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Abstract A versatile integration gadget namely the Hirota bilinear (HB) technique is devoted
to retrieving different categories of interactive lump solutions of an extension form to the 3D-
Jimbo–Miwa (3D-JM) model with exponential and hyperbolic functions under some specific
constraint conditions. The article studies the dynamics for these acquired solutions through
3D figures by selecting adequate measurable factors.

1 Introduction

The attainment of analytical solutions for different models described by NLPDEs has a major
part in various fields of applied physics. The solutions of NLPDEs have attracted appreciably
more attention of physicists as well as mathematicians [1–15]. Many effective methods have
been presented to solve these models availing from the headway of symbolic computation
[16–21]. Abundant of approaches are investigated to create, analyze, and study the analytical
solutions (especially soliton wave solutions) of NLPDEs. These methods include, inter alia,
the Hirota direct [22,23], exp-function [24], three-wave [25–27], and the generalized unified
[28–32] approaches.
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Lump solutions, which are rational functional solutions, are important category of soliton
solutions [33,34]. The studying of their interactions has been drawing the research community
[35–48]. It is worth to be noticing that the lump waves preserved their behaviors before and
after the encounter between them which can be indicated as an elastic collision.

In the literature, one typical approach to studying lump solutions is to utilize HB equations.
In this paper, by employing symbolic computation [49–55] and the HB form, we address the
following 3D-JM model [56]:

uxxxy + 3 ux uxy + 3 uy uxx + 2 (uyt + uxt + uzt ) − 3 uxz = 0, (1)

which may be applied to illustrate the importance of 3D-waves in interdisciplinary research.
Equation (1) is an extended form to the well-known (3+1)-dimensional Jimbo–Miwa equation
which is the type (II) of the KP hierarchy [57] by adding the two linear terms uxt and uzt .
Furthermore, it did not pass any of the conventional integrability tests. Deng and et al.
[58] discussed the Bilinear form, Bäcklund transformation, Lax pair, and infinitely many
conservation laws for the 3D-JM model through the binary Bell polynomials and symbolic
computation. Wazwaz [56] used Hirota’s technique to derive twofold soliton solutions for
Eq. (1). Lump solutions and their dynamics are studied in [59–62].

The arrangement of this essay will be reported as; Sect. 2 constructed different classes
of interactive lump solutions for the 3D-JM model established by the HB technique for
Eq. (1). Section 3 discussed the dynamics property of the gained solutions. Sections 4, 5,
and 6 reported the dynamics property between lump and exponential function, hyperbolic
function, and hyperbolic tangent function solutions, respectively. Section 7 confined to the
conclusion.

2 Implementation and discussion of the interactive lump solutions for the 3D-JM
model via the HB form

Based on the processing u = 2(ln�)x , we achieve the following HB form of Eq. (1)

[2 (ΓtΓx + ΓtΓy + ΓtΓz) + Γ 3
x Γy − 3 Γz Γx ]� · � = 0, (2)

which is valent to:

(�xxxy + 2 �t x + 2 �t y + 2 �t z − 3 �xz)� − 3�xxy�x + 3�xy �xx

−�y �xxx − 2 �t�x − 2 �t�y − 2 �t�z + 3 �x �z = 0. (3)

Lump and lump-kink solutions are an example of the interactive lump solutions for the 3D-JM
model which can be explored by the aid of Eq. (3) when shape takes

g = xχ1 + yχ2 + zχ3 + tχ4 + χ5,

h = xχ6 + yχ7 + zχ8 + tχ9 + χ10,

l = kexk1+yk2+zk3+tk4 ,

m = j cosh (x j1 + y j2 + z j3 + t j4) ,

� = g2 + h2 + χ11 + l + m, (4)

where χσ (1 ≤ σ ≤ 11), kσ (1 ≤ σ ≤ 4), jσ (1 ≤ σ ≤ 4), k and j are real parameters. A
principle system of these parameters can be obtained by inserting Eq. (4) into Eq. (3) which
derives different states of solutions for χσ (1 ≤ σ ≤ 11), kσ (1 ≤ σ ≤ 4), jσ (1 ≤ σ ≤ 4), k
and j .
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Fig. 1 The lump solution of Eq. (1) for χ1 = χ3 = z = 2, χ2 = 5, χ6 = 3, χ10 = 1, χ5 = −1. a, d
t = −15. b, e t = 0. c, f t = 15

where (χ1 + χ2 + χ3)
2 + (χ7 + χ8)

2 �= 0, (χ7 + χ8) (χ3χ7 − (χ1 + χ2) χ8) �= 0.
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where (χ1 + χ2)
2 + (χ6 + χ7 + χ8)

2 �= 0, (χ1 + χ2) χ8 (χ1 (χ7 + χ8) − χ2χ6) �= 0.
Above these solutions for the parameters engender nine classes of linear combination

solutions to the Hirota’s bilinear Eq. (3), defined by Eq. (4), under the transformation u =
2(ln�)x ).

3 The dynamics property of lump solution

Herein, we analyze the dynamical characteristic of the acquired lump solutions of the 3D-
JM model. The acquired solutions stated in Eqs. (5)–(13) own the same style but vary in
their coefficients. In observance of this, we confine ourself to state (3) to shed light on their
dynamical behaviors through 3D- and contour plots.

Figure 1a–c shows the 3D-plots of the lump solutions in the xy-plane, while Fig. 1d–f
shows the corresponding contour plot at the time instance t = −15, 0, 15, respectively.
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Fig. 2 Plots of the lump solution with exponential function of Eq. (1) for χ1 = 8, χ5 = χ10 = 1, χ2 = −5,
k1 = −2, k = 0.8, z = 2. a, d t = −5. b, e t = 0. c, f t = 2

4 The dynamics property between lump and exponential function solutions

In this part, we focus on studying the interaction between lump and exponential function
solutions. To explain this case, we investigate 3D- and contour plots for State (5). Figure 2a–
c shows the 3D-plots of this kind of solutions in xy-plane at t = −5, 0, 2, respectively.
Figure 2d–f represents their corresponding contour plot.

5 The dynamics property between lump and hyperbolic function solutions

Now, the dynamics analysis between lump and hyperbolic function solutions will be discussed
in this part. State (4) will cover graphically this discussion through some 3D- and contour
plots when t = −15, 0, 15. Figure 3a–c gives the 3D-plots of this type of solutions xy-plane,
while the contour plots for the solutions are introduced in Fig. 3d–f.

6 The dynamics property between the rational and the hyperbolic tangent function
solutions

Finally in this section, we investigate the dynamics property among the rational and hyper-
bolic tangent function solutions. To reach our aim, we assume Eq. (3) in the form

g = xℵ1 + yℵ2 + zℵ3 + tℵ4 + ℵ5,

h = xℵ6 + yℵ7 + zℵ8 + tℵ9 + ℵ10,

� = g2 + h2 + k tanh (�1x + �2y + �3z + �4t) + ℵ11, (14)

where ℵi (1 ≤ i ≤ 11), �i (1 ≤ i ≤ 4), and k are undetermined constants. Let us take Eq.
(14) into Eq. (3), the values of the undetermined parameters ℵi (1 ≤ i ≤ 11), �i (1 ≤ i ≤ 4),
and k are calculated by using the Mathematical software as
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Fig. 3 Plots of the lump solution with hyperbolic function of Eq. (1) χ1 = χ3 = z = 2, χ2 = χ6 = χ10 =
j = 1, χ5 = −1. a, d t = −15. b, e t = 0. c, f t = 15

�1 = ℵ2 = ℵ7 = 0,�3 = �2 = −2 (ℵ1 + ℵ3)�4

3ℵ1
,ℵ8 = ℵ3ℵ6

ℵ1
,

ℵ4 = 3ℵ1ℵ3

2 (ℵ1 + ℵ3)
,ℵ9 = 3ℵ3ℵ6

2 (ℵ1 + ℵ3)
, (15)

where ℵ1 �= 0, ℵ1 + ℵ3 �= 0. Substituting Eqs. (14) and (15) into the formula u = 2(ln�)x ,
we gain the solution of Eq. (1) as

u =
[

2

[
2ℵ1

[
ℵ5 + 3ℵ3ℵ1t

2 (ℵ1 + ℵ3)
+ ℵ1x + ℵ3z

]
+ 2ℵ6
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ℵ10 + 3ℵ3ℵ6t

2 (ℵ1 + ℵ3)

+ℵ6x + ℵ3ℵ6z

ℵ1
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ℵ11 + k tanh

[
�4t − 2 (ℵ1 + ℵ3)�4y

3ℵ1
+ 2 (ℵ1 + ℵ3)�4z

3ℵ1

]

+
[
ℵ5 + 3ℵ3ℵ1t

2 (ℵ1 + ℵ3)
+ ℵ1x + ℵ3z

]
2

+
[
ℵ10 + 3ℵ3ℵ6t

2 (ℵ1 + ℵ3)
+ ℵ6x + ℵ3ℵ6z

ℵ1

]
2
]

. (16)

The dynamical behaviors for the solution in Eq. (16) that are clarified in interaction solution
between the rational function and the hyperbolic tangent function are shown in Fig. 4.

Figure 4a–c gives the 3D-plots in t z-plane at x = −10, 0, 10, respectively. Figure 4d–f
describes the corresponding contour maps at the same values of x .

7 Conclusion

This research is successfully applied the HB form and symbolic computations to generate
different classes of interactive lump solutions for the 3D-JM model with some nonzero
determinant conditions. Some discussions are graphically introduced about the dynamic
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Fig. 4 The solution (6) for ℵ1 = ℵ6 = 3, ℵ11 = −5, k = y = ℵ10 = 2, ℵ5 = 6, �4 = −1, ℵ3 = −2. a, d
x = −10. b, e x = 0. c, f x = 10

properties of the acquired solutions in Figs. 1, 2, 3, and 4 via suitable choices of the adequate
parameters.
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