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Abstract. In this paper, we investigate two dimensionally reduced cases of a new (3+1)-
dimensional generalised Kadomtsev-Petviashvili equation. With symbolic computation,
lump solutions are derived via searching for positive quadratic function solutions to the
associated bilinear equations. Localised characteristics and lump motion are analysed
and illustrated as well.
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1. Introduction

In the nonlinear science, more and more attention has been paid to the two-dimensional
or three-dimensional nonlinear models [1, 2, 7,10, 11,13, 15,17-21, 23, 24, 26,28]. In
contrast with the (1+1)-dimensional equations (one for space and the other one for time),
multi-dimensional ones are more realistic in describing the nonlinear phenomena in science
and engineering [4-6,9,27,29]. For example, the Kadomtsev-Petviashvili (KP) equation,
modeling water waves of long wavelengths with weakly non-linear restoring forces and
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frequency dispersion [10], is usually written as
(ue +6uuy, +uyy, ), +ou,, =0, o==£I,

which is classified as the KPI equation when o = 1 and the KPII equation when o = —1.
The KP equation is completely integrable, and its soliton solutions and lump solutions have
been solved [1,18].
The KP equation is a two-dimensional generalisation of the Korteweg-de Vries (KdV)
equation
U, +6ut, + Uy, =0,

where the spatial variable is generalised into two dimensions with x and y. Actually, more
and more generalised KdV or KP equations are proposed, which maybe integrable or non-
integrable — cf. Refs. [11,17,19-21,24] and references therein.

The KP-like equation has attracted more attention recently. The generalised pertur-
bation Darboux transformations have been reported for the (2 + 1)-dimensional KP equa-
tion and its extension by using the Taylor expansion of the Darboux matrix [25]. Fission
and fusion interaction phenomena of mixed lump kink solutions for a generalised (3 + 1)-
dimensional B-type KP equation has been studied by using the Hirota bilinear method [12].

In recent, a new (3 + 1)-dimensional generalised KP equation [24] has been introduced
as

Uyyxy T 3(Uylly )y + gy Uy + U — Uy, =0, (1.1)

Via the simplified Hirota bilinear method, multiple soliton solutions to the Eq. (1.1) have
been derived with the coefficients of the spatial variables left free, and the phase shifts
depending on all these coefficients. It has also been proved that the Eq. (1.1) fails to pass
the Painlevé integrability test although it enjoys multiple soliton solutions. Moreover, the
resonant multiple wave solutions to the Eq. (1.1) have been constructed by using linear
superposition principle [11].

As well known, soliton solutions are exponentially localised in certain directions, while
lump solutions are a kind of rational function solutions, localised in all directions in the
space [3,14,16]. Based on bilinear forms, one can derive both soliton solutions and lump
solutions [1, 18]. The dynamics of lump, lumpoff and rogue wave solutions of (2 + 1)-
dimensional Hirota-Satsuma-Ito equations has been studied through bilinear method [30].
For a fourth-order nonlinear generalised Boussinesq water wave equation, symmetry re-
ductions and twelve families of soliton wave solutions have been derived by employing
Lie symmetry method [22]. The Riemann-Hilbert approach has also been used to solve
N-soliton solutions of a four-component nonlinear Schrodinger equation associated with
a 5 x 5 Lax pair [31].

In this paper, we will focus on the dimensionally reduced cases of Eq. (1.1) and present
two classes of lump solutions with symbolic computation. It is clear that the Eq. (1.1) is
a (3 + 1)-dimensional model with the spatial variables (x, y,z) and the time variable t.
Through a dependent variable transformation

u=2[Inf(x,y,z,t)] = PYACINN))

_ , 1.2
069,20 (12)
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Eq. (1.1) can be mapped into its Hirota bilinear form as
(p3D, +D,D, + DD, +D,D,—D?)f - f =0, (1.3)

where the derivatives D?Dy, DDy, DD, D;D, and DZ2 are bilinear operators [8] defined
by

i 2 \*( 8 o\XCroe oo 2
st o= (5-2) (5-5) (&%) (5-2)
DD =\ 55750 ) \5y "5y ) &z a7 ) \ar " ar

x f(x,y,zt)gx",y' 2, t")

x'=x,y'=y,z'=z,t'=t.

In details, we will search for positive quadratic function solutions to the dimensionally
reduced forms of the Eq. (1.3) via taking 2 = x or z = y, and begin with

f=g*+h*+ay, (1.4)
g = a1X+a2y+a3t+a4,
h=asx +agy +a;t+ag,

where q; (1 < i <9) are all real parameters to be determined. To obtain the lump solutions,
we note that the conditions guaranteeing the well-definedness of f, positiveness of f and
localisation of u in all directions in the space need to be satisfied. With a selection of the
parameters in the solutions, the localised structure and lump motion will be displayed.
Finally, a few concluding remarks will be given at the end of the paper.

2. Lump Solutions to the Reduction with z = x
With z = x, the dimensionally reduced form of the Eq. (1.3) turns out to be
(03D, +2D.D, +D,D, —D2)f - f =0, 2.1)
which is transformed into
Uyyxy T3 (Uetty )y + 2Upy + Uy — Uy, =0, (2.2)
through the link between f and u

ENACSA)
fle,y, )

A direct substitution of f in the Eq. (1.4) into Eq. (2.1) leads to the following set of con-
straining equations on the parameters:

u= 2[lnf(x,y, t)]x (2.3)

a%ag — 2a1a§ + 2a,asa; — 2a1a§ — agag

{alzab a = , a3 =4dsz, d4=4dy,

2 2
a3+a7
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2

a%a7 —2aqas3as + 2a§a5 — a§a7 + 2asa;

as =as, Qag=— R » a7 =4y,
a; +a;z
2
3(a? +a?)” (aya3 — 2a2 + asa; — 2a2)
ag =dag, dg= 3 ; (2.4)
(a1a7 —azas)
which needs to satisfy the conditions
a1dy —asdsg §é O, (25)
a1a3—2a§+a5a7—2a§ >0 (2.6)

to guarantee the well-definedness of f, the positiveness of f and the localisation of u in all
directions in the space. The parameters in the set (2.4) yield a class of positive quadratic
function solution to the Eq. (2.1) as

2 2

a%ag — 2a1a§ + 2a,asa; — 2a1a§ —asag

f=(a1x+ y+a3t+a4)

2 2
a3+a7

2
a%a7 —2ajaszas + 2a§a5 — a§a7 + 2a5a§
+ asX — 5 5 y+a7t+a8
a; +a;z
3(a? +a?)(aja3 — 242 + asa; —2a2)
(a1a7 —azas)?
which, in turn, generates a class of lump solutions to the dimensionally reduced the Eq. (2.2)
through transformation (2.3) as

> 2.7)

u(I) _ 4(a1g + a5h)
f
where the function f is defined by the Eq. (2.7), and the functions g and h are given as
follows:

(2.8)

a%ag — 2a1a§ + 2aasa; — 2a1a§ — a3a§

g=a1x+ y+a3t+a4,

2 2
a3+a7

a%a7 —2aqa3as + 2a§a5 — a§a7 + 2a5a§

h=asx— y +ast+ag.

az+a3
3. Lump Solutions to the Reduction with z = y

With z = y, the dimensionally reduced form of the Eq. (1.3) reads
(DD, +D,D, +2D,D, —D2)f - f =0, (3.1)

which is cast into
Uyyxy T3 (WUstty )y +Upy +2up, —u,, =0 (3.2)

through the link between f and u, that is, transformation (2.3).
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A direct substitution of f into the Eq. (3.1) gives rise to the following set of constraining
equations for the parameters:

a§a3 — 2a2a§ + 2a,aga; — ZaZa; — asaé
a]_ = 5 5 y a2:a2, a3:a3, a4:a4, (33)
a; +a;z
2, _9 202dr — a2 2a.a2
aya; —2a,a30a¢ + 2a3a¢ — agay + 2a4a;
a5 == 2, 2 » dg=0dg, d7=dy, dg=dg,
a; +a;z
S(Clg + ag 2(aya;— 2a§ +aga; — Za;)(ag —4aya5 + 4a§ + aé —4aga; + 4a§) }
Cl9 =
2 2 1)
(apa; —azag)?*(az +a;)

which needs to satisfy the conditions

aya; —azag # 0,

asds — 2a§ +aga; — 2a§ >0 3.4)

to guarantee the well-definedness of f, the positiveness of f and the localisation of u in all
directions in the space. The parameters in the set (3.3) yield a class of positive quadratic
function solution to the Eq. (3.1) as

2
x+a2y+a3t+a4) (3.5)

f= (agag - 2a2a§ + 2a,aga; — 2a2a§ - agaé
- 2 2

as +a;
2

a§a7 —2a,5a30¢ + 2a§a6 — a§a7 + 2a6a§
- X +agy t+a;t+a
2, 2 6 7 8
as+a;

3 (a% + ag)2 (a2a3 —2a; +aga; — 2a§) (a% —4a,a3 +4a3 + a; —4aga; + 4a§)

+

B

(azay; — azag)? (a2 + a2)

which, in turn, generates a class of lump solutions to the dimensionally reduced the Eq. (3.2)
through transformation (2.3) as

LD _ 4(a,g + a5h), (3.6)
f
where the function f is defined by the Eq. (3.5), and the functions g and h are given as
follows:
¢ = a§a3 — 2a2a§ + 2a,aga; — 2a2a; — ClSClé

X+a2y+a3t+a4,
as+a;

B a§a7 —2ayasa¢ + 2a§a6 — a§a7 + 2a6a§

X +agy +a,t+ag.
a3 + a3 6 7 8
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4. Localised Characteristics and Lump Motion

The transformations (1.2) and (2.3) [with the Eq. (1.4)] clearly denote that lump so-
lution is a type of rational solution. By virtue of the following property

lim f(x,y,t)=00 VteR

x2+y2—00
it is easy to have

lim u®x,y,0)= lim u®(x,y,0)=0 VteR,
x2+y2—00 x2+y2—00
therefore, all the solutions derived in this paper (u® and u@™) are rationally localised in
all directions in the space.
The amplitude of a lump solution u is defined as max |u|, and the location of a lump
solution is then defined as the place where the max|u| is attained. To study the lump
motion, we firstly derive all the critical points of the lump solutions at a fixed time t as

2
(a% +a§) |:(a2a7—a3a6)t-4-a2a8—a4a(J \/ag +a5 (ayag —asas)

(a2 +a2)(aya¢ —asas)
(azas —aja;)t +a4a5—a,ag

xi(0) =

yi(t) =
a10e — dzds
For the lump u® with parameter constraining conditions (2.4)-(2.6), the second partial
derivative test

@ +a2)*?
uxx(xi(t),y*(t)) = _2% <0,
dy

e (5(6), () )y (35 (), () =12 (x5 (), (1)

2
4 (a% + ag) (a,a6— a2a5)2
= 3 >0
dg

tells us that (x7 (t), y*(t)) is the maximum point, and
2|azas —a;a;|

\/3 (a®+a2)(aja3—2a2 + asa, — 2a§)'

urnax =

Meanwhile, we can find

a2 +a2)*?
uxx(xi(t); y*(t)) = 2(1613—/3) >0,
9

e (X500, Y4 (O)uty (x2(0), y*(0)) =2 (x2(0), ¥ (1))

2 2
4 (a1 + as) (a;ag —asas)
= - >0,
g
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so that (x*(t), y*(t)) is the minimum point, and

—2|asas —a;ay|

- \/3 (a?+a2)(aya3 — 242 + asa; — 2a2) .

Umin

Hereby, the amplitude of the lump

40 = 2|azas —a;ay]
\/3 (a?+a2)(aya3 —2a2 + asa; — 2a2)

2

which locates at (x7(t), y*(t)).
Correspondingly; for the lump u” with parameter constraining conditions (3.3)-(3.4),
we have the maximum point (x7(t), y*(t)) with
2|azas — asay|

Hmax = 2, 2 2 2y
\/B(a2 +ag)(azas —2a;3 + agay; — 2a3)

the minimum point (x*(t), y*(t)) with

—2|azag — ayay|

Umin = ’
\/B(ag +a2)(aya3 — 243 + aga; —2a2)

and the amplitude of the lump

an _ 2|a3a6_a2a7|
ul = ,
\/B(ag +a2)(azas —2a3 + aga; — 2a3)

which locates at (x}(t), y*(t)).

With particular choices of the involved parameters in the lump solution u, the localised
characteristics and lump motion can be seen clearly in Figs. 1 and 2 including (a) three-
dimensional structure, (b) density plot and (c) the contour plot with routing display.

200

100

-100

-20_0200 100 0 100 200 -600 -400 -200 0 200 400 600

X X

@ (b) ©
Figure 1: Lump dynamic characteristics of u® via the Eq. (2.8) with a; = =2, a; =1, a, =0, a5 = 4,
a; =1.5 and ag =0: (a) 3-dimensional plot with t =0, (b) density plot of (a), (c) the contour plot with
routing display.
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Figure 2: Lump dynamic characteristics of u'” via the Eq. (3.6) with a, =3, a; =1, a, =0, ag = —4,
a; =—2 and ag =0: (a) 3-dimensional plot with t =0, (b) density plot of (a), (c) the contour plot with
routing display.

5. Concluding Remarks

For two reduced cases of the new (3 + 1)-dimensional generalised KP equation — cf.
the Eq. (1.1), we have directly constructed two classes of lump solutions — cf. Egs. (2.8)
and (3.6) via searching for positive quadratic function solutions to the associated bilinear
equations (2.1) and (3.1).

It is interesting to consider the following two questions. Firstly, for the reduction with
z =t, the Eq. (1.1) is reduced into

Uyyxy T3 (WUslty )y + gy +ue, =0. (5.1)

How to derive lump solutions or how to prove the non-existence of lump solutions to the
Eq. (5.1) is a further question. Secondly, how to derive lump solutions to the (3 + 1)-
dimensional nonlinear evolution equations, e.g., the Eq. (1.1). Within the frame work of
this paper, one may suppose

f=g*+h*+k*+ay

with
g=a1x +a2y + asz +a4t + as,
h=agx + a;y + agz + agt + ay,

k= a1 x +apy+ aq32 + a14t + aqs,

which should be substituted directly into the Eq. (1.3) for the purpose of positive quadratic
function solutions so as to lump solutions to the Eq. (1.1).
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