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Abstract. In this paper, we investigate two dimensionally reduced cases of a new (3+1)-

dimensional generalised Kadomtsev-Petviashvili equation. With symbolic computation,

lump solutions are derived via searching for positive quadratic function solutions to the

associated bilinear equations. Localised characteristics and lump motion are analysed

and illustrated as well.
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1. Introduction

In the nonlinear science, more and more attention has been paid to the two-dimensional

or three-dimensional nonlinear models [1, 2, 7, 10, 11, 13, 15, 17–21, 23, 24, 26, 28]. In

contrast with the (1+1)-dimensional equations (one for space and the other one for time),

multi-dimensional ones are more realistic in describing the nonlinear phenomena in science

and engineering [4–6, 9, 27, 29]. For example, the Kadomtsev-Petviashvili (KP) equation,

modeling water waves of long wavelengths with weakly non-linear restoring forces and
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frequency dispersion [10], is usually written as

(ut + 6uux + ux x x)x +σuy y = 0, σ = ±1,

which is classified as the KPI equation when σ = 1 and the KPII equation when σ = −1.

The KP equation is completely integrable, and its soliton solutions and lump solutions have

been solved [1,18].

The KP equation is a two-dimensional generalisation of the Korteweg-de Vries (KdV)

equation

ut + 6uux + ux x x = 0,

where the spatial variable is generalised into two dimensions with x and y. Actually, more

and more generalised KdV or KP equations are proposed, which maybe integrable or non-

integrable — cf. Refs. [11,17,19–21,24] and references therein.

The KP-like equation has attracted more attention recently. The generalised pertur-

bation Darboux transformations have been reported for the (2+ 1)-dimensional KP equa-

tion and its extension by using the Taylor expansion of the Darboux matrix [25]. Fission

and fusion interaction phenomena of mixed lump kink solutions for a generalised (3+ 1)-

dimensional B-type KP equation has been studied by using the Hirota bilinear method [12].

In recent, a new (3+1)-dimensional generalised KP equation [24] has been introduced

as

ux x x y + 3(uxuy)x + ut x + ut y + utz − uzz = 0. (1.1)

Via the simplified Hirota bilinear method, multiple soliton solutions to the Eq. (1.1) have

been derived with the coefficients of the spatial variables left free, and the phase shifts

depending on all these coefficients. It has also been proved that the Eq. (1.1) fails to pass

the Painlevé integrability test although it enjoys multiple soliton solutions. Moreover, the

resonant multiple wave solutions to the Eq. (1.1) have been constructed by using linear

superposition principle [11].

As well known, soliton solutions are exponentially localised in certain directions, while

lump solutions are a kind of rational function solutions, localised in all directions in the

space [3,14,16]. Based on bilinear forms, one can derive both soliton solutions and lump

solutions [1, 18]. The dynamics of lump, lumpoff and rogue wave solutions of (2 + 1)-

dimensional Hirota-Satsuma-Ito equations has been studied through bilinear method [30].

For a fourth-order nonlinear generalised Boussinesq water wave equation, symmetry re-

ductions and twelve families of soliton wave solutions have been derived by employing

Lie symmetry method [22]. The Riemann-Hilbert approach has also been used to solve

N -soliton solutions of a four-component nonlinear Schrödinger equation associated with

a 5× 5 Lax pair [31].

In this paper, we will focus on the dimensionally reduced cases of Eq. (1.1) and present

two classes of lump solutions with symbolic computation. It is clear that the Eq. (1.1) is

a (3 + 1)-dimensional model with the spatial variables (x , y, z) and the time variable t.

Through a dependent variable transformation

u= 2
�

ln f (x , y, z, t)
�

x
= 2

fx(x , y, z, t)

f (x , y, z, t)
, (1.2)
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Eq. (1.1) can be mapped into its Hirota bilinear form as

�

D3
x Dy + Dt Dx + Dt Dy + Dt Dz − D2

z

�

f · f = 0, (1.3)

where the derivatives D3
x Dy , Dt Dx , Dt Dy , Dt Dz and D2

z are bilinear operators [8] defined

by

Dαx Dβy Dγz Dδt ( f · g) =
�

∂

∂ x
−
∂

∂ x ′

�α � ∂

∂ y
−
∂

∂ y ′

�β � ∂

∂ z
−
∂

∂ z′

�γ � ∂

∂ t
−
∂

∂ t′

�δ

× f (x , y, z, t)g(x ′, y ′, z′, t′)

�

�

�

x ′=x ,y′=y,z′=z,t ′=t.

In details, we will search for positive quadratic function solutions to the dimensionally

reduced forms of the Eq. (1.3) via taking z = x or z = y, and begin with

f = g2 + h2 + a9, (1.4)

g = a1 x + a2 y + a3 t + a4,

h = a5 x + a6 y + a7 t + a8,

where ai (1≤ i ≤ 9) are all real parameters to be determined. To obtain the lump solutions,

we note that the conditions guaranteeing the well-definedness of f , positiveness of f and

localisation of u in all directions in the space need to be satisfied. With a selection of the

parameters in the solutions, the localised structure and lump motion will be displayed.

Finally, a few concluding remarks will be given at the end of the paper.

2. Lump Solutions to the Reduction with z = x

With z = x , the dimensionally reduced form of the Eq. (1.3) turns out to be

�

D3
x Dy + 2 Dt Dx + Dt Dy − D2

x

�

f · f = 0, (2.1)

which is transformed into

ux x x y + 3 (uxuy)x + 2ut x + ut y − ux x = 0, (2.2)

through the link between f and u

u= 2
�

ln f (x , y, t)
�

x
= 2

fx(x , y, t)

f (x , y, t)
. (2.3)

A direct substitution of f in the Eq. (1.4) into Eq. (2.1) leads to the following set of con-

straining equations on the parameters:

�

a1 = a1, a2 =
a2

1a3 − 2a1a2
3 + 2a1a5a7 − 2a1a2

7 − a3a2
5

a2
3
+ a2

7

, a3 = a3, a4 = a4,
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a5 = a5, a6 = −
a2

1
a7 − 2a1a3a5 + 2a2

3
a5 − a2

5
a7 + 2a5a2

7

a2
3
+ a2

7

, a7 = a7,

a8 = a8, a9 =
3
�

a2
1
+ a2

5

�2 �

a1a3 − 2a2
3
+ a5a7 − 2a2

7

�

(a1a7 − a3a5)
2

�

, (2.4)

which needs to satisfy the conditions

a1a7 − a3a5 6= 0, (2.5)

a1a3 − 2a2
3 + a5a7 − 2a2

7 > 0 (2.6)

to guarantee the well-definedness of f , the positiveness of f and the localisation of u in all

directions in the space. The parameters in the set (2.4) yield a class of positive quadratic

function solution to the Eq. (2.1) as

f =

�

a1 x +
a2

1
a3 − 2a1a2

3
+ 2a1a5a7 − 2a1a2

7
− a3a2

5

a2
3
+ a2

7

y + a3 t + a4

�2

+

�

a5 x −
a2

1a7 − 2a1a3a5 + 2a2
3a5 − a2

5a7 + 2a5a2
7

a2
3
+ a2

7

y + a7 t + a8

�2

+
3
�

a2
1
+ a2

5

� �

a1a3 − 2a2
3
+ a5a7 − 2a2

7

�

(a1a7 − a3a5)
2

, (2.7)

which, in turn, generates a class of lump solutions to the dimensionally reduced the Eq. (2.2)

through transformation (2.3) as

u(I) =
4(a1 g + a5h)

f
, (2.8)

where the function f is defined by the Eq. (2.7), and the functions g and h are given as

follows:

g = a1 x +
a2

1a3 − 2a1a2
3 + 2a1a5a7 − 2a1a2

7 − a3a2
5

a2
3
+ a2

7

y + a3t + a4,

h= a5 x −
a2

1a7 − 2a1a3a5 + 2a2
3a5 − a2

5a7 + 2a5a2
7

a2
3
+ a2

7

y + a7t + a8.

3. Lump Solutions to the Reduction with z = y

With z = y, the dimensionally reduced form of the Eq. (1.3) reads
�

D3
x Dy + Dt Dx + 2Dt Dy − D2

y

�

f · f = 0, (3.1)

which is cast into

ux x x y + 3 (ux uy)x + ut x + 2ut y − uy y = 0 (3.2)

through the link between f and u, that is, transformation (2.3).
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A direct substitution of f into the Eq. (3.1) gives rise to the following set of constraining

equations for the parameters:

�

a1 =
a2

2a3 − 2a2a2
3 + 2a2a6a7 − 2a2a2

7 − a3a2
6

a2
3
+ a2

7

, a2 = a2, a3 = a3, a4 = a4, (3.3)

a5 = −
a2

2a7 − 2a2a3a6 + 2a2
3a6 − a2

6
a7 + 2a6a2

7

a2
3
+ a2

7

, a6 = a6, a7 = a7, a8 = a8,

a9 =
3(a2

2 + a2
6
)2(a2a3 − 2a2

3 + a6a7 − 2a2
7)(a

2
2 − 4a2a3 + 4a2

3 + a2
6
− 4a6a7 + 4a2

7)

(a2a7 − a3a6)
2(a2

3
+ a2

7)

�

,

which needs to satisfy the conditions

a2a7 − a3a6 6= 0,

a2a3 − 2a2
3 + a6a7 − 2a2

7 > 0 (3.4)

to guarantee the well-definedness of f , the positiveness of f and the localisation of u in all

directions in the space. The parameters in the set (3.3) yield a class of positive quadratic

function solution to the Eq. (3.1) as

f =

�

a2
2a3 − 2a2a2

3 + 2a2a6a7 − 2a2a2
7 − a3a2

6

a2
3
+ a2

7

x + a2 y + a3 t + a4

�2

(3.5)

+

�

−
a2

2a7 − 2a2a3a6 + 2a2
3a6 − a2

6
a7 + 2a6a2

7

a2
3
+ a2

7

x + a6 y + a7 t + a8

�2

+
3
�

a2
2 + a2

6

�2 �

a2a3 − 2a2
3 + a6a7 − 2a2

7

� �

a2
2 − 4a2a3 + 4a2

3 + a2
6
− 4a6a7 + 4a2

7

�

(a2a7 − a3a6)
2
�

a2
3
+ a2

7

� ,

which, in turn, generates a class of lump solutions to the dimensionally reduced the Eq. (3.2)

through transformation (2.3) as

u(II) =
4(a1 g + a5h)

f
, (3.6)

where the function f is defined by the Eq. (3.5), and the functions g and h are given as

follows:

g =
a2

2a3 − 2a2a2
3 + 2a2a6a7 − 2a2a2

7 − a3a2
6

a2
3
+ a2

7

x + a2 y + a3 t + a4,

h= −
a2

2a7 − 2a2a3a6 + 2a2
3a6 − a2

6
a7 + 2a6a2

7

a2
3
+ a2

7

x + a6 y + a7 t + a8.
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4. Localised Characteristics and Lump Motion

The transformations (1.2) and (2.3) [with the Eq. (1.4)] clearly denote that lump so-

lution is a type of rational solution. By virtue of the following property

lim
x2+y2→∞

f (x , y, t) =∞ ∀t ∈ R

it is easy to have

lim
x2+y2→∞

u(I)(x , y, t) = lim
x2+y2→∞

u(II)(x , y, t) = 0 ∀t ∈ R,

therefore, all the solutions derived in this paper (u(I) and u(II)) are rationally localised in

all directions in the space.

The amplitude of a lump solution u is defined as max |u|, and the location of a lump

solution is then defined as the place where the max |u| is attained. To study the lump

motion, we firstly derive all the critical points of the lump solutions at a fixed time t as

x∗±(t) =

�

a2
1 + a2

5

� �

(a2a7 − a3a6)t + a2a8− a4a6

�

±
q

a9

�

a2
1
+ a2

5

�

(a1a6 − a2a5)
2

�

a2
1
+ a2

5

�

(a1a6 − a2a5)
,

y∗(t) =
(a3a5 − a1a7)t + a4a5− a1a8

a1a6 − a2a5

.

For the lump u(I) with parameter constraining conditions (2.4)-(2.6), the second partial

derivative test

ux x

�

x∗+(t), y∗(t)
�

= −2

�

a2
1 + a2

5

�3/2

a
3/2
9

< 0,

ux x

�

x∗+(t), y∗(t)
�

uy y

�

x∗+(t), y∗(t)
�

− u2
x y

�

x∗+(t), y∗(t)
�

=
4
�

a2
1 + a2

5

�2
(a1a6 − a2a5)

2

a3
9

> 0

tells us that (x∗+(t), y∗(t)) is the maximum point, and

umax =
2|a3a5 − a1a7|

q

3
�

a2
1
+ a2

5

� �

a1a3 − 2a2
3
+ a5a7 − 2a2

7

�

.

Meanwhile, we can find

ux x

�

x∗−(t), y∗(t)
�

= 2

�

a2
1 + a2

5

�3/2

a
3/2
9

> 0,

ux x

�

x∗−(t), y∗(t)
�

uy y

�

x∗−(t), y∗(t)
�

− u2
x y

�

x∗−(t), y∗(t)
�

=
4
�

a2
1 + a2

5

�2
(a1a6 − a2a5)

2

a3
9

> 0,
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so that (x∗−(t), y∗(t)) is the minimum point, and

umin =
−2|a3a5 − a1a7|

q

3
�

a2
1
+ a2

5

� �

a1a3 − 2a2
3
+ a5a7 − 2a2

7

�

.

Hereby, the amplitude of the lump

u(I) =
2|a3a5 − a1a7|

q

3
�

a2
1
+ a2

5

� �

a1a3 − 2a2
3
+ a5a7 − 2a2

7

�

,

which locates at (x∗±(t), y∗(t)).

Correspondingly, for the lump u(II) with parameter constraining conditions (3.3)-(3.4),

we have the maximum point (x∗
+
(t), y∗(t)) with

umax =
2|a3a6 − a2a7|

q

3(a2
2
+ a2

6
)(a2a3 − 2a2

3
+ a6a7 − 2a2

7)
,

the minimum point (x∗−(t), y∗(t)) with

umin =
−2|a3a6 − a2a7|

q

3(a2
2
+ a2

6
)(a2a3 − 2a2

3
+ a6a7 − 2a2

7
)
,

and the amplitude of the lump

u(II) =
2|a3a6 − a2a7|

q

3(a2
2
+ a2

6
)(a2a3 − 2a2

3
+ a6a7 − 2a2

7)
,

which locates at (x∗±(t), y∗(t)).

With particular choices of the involved parameters in the lump solution u, the localised

characteristics and lump motion can be seen clearly in Figs. 1 and 2 including (a) three-

dimensional structure, (b) density plot and (c) the contour plot with routing display.
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Figure 1: Lump dynamic characteristics of u(I) via the Eq. (2.8) with a1 = −2, a3 = −1, a4 = 0, a5 = 4,
a7 = 1.5 and a8 = 0: (a) 3-dimensional plot with t = 0, (b) density plot of (a), (c) the contour plot with
routing display.
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Figure 2: Lump dynamic characteristics of u(II) via the Eq. (3.6) with a2 = 3, a3 = 1, a4 = 0, a6 = −4,
a7 = −2 and a8 = 0: (a) 3-dimensional plot with t = 0, (b) density plot of (a), (c) the contour plot with
routing display.

5. Concluding Remarks

For two reduced cases of the new (3 + 1)-dimensional generalised KP equation — cf.

the Eq. (1.1), we have directly constructed two classes of lump solutions — cf. Eqs. (2.8)

and (3.6) via searching for positive quadratic function solutions to the associated bilinear

equations (2.1) and (3.1).

It is interesting to consider the following two questions. Firstly, for the reduction with

z = t, the Eq. (1.1) is reduced into

ux x x y + 3 (ux uy)x + ut x + ut y = 0. (5.1)

How to derive lump solutions or how to prove the non-existence of lump solutions to the

Eq. (5.1) is a further question. Secondly, how to derive lump solutions to the (3 + 1)-

dimensional nonlinear evolution equations, e.g., the Eq. (1.1). Within the frame work of

this paper, one may suppose

f = g2 + h2 + k2 + a16

with

g = a1 x + a2 y + a3z + a4t + a5,

h = a6 x + a7 y + a8z + a9t + a10,

k = a11 x + a12 y + a13z + a14 t + a15,

which should be substituted directly into the Eq. (1.3) for the purpose of positive quadratic

function solutions so as to lump solutions to the Eq. (1.1).
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