. (31) Eq. (37)

Well-definedness condition a2a7 − a3a6 �= 0 a3a6(a22 − a26) �= 0 a2a7 − a3a6 �= 0 a3a6(a22 − a26) �= 0
Positiveness condition a2a3 + a6a7 �= 0 a2 �= 0 a2a3 + a6a7 �= 0 a2 �= 0
Localization condition Eq. (18) Eq. (24) Eq. (30) Eq. (36)

400

400

y

0.2

u

400

400

x
0.2

(a) (b)

(c) (d)

Fig. 1 Lump dynamic characteristics of u(I) via Eq. (20) with t = 0: a 3-dimensional plot; b density plot; c x-curves and d y-curves
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300

300

y

0.4

0.4

u

300

300

x

(a) (b)

(c) (d)

Fig. 2 Lump dynamic characteristics of u(II) via Eq. (26) with t = 0: a 3-dimensional plot; b density plot; c x-curves and d y-curves

the fourth class of positive quadratic function solutions
to Eq. (10) as

f =
(

− a22 − a26 + c2a23
c1a3

x + a2y + a3t + a4

)2

+
(−2 c2a2a3a6
c1(a22 − a26)

x + a6y + 2 a2a3a6
a22 − a26

t + a8

)2

+
3

[
c22a

4
3(a

2
2 + a26)

2 + 2 c2a23(a
2
2 − a26)

3 + (a22 − a26)
4
]2

c41a
4
3a

2
6(a

2
2 − a26)

4
,

(37)

which leads to the fourth class of lump solutions to
Eq. (11) through the transformation

u(IV) = 4(a1g + a5h)

f
, (38)

where the function f is defined by Eq. (37), and the
functions g and h are given as follows:

g = −a22 − a26 + c2a23
c1a3

x + a2y + a3t + a4,

h = −2 c2a2a3a6
c1(a22 − a26)

x + a6y + 2 a2a3a6
a22 − a26

t + a8.

Note here that seven parameters c1, c2, a2, a3, a4, a6
and a8 are involved in the solution u(IV), and they are
demanded to satisfy conditions (34), (35) and (36) to
guarantee u(IV) to be lump solutions.
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400

400

y

0.15

u

200

200

x
0.15

(a) (b)

(c) (d)

Fig. 3 Lump dynamic characteristics of u(III) via Eq. (32) with t = 0: a 3-dimensional plot; b density plot; c x-curves and d y-curves

By constructing four classes of positive quadratic
function solutions to Eq. (10), we have found four
classes of lump solutions to Eq. (11). It is necessary
to summarize and compare those conditions on para-
meters associated with different lump solutions, which
can be seen in Table 1. Different from soliton solu-
tions exponentially localized in certain directions, lump
solutions, as a type of rational solutions, are rationally
localized in all directions in the space. To show the
localized characteristics of the presented lump solu-
tions clearly, 3-dimensional plots, density plots and
2-dimensional curves with particular choices of the
involved parameters in the potential function u are plot-
ted, which can be seen in Figs. 1, 2, 3 and 4. The
involved parameters adopted in this paper are c1 = 1,

c2 = 1, a2 = 5, a3 = 1, a4 = 0, a6 = 4 and a8 = 0,
while a7 = 2 in Figs. 1 and 3.

3 Concluding remarks

Based on the bilinear differential operator extension
method by taking the prime number p = 3 in the gener-
alized bilinear operators, a combinedmodel of general-
ized bilinear Kadomtsev–Petviashvili and Boussinesq
equations in terms of the function f has been proposed
and studied, which possesses four arbitrary coefficients
c1, c2, c3 and c4, as seen in Eq. (10). Through the trans-
formation u = 2

[
ln f (x, y, t)

]
x , Eq. (10) can be linked

with the nonlinear differential Eq. (11). A constraint
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Fig. 4 Lump dynamic characteristics of u(IV) via Eq. (38) with t = 0: a 3-dimensional plot; b density plot; c x-curves and d y-curves

among these four coefficients [see Eq. (13)] has been
presented to guarantee the existence of lump solutions
and used to solve and classify the lump solutions to
Eq. (11) via searching for positive quadratic function
solutions to Eq. (10). Four classes of lump solutions
with corresponding conditions posed on lump parame-
ters have been constructed and plotted.

We point out that conditions posed on lump parame-
ters, i.e., Eqs. (16)– (18), Eqs. (22)– (24), Eqs. (28)–
(30) and Eqs. (34)– (36), must be satisfied to guarantee
the well-definedness, the positiveness and the local-
ization of the solutions. Otherwise, quadratic function

solutions f to Eq. (10) may exist and yield rational
solutions to Eq. (11), but they cannot be mapped into
lump solutions u (e.g., when a9 ≤ 0).

Attention should also be paid to the difference
between the Eqs. (5) and (10), which are both generated
by a combination. However, Eq. (5) is a combined ver-
sion of the Hirota-type bilinear equation, and Eq. (10)
is a combined version of the generalized bilinear equa-
tion, and the former equation contains additionally two
terms, T ( f ) = c3 fxxxx f − 4c3 fxxx fx , more than the
latter one. It is easy to know that the solutions derived
here to Eq. (10), that is, quadratic function solutions
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f in Eqs. (19), (25), (31) and (37), are solutions to
Eq. (5) as well, since T ( f ) = 0 is satisfied automati-
cally. Therefore, we can claim that we have constructed
lump solutions to both Eqs. (6) and (11). Then, it is
natural to ask how to construct distinct or novel lump
solutions to Eqs. (6) and (11). Within the framework of
this paper, we can consider sums of higher-order even
function solutions or multiple sums of quadratic func-
tion solutions (more than two quadratic functions) f to
search for other lump solutions, which can bewritten as

f =
M1∑
i≥1

gmi +
M2∑
j≥1

h2j + c4(M1+M2)+1,

where gi = a1i x + a2i y + a3i t + a4i , h j = b1 j x +
b2 j y+b3 j t+b4 j , while a1i , a2i , a3i , a4i , b1 j , b2 j , b3 j ,
b4 j and c4(M1+M2)+1 are all arbitrary real constants,
m (≥ 4) ∈ 2Z+, M1 and M2 are integers; or

f =
N∑
i≥3

h2i + a4N+1,

where hi = a1i x + a2i y + a3i t + a4i , N is an integer,
and a1i , a2i , a3i , a4i and a4N+1 are all arbitrary real
constants.
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