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a b s t r a c t

This paper studies the multi-component Sasa-Satsuma integrable hierarchies via an
arbitrary-order matrix spectral problem, based on the zero curvature formulation. A
generalized coupled Sasa-Satsuma equation is derived from the multi-component Sasa-
Satsuma integrable hierarchies with a bi-Hamiltonian structure. The inverse scattering
transform of the generalized coupled Sasa-Satsuma equation is presented by the spatial
matrix spectral problem and the Riemann–Hilbert method, which enables us to obtain
the N-soliton solutions. And then the dynamics of one- and two-soliton solutions are
discussed and presented graphically. Asymptotic analyses of the presented two-soliton
solution are finally analyzed.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The inverse scattering transform is one of the most significant methods to obtain solutions of numerous integrable
onlinear equations. With the in-depth study of integrable systems, the Riemann–Hilbert method is proposed which
s more straightforward and simplified compared with the inverse scattering transform method [1]. A large number of
ntegrable nonlinear equations have been studied by using Riemann–Hilbert method, such as the nonlinear Schrödinger
NLS) equation [2–4], the modified Korteweg–de Vries (mKdV) equation [5], the focusing and defocusing Hirota equa-
ions [6], the Fokas–Lenells (FL) equation [7,8], and the Dullin–Gottwald–Holm (DGH) equation [9]. This method is also
idely investigated and applied to generate soliton solutions of the coupled higher-order nonlinear Schrödinger (HNLS)
quations [10] and the multi-component cubic–quintic NLS system [11].
The Sasa-Satsuma equation is derived from the HNLS equation [12–15] by using the suitable transformations, and

uch equation with higher-order terms still preserves integrability. The Sasa-Satsuma equation can describe the wave
evelopment in the complex scalar field and the pulse propagation in birefringent fibers [16,17], so as to increase the
it rate in optical fibers, or achieve wavelength-division multiplexing [18]. And it is worth mentioning that the Sasa-
atsuma equation could contribute different dynamic characteristics of optical solitons such as bright solitons, dark
olitons, breather, single-hump, double-hump, rogue waves and W-shaped soliton, and the related studies can be found
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in [19–25]. The Lax pair of the Sasa-Satsuma equation has been constructed in [26], and there are many studies to show
its integrability [27,28]. Xu et al. derive N-soliton solutions and construct two different types of femto-second soliton
solutions of the coupled Sasa-Satsuma system by using Darboux transformation [29,30]. In both vanishing and non-
vanishing backgrounds, the explicit solutions of the coupled Sasa-Satsuma equations are generated through the binary
Darboux transformation method [31]. Using Riccati equation mapping technique, periodic solitons and solitary waves
for the Sasa-satsuma equation are derived in [32]. Nth-order semi-rational solutions of the Sasa-Satsuma equation are
derived via a modified dressing transformation [33]. The nonlinear steepest descent method is applied to analyze the
long-time asymptotics for the Sasa-Satsuma equation with decaying initial data [34]. Liu and Guo follow the modifications
of nonlinear steepest descent approach and find the long-time asymptotic behaviors for the Sasa-Satsuma equation
using Cauchy formula [35]. The inverse scattering transform is constructed for the Sasa-Satsuma equation with nonzero
boundary condition in [36]. Geng et al. [17,37,38] study the one-, two- and three-component Sasa-Satsuma equations
through the Riemann–Hilbert method, and describe the different dynamic behaviors of soliton solutions. Through a
standard dressing procedure, soliton matrices for simple and elementary high-order zeros for Sasa-Satsuma equation are
constructed [39]. Wu [40] analyzes spectral and soliton structures of the Sasa-Satsuma equation by solving the Riemann–
Hilbert problem. Wang and Han [41] derive N-soliton solutions of a three-component coupled Sasa-Satsuma equation,
and discuss the dynamics of the soliton solutions. To the authors’ best knowledge, the soliton solutions and asymptotic
analysis about the generalized coupled Sasa-Satsuma equation with arbitrary constant coefficients have not been reported
until now.

In this paper, we consider the generalized coupled Sasa-Satsuma equation as follows

ut + uxxx + 6(σ1|u|2 + σ2|v|
2)ux + 3u(σ1|u|2 + σ2|v|

2)x = 0,

vt + vxxx + 6(σ1|u|2 + σ2|v|
2)vx + 3v(σ1|u|2 + σ2|v|

2)x = 0,
(1)

where u and v represent complex-valued functions for the independent spatial variable x and temporal variable t , the
parameters σ1 and σ2 are arbitrary real numbers, and the subscript x (or t) denotes the partial derivative with respect to x
(or t) of functions u and v. In the generalized coupled Sasa-Satsuma equation, the last three terms account for third order
dispersion, Kerr dispersion and self-frequency shift under Raman effect, respectively. In order to explore the origin of
the generalized coupled Sasa-Satsuma Eq. (1), the multi-component Sasa-Satsuma integrable hierarchies are constructed
from the zero curvature formulation. In the meantime, the corresponding bi-Hamiltonian structure is also constructed.
Several types of solutions are obtained via the Riemann–Hilbert method, such as the bright solitons, breather, single-
hump solitons and double-hump solitons. And dynamic behaviors are investigated, which enrich the physical features of
nonlinear systems. It is noted that the elastic interaction between one (or two) single-hump solution(s) and one (or two)
breather-type solution(s) of the generalized coupled Sasa-Satsuma equation are investigated, and polarization-changing
collisions between two single-hump solitons are also analyzed. For the purpose of observing phase shifts of the two-soliton
solutions before interaction and after interaction, we give the asymptotic expressions of two-soliton solutions through
long-time behavior analysis.

The outline of this paper is presented as follows. In Section 2, according to the zero curvature formulation, the multi-
component Sasa-Satsuma integrable hierarchies are constructed, which contribute to derive the generalized coupled
Sasa-Satsuma equation. And a bi-Hamiltonian structure is also constructed, which displays the integrability of the Sasa-
Satsuma system. In Section 3, the inverse scattering transform of the generalized coupled Sasa-Satsuma equation with
the spectral analysis is studied through the Riemann–Hilbert method. In Section 4, the N-soliton solutions are derived
explicitly via the reflectionless transforms in two cases. The expressions of one- and two-soliton solutions are presented,
and some figures are given to describe the dynamic characteristics of them. In Section 5, the long-time asymptotic analysis
on two-soliton solutions of the generalized coupled Sasa-Satsuma equation is given. Finally, the conclusions of this paper
are stated in Section 6.

2. The multi-component Sasa-Satsuma integrable hierarchies

2.1. Zero curvature formulation

Integrable hierarchies can be constructed by using zero curvature formulation. Firstly, a square spectral matrix U =

U(u, u∗, λ) can be introduced with vector potentials u, u∗ and a spectral parameter λ. In order to solve the stationary zero
curvature equation

Vx = [U, V ], (2)

we assume a solution

V = V (u, u∗, λ) =

∞∑
m=0

Vmλ
−m

=

∞∑
m=0

Vm(u, u∗)λ−m. (3)

Based on the solution V of the stationary zero curvature Eq. (2), we would like to derive an integrable hierarchy from the
zero curvature equations

U − V [n]
+
[
U, V [n]]

= 0, n ≥ 1. (4)
tn x

2
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In order to make the left side of the above equations appear to the zero power of λ, a series of Lax matrix expressions
[n] in the above zero curvature Eqs. (4) are constructed as [42]

V [n]
= V [n](u, u∗, λ) =

(
λnV

)
+

+∆n, n ≥ 1, (5)

where the term of (λnV )+ represents a polynomial part in λ, and ∆n is the modification term. With different values of n,
we select appropriate ∆n, and then the integrable hierarchy could be given as follows(

utn
u∗⊤
tn

)
= Kn(u, u∗) = Kn

(
x, t, u, u∗, ux, u∗

x , . . .
)
, n ≥ 1, (6)

where Kn is the formal differential operator representing Kn
(
x, t, u, u∗, ux, u∗

x , . . .
)
[43].

The associated spatial and temporal matrix spectral problems of the nth evolution equation in the hierarchy (6) are
given as follows

Yx = UY = U(u, u∗, λ)Y , Ytn = V [n]Y = V [n](u, u∗, λ)Y , n ≥ 1, (7)

where Y is the matrix eigenfunction, and the compatibility condition of these matrix spectral problems is the zero
curvature equation (4).

Then, we would like to analyze the bi-Hamiltonian structures of the hierarchy (6), which can be usually provided by
trace identification [44,45]:

δ

δu

∫
tr
(
V
∂U
∂λ

)
dx = λ−γ ∂

∂λ

[
λγ tr

(
V
∂U
∂u

)]
, γ = −

λ

2
d
dλ

ln
⏐⏐tr (V 2)⏐⏐ , (8)

or more generally, the variational identity:

δ

δu

∫ ⟨
V ,
∂U
∂λ

⟩
dx = λ−γ ∂

∂λ

[
λγ
⟨
V ,
∂U
∂u

⟩]
, γ = −

λ

2
d
dλ

ln |⟨V , V ⟩|, (9)

where ⟨·, ·⟩ is a non-degenerate, symmetric and ad-invariant bilinear form [46], and δ
δu stands for the variational derivative

which is defined as
δ

δu
=

∑
n≥0

(−∂)n
∂

∂u(n) , (∂ =
∂

∂x
, u(n)

= ∂nu). (10)

The bi-Hamiltonian structure is provided(
utn

u∗⊤
tn

)
= Kn = J1

δH̃n+1

δu
= J2

δH̃n

δu
, n ≥ 1, (11)

hich could help to analyze the Liouville integrability [43] of the hierarchy (6). The J1 and J2 are the Hamiltonian pairs [47].

2.2. The multi-component Sasa-Satsuma integrable hierarchies

In order to generate the Sasa-Satsuma integrable hierarchies with multiple components, the 2n+1 order matrix spectral
problem is constructed as follows

Yx = UY = U(u, u∗, λ)Y , U =

(
iλI2n u
−u∗

−iλ

)
, (12)

where λ is a spectral parameter, u is a 2n-dimensional column vector and u∗ is a 2n-dimensional row vector

u = (u1, σ1u∗

1, u2, σ2u∗

2, . . . , un, σnu∗

n)
⊤ u∗

= (σ1u∗

1, u1, σ2u∗

2, u2, . . . , σnu∗

n, un), (13)

here σ1, σ2, . . .σn are arbitrary real numbers, and the superscript ∗ and ⊤ denote the conjugate and the transpose,
espectively.

Then, we introduce a solution V of the corresponding stationary zero curvature Eq. (2)

V =

(
a b
c d

)
, (14)

here a is a 2n×2n matrix, b and c⊤ are 2n-dimensional columns, and d is a scalar. So as to derive the multi-component
asa-Satsuma integrable hierarchies, we substitute the above matrix (14) into the corresponding stationary zero curvature
q. (2). Based on the matrix operation, the equations are given as follows⎧⎪⎨⎪⎩

ax = uc + bu∗,

bx = 2iλb + ud − au,
cx = −u∗a − 2iλc + du∗,

∗

(15)
dx = −u b − cu.
3
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Then, we give the expression of V

V =

(
a b
c d

)
=

∞∑
m=0

Vmλ
−m, Vm = Vm(u, u∗) =

(
a[m] b[m]

c [m] d[m]

)
, m ≥ 0, (16)

where a[m], b[m] and c [m] are expressed as

a[m]
= (a[m]

ij )2n×2n, m ≥ 0,

b[m]
= (b[m]

1 , b[m]

2 , . . . , b[m]

2n )⊤, m ≥ 0, (17)

c [m]
= (c[m]

1 , c[m]

2 , . . . , c[m]

2n ), m ≥ 0.

Substituting the Eq. (16) into the equation set (15), the recursion relations are derived as follows

b[0]
= 0, c [0]

= 0, a[0]
x = 0, d[0]

x = 0,

b[m+1]
= −

i
2
b[m]

x +
i
2
ud[m]

−
i
2
a[m]u,

c [m+1]
=

i
2
c [m]

x +
i
2
u∗a[m]

−
i
2
d[m]u∗,

a[m]

x = uc [m]
+ b[m]u∗,

d[m]

x = −u∗b[m]
− c [m]u.

(18)

e take the initial values

a[0]
= α1I2n, d[0]

= α2, (19)

here α1, α2 are arbitrary real constants. The recursion relation (18) can determine all matrices Vm, m ≥ 1, and the
coefficients are derived as follows

b[1]
= −

i
2
αu, c [1]

=
i
2
αu∗, a[1]

x = 0, d[1]
x = 0, a[1]

= α3I2n, d[1]
= α4,

b[2]
= −

1
4
αux −

i
2
βu, c [2]

= −
1
4
αu∗

x +
i
2
βu∗,

a[2]
x = −

1
4
α(uu∗

x + uxu∗), d[2]
x =

1
4
α(u∗ux + u∗

xu),

a[2]
= −

1
4
αuu∗

+ α5I2n, d[2]
=

1
4
αu∗u + α6,

b[3]
=

i
8
αuxx −

1
4
βux +

i
4
αuu∗u −

i
2
γu,

c [3]
= −

i
8
αu∗

xx −
1
4
βu∗

x −
i
4
αu∗uu∗

+
i
2
γu∗,

a[3]
x =

i
8
α(uxu∗

− uu∗

x )x −
1
4
β(uu∗)x,

d[3]
x =

i
8
α(u∗

xu − u∗ux)x +
1
4
β(u∗u)x,

a[3]
=

i
8
α(uxu∗

− uu∗

x ) −
1
4
βuu∗

+ α7I2n,

d[3]
=

i
8
α(u∗

xu − u∗ux) +
1
4
βu∗u + α8,

(20)

here α = α1 − α2, β = α3 − α4, γ = α5 − α6 and αi (i = 3, 4, 5, 6, 7, 8) are arbitrary real constants. On the basis of
Eq. (18), the recursion relation of b[m] and c [m] is given as follows(

b[m+1]

c [m+1]⊤

)
= Γ

(
b[m]

c [m]⊤

)
, m ≥ 1, (21)

where Γ is a 4n × 4n matrix integro-differential operator

Γ = −
i
2

⎛⎜⎜⎜⎜⎝
∂x + u∂−1

x u∗
+

n∑
j=1

hj u∂−1
x u⊤

+ (u∂−1
x u⊤)⊤

−(u∗⊤∂−1
x u∗)⊤ − u∗⊤∂−1

x u∗
−∂x −

n∑
hj − u∗⊤∂−1

x u⊤

⎞⎟⎟⎟⎟⎠ . (22)
j=1

4



Y. Liu, W.-X. Zhang and W.-X. Ma Communications in Nonlinear Science and Numerical Simulation 118 (2023) 107052

(

g

A
c

w

S

T

w

a

T
s
c

In the above matrix Γ , hj is presented as

hj = σjuj∂
−1
x u∗

j + σju∗

j ∂
−1
x uj. (23)

Then, we introduce the Lax matrix of temporal matrix spectral problems of the nth evolution equation in the hierarchy
6)

V [n]
= V [n](u, u∗, λ) = (λnV )+ =

n∑
m=0

Vmλ
n−m, n ≥ 1, (24)

where the Vm is defined in (16). According to the zero curvature Eq. (4), the multi-component Sasa-Satsuma integrable
hierarchies are given as follows(

utn

u∗⊤
tn

)
= 2i

(
b[n+1]

c [n+1]⊤

)
, n ≥ 1. (25)

When n = 3, we take the functions u2 = u3 = 0 and let the coefficients α = 8i, β = 0, γ = 0 and α7 = α8. The
eneralized one-component Sasa-Satsuma equation is derived from the above hierarchies (25) in the following form

u1,t3 + u1xxx + 6u1x(σ1|u1|
2) + 3u1(σ1|u1|

2)x = 0. (26)

dditionally, we take the function u3 = 0, and let the coefficients α = 8i, β = 0, γ = 0 and α7 = α8. The generalized
oupled Sasa-Satsuma equation is derived from the above hierarchies (25) as follows

u1,t3 + u1xxx + 6u1x(σ1|u1|
2
+ σ2|u2|

2) + 3u1(σ1|u1|
2
+ σ2|u2|

2)x = 0,

u2,t3 + u2xxx + 6u2x(σ1|u1|
2
+ σ2|u2|

2) + 3u2(σ1|u1|
2
+ σ2|u2|

2)x = 0.
(27)

So as to analyze the Liouville integrability of the multi-component Sasa-Satsuma integrable hierarchies (25), bi-
Hamiltonian structures can be presented using the trace identity or the variational identity. According to the matrix U ,
the traces satisfy

tr(V
∂U
∂λ

) = i[tr(a) − d] = i[
∞∑

m=0

(
2n∑
j=1

a[m]

jj − d[m])λ−m
], (28)

tr(V
∂U
∂u

) =

(
c⊤

−b

)
=

∑
m≥0

Gm−1λ
−m, (29)

here

Gm−1 =

(
c [m]⊤

−b[m]

)
, m ≥ 1. (30)

ubstituting the above (28)–(29) into the trace identity, we get

δH̃m

δu
= iGm−1, H̃m =

i
m

∫
(

2n∑
j=1

a[m+1]
jj − d[m+1])dx, m ≥ 1. (31)

hen, the bi-Hamiltonian structure for the multi-component Sasa-Satsuma Eqs. (1) is derived as(
utm

u∗⊤
tm

)
= Km = J1

δH̃m+1

δu
= J2

δH̃m

δu
, m ≥ 1, (32)

here

J1 =

(
0 −2I2n

2I2n 0

)
, (33)

nd

J2 = i

⎛⎜⎜⎜⎜⎝
−u∂−1

x u⊤
− (u∂−1

x u⊤)⊤ ∂x + u∂−1
x u∗

+

n∑
j=1

hj

∂x +

n∑
j=1

hj + u∗⊤∂−1
x u⊤

−(u∗⊤∂−1
x u∗)⊤ − u∗⊤∂−1

x u∗

⎞⎟⎟⎟⎟⎠ . (34)

he bi-Hamiltonian structure is constructed which displays the integrability of multi-component Sasa-Satsuma integrable
ystem. Thus, adjoint symmetry constraints decompose each multi-component Sasa-Satsuma system (25) into two
ommuting finite-dimensional Hamiltonian systems being Liouville integrable .
5
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3. Inverse scattering for the generalized coupled Sasa-Satsuma equation

In order to obtain the N-soliton solution of the generalized coupled Sasa-Satsuma Eq. (1), the symmetry relations of
iscrete scattering data should be derived first. In this section, we use the inverse scattering transform method to analyze
he problem. We begin our analysis with the following Lax pair which can be derived from a five-order matrix spectral
roblem when u3 and u∗

3 are zero in (12),

Yx = UY , Yt = VY , (35)

here Y = Y (x, t, λ) is the matrix eigenfunction with the complex spectral parameter λ. And

U = −iλΛ+ Q , (36)

V = −4iλ3Λ+ 4λ2Q − 2iλ(Q 2
+ Qx)Λ+ QxQ − QQx − Qxx + 2Q 3, (37)

here

Q =

⎛⎜⎜⎜⎝
0 0 0 0 u
0 0 0 0 σ1u∗

0 0 0 0 v

0 0 0 0 σ2v
∗

−σ1u∗
−u −σ2v

∗
−v 0

⎞⎟⎟⎟⎠ , (38)

nd

Λ = diag(−1,−1,−1,−1, 1). (39)

Based on the Lax pair (35), we study inverse scattering transform for the generalized coupled Sasa-Satsuma Eq. (1)
ia Riemann–Hilbert framework. Assume the solution (u, v) → 0 as x → ±∞, and the expression of Y can be given as
ollows

Y = Je−iλΛx−4iλ3Λt , (40)

here the matrix function J is (x, t)-independent at infinity. Substituting (40) into (35), we get

Jx = −iλ[Λ, J] + QJ, (41)

Jt = −4iλ3[Λ, J] + [4λ2Q − 2iλ(Q 2
+ Qx)Λ+ QxQ − QQx − Qxx + 2Q 3

]J

= −4iλ3[Λ, J] + Q̃ J,
(42)

here [Λ, J] = ΛJ − JΛ.
Notice that the matrix Q satisfies the following property

Q †
= −FQF−1, (43)

here the superscript † represents the Hermitian transpose (i.e., conjugate transpose) of a matrix, and

F =

⎛⎜⎜⎜⎜⎝
σ1 0 0 0 0
0 1

σ1
0 0 0

0 0 σ2 0 0
0 0 0 1

σ2
0

0 0 0 0 1

⎞⎟⎟⎟⎟⎠ . (44)

In the scattering problem, the matrix Jost solutions J±(x, λ) of Eq. (41) are given with the asymptotic condition as x
pproaches ±∞

J±(x, λ) → I, x → ±∞, (45)

here I is the 5 × 5 unit matrix. The notations are also given as follows

J−E = Φ = (φ1, φ2, φ3, φ4, φ5), (46)

J+E = Ψ = (ψ1, ψ2, ψ3, ψ4, ψ5), (47)

here E(x, λ) = e−iλΛx. Since Φ and Ψ are both fundamental matrices of (35), they could be related as

Φ(x, t, λ) = Ψ (x, t, λ)S(t, λ), λ ∈ R, (48)

here S(t, λ) = [sij] for real λ. In addition, it is easy to verify that the matrix Jost solutions J±(x, λ) are uniquely determined
y the Volterra integral equations

J− = I +

∫ x

eiλΛ(y−x)QJ−e−iλΛ(y−x)dy, (49)

−∞

6
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J+ = I −

∫
+∞

x
eiλΛ(y−x)QJ+e−iλΛ(y−x)dy. (50)

Then we analyze the analytic properties of column vectors of J±(x, λ). According to the expression (38) of Q , it is obvious
that the first to fourth columns of matrix J− and the fifth column of matrix J+ can be analytically continued to the lower
half plane λ ∈ C−, while the fifth column of matrix J− and the first to fourth columns of matrix J+ can be analytically
continued to the upper half plane λ ∈ C+. The Jost solutions are derived as

P+
= (ψ1, ψ2, ψ3, ψ4, φ5)eiλΛx

= J−H1 + J+H2, (51)

which are analytic in λ ∈ C+. In the above expression (51), the H1 and H2 are given as follows

H1 = diag(0, 0, 0, 0, 1), H2 = diag(1, 1, 1, 1, 0). (52)

Meanwhile, some notations of the inverse Jost solutions are introduced as

J−1
−

= EΦ−1, J−1
+

= EΨ −1, (53)

here

Φ−1
= (φ̂1, φ̂2, φ̂3, φ̂4, φ̂5)⊤, Ψ −1

= (ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5)⊤. (54)

n a similar way, the analytic properties of row vectors of J−1
± (x, λ) can be analyzed, and the inverse Jost solutions are

erived as

P−
= e−iλΛx(ψ̂1, ψ̂2, ψ̂3, ψ̂4, φ̂5)⊤ = H1J−1

−
+ H2J−1

+
, (55)

hich are analytic in λ ∈ C−. When the λ approaches ∞, these analytical solutions are

P±(x, t, λ) → I5, λ ∈ C± → ∞. (56)

he relation between P+ and P− is given on the real line

P−(x, t, λ)P+(x, t, λ) = G(x, t, λ), λ ∈ R, (57)

here

G = (H1J−1
−

+ H2J−1
+

)(J−H1 + J+H2)

= E

⎛⎜⎜⎜⎝
1 0 0 0 s15
0 1 0 0 s25
0 0 1 0 s35
0 0 0 1 s45
ŝ51 ŝ52 ŝ53 ŝ54 1

⎞⎟⎟⎟⎠ E−1 (58)

nd S−1(t, λ) = [ŝij]. Eq. (57) determines a matrix Riemann–Hilbert problem under the normalization condition (56).
Then, we consider the expanded form of P+ as λ approaches ∞

P+(x, t, λ) = I + λ−1P+

1 (x, t) + O(λ−2), λ → ∞. (59)

ased on the reason that P+ is the solution of Eq. (41), we substitute the above expansion (59) into Eq. (41) and compare
oefficients of terms O(1), and then the potential Q is derived as

Q = i[Λ, P+

1 ]. (60)

ence u, v, σ1u∗, σ2v∗ can be constructed as

u = −2i(P+

1 )15 = −2i(P+

1 )52, σ1u∗
= −2i(P+

1 )25 = −2i(P+

1 )51, (61)

v = −2i(P+

1 )35 = −2i(P+

1 )54, σ2v
∗

= −2i(P+

1 )45 = −2i(P+

1 )53. (62)

. The N-soliton solutions and their dynamics

The determinants of P± are derived as

det P+(x, t, λ) = s55(t, λ), det P−(x, t, λ) = ŝ55(t, λ), (63)

which get through the definitions of P± and the scattering relation (48). Based on the different assumptions of zeros of
s55(t, λ) and ŝ55(t, λ), we analyze the N-soliton solution of generalized coupled Sasa-Satsuma Eq. (1) in two cases. In the
first case, we suppose s55(t, λ) and ŝ55(t, λ) have N simple zeros at λ1,k ∈ C+ and λ̄1,k ∈ C−(1 ≤ k ≤ N), respectively.
In this case, λ1,k is pure imaginary, and we call this case as ‘purely imaginary case’. In the second case, we assume that
s55(t, λ) and ŝ55(t, λ) have 2N simple zeros at λ2,k ∈ C+ and λ̄2,k ∈ C−(1 ≤ k ≤ 2N), respectively. In this case, λ2,k has no
restriction of pure imaginary, and we call the second case as ‘imaginary case’.
7
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4.1. The N-soliton solutions in purely imaginary case

From the above discussion, the zeros of det P+ and det P− have been assumed. In this case, the kernels of P+(x, t, λ1,k)
and P−(x, t, λ̄1,k) contain only a single column vector ω1,k and row vector ω̄1,k, respectively,

P+(x, t, λ1,k)ω1,k = 0, ω̄1,kP−(x, t, λ̄1,k) = 0, 1 ≤ k ≤ N, (64)

where the vectors ω1,k and ω̄1,k are (x, t)-dependent.
Combining the symmetry relation of the matrix Q in (43), these symmetry constraints of discrete scattering data are

found to be

λ̄1,k = λ∗

1,k, ω
†
1,k = ω̄1,kF−1, S†(t, λ1,k) = FS−1(t, λ∗

1,k)F
−1. (65)

Since P+ satisfies the Eqs. (41)–(42), the differential equations of ω1,k are given as

dω1,k

dx
= −iλ1,kΛω1,k,

dω1,k

dt
= −4iλ31,kΛω1,k, (66)

olving the above Eq. (66) and noticing the relationship between ω1,k and ω̄1,k in the second formula of (65), we obtain

ω1,k = e−iλ1,kΛx−4iλ31,kΛt
ω1,k0, ω̄1,k = ω

†
1,k0Fe

iλ∗
1,kΛx+4iλ∗3

1,kΛt
, (67)

here ω1,k0 is a constant column vector.
When the scattering coefficients (s15, s25, s35, s45, ŝ51, ŝ52, ŝ53, ŝ54) = 0 and P−P+

= I , the Riemann–Hilbert problem
can be solved explicitly. At this moment, the expression of the solution P+ is

P+(x, t, λ) = I +

N∑
j,k=1

ω1,j(M−1)jkω̄1,k

λ− λ̄1,k
, (68)

here

Mjk =
ω̄1,jω1,k

λ̄1,j − λ1,k
, 1 ≤ j, k ≤ N. (69)

rom (59), (61) and (62), the N-soliton solution of the generalized coupled Sasa-Satsuma Eq. (1) is derived as follows

u = −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)15 = −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)52, (70)

σ1u∗
= −2i(

N∑
j,k=1

ω1,j(M−1)jkω̄1,k)25 = −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)51, (71)

v = −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)35 = −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)54, (72)

σ2v
∗

= −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)45 = −2i(
N∑

j,k=1

ω1,j(M−1)jkω̄1,k)53, (73)

and it is obvious that the expressions (70) and (72) are equivalent to (71) and (73), respectively. The normative column
eigenvector ω1,k0 and row eigenvector ω

†
1,k0 are given as

ω1,k0 = (ak, bk, ck, dk, 1)⊤, ω
†
1,k0 = (a∗

k, b
∗

k, c
∗

k , d
∗

k, 1). (74)

For simplification, the notations are given as follows

θ1,k = iλ1,kx + 4iλ31,kt, θ∗

1,k = −iλ∗

1,kx − 4iλ∗3
1,kt. (75)

Then in this case, the N-soliton solutions of the generalized coupled Sasa-Satsuma Eq. (1) can be given as follows(
u(x, t)
v(x, t)

)
= −2i

N∑
j,k=1

(
aj
cj

)
eθ1,j−θ

∗
1,k (M−1)jk

= −2i
N∑(

1
σ1
b∗

k
1 d∗

k

)
e−θ1,j+θ

∗
1,k (M−1)jk,

(76)
j,k=1 σ2

8
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a

λ

w

a

Fig. 1. Single-hump solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 1, σ2 = 1; (b) and (e) with parameters:
σ1 = 0.5, σ2 = −1; (c) and (f) with parameters: σ1 = −1, σ2 = 2.

where

Mjk =

(σ1a∗

j ak +
1
σ1
b∗

j bk + σ2c∗

j ck +
1
σ2
d∗

j dk)e
θ∗
1,j+θ1,k + e−θ∗

1,j−θ1,k

λ∗

1,j − λ1,k
, 1 ≤ j, k ≤ N, (77)

nd the expressions of bk and dk are derived from (76)

bk = σ1a∗

j e
2θ∗

1,j−2θ1,k , dk = σ2c∗

j e
2θ∗

1,j−2θ1,k . (78)

When N = 1, from (76) and (77), the single-soliton solution can be obtained with one purely imaginary eigenvalue
1,1 and its eigenvector ω1,1. The single-soliton solution is

u = −2ieθ1,1−θ∗
1,1a1(M−1)11 = −ia1(λ∗

1,1 − λ1,1)e
θ1,1−θ∗

1,1−κsech(θ1,1 + θ∗

1,1 + κ), (79)

v = −2ieθ1,1−θ∗
1,1c1(M−1)11 = −ic1(λ∗

1,1 − λ1,1)e
θ1,1−θ∗

1,1−κsech(θ1,1 + θ∗

1,1 + κ), (80)

here

M11 =

(σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2)e
θ∗
1,1+θ1,1 + e−θ∗

1,1−θ1,1

λ∗

1,1 − λ1,1
, (81)

nd

e2κ = σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2. (82)

The figures of single-soliton solution are shown in Figs. 1–2. The single-hump solution and the breather-type solution
are obtained by setting three different parameters of (λ1,1, a1, c1) in Fig. 1 (0.7i,−i, 2i), (1.2i, 2, 0.5), (0.5i, 0.5+0.5i, 1+

3i), and (2.5i,−i, 1.5i), (3i,−1.5i, 1.5i), (2.5i,−i, 1.5i) in Fig. 2. The peak amplitudes remain unchanged of both single-
hump solution and breather-type solution in Figs. 1–2. From the images, it is not difficult to find that the amplitude and
direction of the wave propagation vary in different parameter values of σ and σ .
1 2

9
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Fig. 2. The breather-type solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 2, σ2 = 1.5; (b) and (e) with
parameters: σ1 = 1.5, σ2 = −1; (c) and (f) with parameters: σ1 = −2, σ2 = 1.5.

When N = 2, the two-soliton solution can be obtained with two purely imaginary eigenvalues λ1,1, λ1,2 and with their
eigenvectors ω1,1, ω1,2, respectively. The two-soliton solution is derived as follows

u = − 2i[eθ1,1−θ∗
1,1a1(M−1)11 + eθ1,1−θ∗

1,2a1(M−1)12 + eθ1,2−θ∗
1,1a2(M−1)21+

eθ1,2−θ∗
1,2a2(M−1)22],

(83)

v = − 2i[eθ1,1−θ∗
1,1c1(M−1)11 + eθ1,1−θ∗

1,2c1(M−1)12 + eθ1,2−θ∗
1,1c2(M−1)21+

eθ1,2−θ∗
1,2c2(M−1)22],

(84)

where

M11 =

(σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2)e
θ∗
1,1+θ1,1 + e−θ∗

1,1−θ1,1

λ∗

1,1 − λ1,1
,

M12 =

(σ1a∗

1a2 +
1
σ1
b∗

1b2 + σ2c∗

1 c2 +
1
σ2
d∗

1d2)e
θ∗
1,1+θ1,2 + e−θ∗

1,1−θ1,2

λ∗

1,1 − λ1,2
,

M21 =

(σ1a∗

2a1 +
1
σ1
b∗

2b1 + σ2c∗

2 c1 +
1
σ2
d∗

2d1)e
θ∗
1,2+θ1,1 + e−θ∗

1,2−θ1,1

λ∗

1,2 − λ1,1
,

M22 =

(σ1|a2|2 +
1
σ1

|b2|2 + σ2|c2|2 +
1
σ2

|d2|2)e
θ∗
1,2+θ1,2 + e−θ∗

1,2−θ1,2

λ∗

1,2 − λ1,2
.

(85)

The figures of two-soliton solution are shown in Figs. 3–4. The oblique elastic collision behaviors for two single-
hump solutions are described in Fig. 3, and the parameters (λ1,1, λ1,2, a1, a2, c1, c2) of the figures are (0.65i, 0.49i, 0.25+

0.5i, 1.2, 0.5 + 0.25i, 0.5 + 0.25i), (0.65i, 0.49i, 1 + 0.5i, 0.25 + 0.5i, 0.7 + 0.7i, 0.5 + 0.25i) and (0.65i, 0.49i, 0.6, 1.2 +

0.25i, 1 + i, 1.7 + 2i), respectively. Based on the two single-hump solutions remaining their individual intensities and
velocities after the interaction, the images in Fig. 3 display the elastic interaction, and there is no energy exchange
between two different solitons. Elastic collisions between a single-hump soliton and a breather of generalized coupled
10
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Fig. 3. Oblique elastic collision behaviors for two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters:
σ1 = 0.5, σ2 = 1; (b) and (e) with parameters: σ1 = 1.5, σ2 = −1; (c) and (f) with parameters: σ1 = −0.5, σ2 = 0.5.

Sasa-Satsuma equation are shown in Fig. 4, and the three different parameters of (λ1,1, λ1,2, a1, a2, c1, c2) for the figures
are (0.6i, 1.9i, 0.25, 1.2 + 0.25i, 0.7 + 0.7i, 0.7 + 2i), (1.5i, 0.5i, 0.5i, 0.25, 1 + i, 0.7 + 0.7i) and (0.6i, 1.9i, 0.25, 1.2 +

0.25i, 0.7 + 0.7i, 1.7 + 2i). It could be observed that the amplitudes of two solitons change after interaction, so energy
exchange may take place between some interacting soliton and cause the shape change of such soliton after interaction.

4.2. The N-soliton solutions in imaginary case

Since the potential matrix Q satisfies not only the symmetry relation (43) but also

Q ∗
= F−1F1QF1F , (86)

where

F1 =

⎛⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

⎞⎟⎟⎟⎠ , (87)

there are some symmetry constraints of J± and S

J∗
±
(−λ∗) = F−1F1J(λ)F1F , (88)

S∗(−λ∗) = F−1F1S(λ)F1F . (89)

From the Eq. (89), we know if λk is the zero of s55(t, λ), −λ∗

k is also the zero of s55(t, λ). So, we suppose s55(t, λ) has
2N simple zeros at λ2,k ∈ C+, and ŝ55(t, λ) has 2N simple zeros at λ̄2,k ∈ C−. In this case, λ2,k satisfies the following
conditions

(a) λ̄2,k = λ∗

2,k, 1 ≤ k ≤ 2N,
∗

(90)

(b) λ2,k+N = −λ2,k, 1 ≤ k ≤ N.

11
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c

w

F

Fig. 4. Elastic collisions between a single-hump soliton and a breather of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters:
σ1 = 1, σ2 = 1; (b) and (e) with parameters: σ1 = 0.5, σ2 = −1; (c) and (f) with parameters: σ1 = −2, σ2 = 1.

The kernels of P+(x, t, λ2,k) and P−(x, t, λ̄2,k) contain only a single column vector ω2,k and row vector ω̄2,k, respectively,

P+(x, t, λ2,k)ω2,k = 0, ω̄2,kP−(x, t, λ̄2,k) = 0, 1 ≤ k ≤ 2N. (91)

And ω2,k satisfies the following conditions

(a) ω̄2,k = ω
†
2,kF , 1 ≤ k ≤ 2N,

(b) ω2,k+N = F1Fω∗

2,k, 1 ≤ k ≤ N.
(92)

In general, the matrix Riemann–Hilbert problem (57) could yield explicit analytical solutions under the normalization
ondition (56). If P−P+

= I , the explicit solution P+ is given as

P+(x, t, λ) = I +

2N∑
j,k=1

ω2,j(M−1)jkω̄2,k

λ− λ̄2,k
, (93)

here

Mjk =
ω̄2,jω2,k

λ̄2,j − λ2,k
, 1 ≤ j, k ≤ 2N. (94)

rom (59), (61) and (62), the N-soliton solution of the two-component Sasa-Satsuma Eq. (1) is derived as follows

u = −2i(
2N∑

j,k=1

ω2,j(M−1)jkω̄2,k)15 = −2i(
2N∑

j,k=1

ω2,j(M−1)jkω̄2,k)52, (95)

σ1u∗
= −2i(

2N∑
j,k=1

ω2,j(M−1)jkω̄2,k)25 = −2i(
2N∑

j,k=1

ω2,j(M−1)jkω̄2,k)51, (96)

v = −2i(
2N∑

ω2,j(M−1)jkω̄2,k)35 = −2i(
2N∑

ω2,j(M−1)jkω̄2,k)54, (97)

j,k=1 j,k=1

12
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e

σ2v
∗

= −2i(
2N∑

j,k=1

ω2,j(M−1)jkω̄2,k)45 = −2i(
2N∑

j,k=1

ω2,j(M−1)jkω̄2,k)53, (98)

and it is obvious that the expressions (95) and (97) are equivalent to (96) and (98), respectively.
In order to give the precise expressions for the N-soliton solutions of the two-component Sasa-Satsuma equation, the

normative column eigenvector ω2,k0 and row eigenvector ω
†
2,k0 are given as

ω2,k0 = (ak, bk, ck, dk, 1)⊤, ω
†
2,k0 = (a∗

k, b
∗

k, c
∗

k , d
∗

k, 1). (99)

For simplification, the notations are introduced as follows

θ2,k = iλ2,kx + 4iλ32,kt, θ∗

2,k = −iλ∗

2,kx − 4iλ∗3
2,kt. (100)

Then, the expressions are derived as

u = − 2i[
N∑

j,k=1

aje
θ2,j−θ

∗
2,k (M−1)jk +

N∑
j=1

2N∑
k=N+1

ajeθ2,j−θ2,k−N (M−1)jk+

2N∑
j=N+1

N∑
k=1

1
σ1

b∗

j−Ne
θ∗
2,j−N−θ∗

2,k (M−1)jk +

2N∑
j,k=N+1

1
σ1

b∗

j−Ne
θ∗
2,j−N−θ2,k−N (M−1)jk],

(101)

v = − 2i[
N∑

j,k=1

cje
θ2,j−θ

∗
2,k (M−1)jk +

N∑
j=1

2N∑
k=N+1

cjeθ2,j−θ2,k−N (M−1)jk+

2N∑
j=N+1

N∑
k=1

1
σ2

d∗

j−Ne
θ∗
2,j−N−θ∗

2,k (M−1)jk +

2N∑
j,k=N+1

1
σ2

d∗

j−Ne
θ∗
2,j−N−θ2,k−N (M−1)jk],

(102)

where Mjk satisfies the following conditions

(a) 1 ≤ j ≤ N, 1 ≤ k ≤ N

Mjk =
ω

†
2,j0Fe

iλ∗
2,jΛx+4iλ∗3

2,jΛte−iλ2,kΛx−4iλ32,kΛt
ω2,k0

λ∗

2,j − λ2,k
,

(103)

(b) 1 ≤ j ≤ N, N + 1 ≤ k ≤ 2N

Mjk =
ω

†
2,j0Fe

iλ∗
2,jΛx+4iλ∗3

2,jΛtF1Fe
iλ∗

2,k−NΛx+4iλ∗3
2,k−NΛt

ω2,k−N0

λ∗

2,j + λ∗

2,k−N
,

(104)

(c)N + 1 ≤ j ≤ 2N, 1 ≤ k ≤ N

Mjk =
ω⊤

2,j−N0e
−iλ2,j−NΛx−4iλ32,j−NΛtFF1Fe

−iλ2,kΛx−4iλ32,kΛt
ω2,k0

−λ2,j−N − λ2,k
,

(105)

(d)N + 1 ≤ j ≤ 2N, N + 1 ≤ k ≤ 2N

Mjk =
ω⊤

2,j−N0e
−iλ2,j−NΛx−4iλ32,j−NΛtFF1FF1Fe

iλ∗
2,k−NΛx+4iλ∗3

2,k−NΛt
ω2,k−N0

−λ2,j−N + λ∗

2,k−N
.

(106)

When N = 1, from (101)–(106), the single-soliton solution can be obtained with an imaginary eigenvalue λ2,1 and an
igenvector ω2,1. The single-soliton solution is

u = −2i[a1e
θ2,1−θ∗

2,1 (M−1)11 + a1(M−1)12 +
1
σ1

b∗

1(M
−1)21 +

1
σ1

b∗

1e
θ∗
2,1−θ2,1 (M−1)22], (107)

v = −2i[c1e
θ2,1−θ∗

2,1 (M−1)11 + c1(M−1)12 +
1
σ2

d∗

1(M
−1)21 +

1
σ2

d∗

1e
θ∗
2,1−θ2,1 (M−1)22], (108)
13
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Fig. 5. Single-hump solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 1, σ2 = 1; (b) and (e) with parameters:
σ1 = 1, σ2 = −0.5; (c) and (f) with parameters: σ1 = −0.5, σ2 = 1.

where

M11 =

(σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2)e
θ2,1+θ∗

2,1 + e−θ2,1−θ∗
2,1

λ∗

2,1 − λ2,1
,

M12 =
(2a∗

1b
∗

1 + 2c∗

1d
∗

1)e
2θ∗

2,1 + e−2θ∗
2,1

2λ∗

2,1
,

M21 =
(2a1b1 + 2c1d1)e2θ2,1 + e−2θ2,1

−2λ2,1
,

M22 =

(σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2)e
θ2,1+θ∗

2,1 + e−θ2,1−θ∗
2,1

λ∗

2,1 − λ2,1
.

(109)

The figures of single-soliton solution are shown in Figs. 5–7. The single-hump solution, the breather-type solution and the

double-hump solution are given in the following figures, which are characterized by seven involved parameters of λ2,1,

a1, b1, c1, d1, σ1, σ2. In Fig. 5, the three different sets of parameters of (λ2,1, a1, b1, c1, d1) are (0.7 + 0.5i, 0, 1, 0.5, 0),

(0.5 + 0.25i, 1, 0, 1, 0) and (1 + 1.55i, 1, 0, 1, 0), respectively. In Fig. 6, the three different sets of parameters of

(λ2,1, a1, b1, c1, d1) are (0.7 + 0.5i, 0.5 + i, 1 + i,−1 + 0.15i, 0.5 + 0.7i), (0.7 + 0.5i, 0.5 + i, 1 + i,−1 + 0.15i, 0.5 + 0.2i)

and (0.22 + 0.42i, 0.5 + 0.5i, 0, 0.3 + 0.5i, 1 + i), respectively. In Fig. 7, the parameters of (λ2,1, a1, b1, c1, d1) are all

(0.1 + 0.5i, 0.5 + 1.5i, 0, 1 + i, 0). The peak amplitudes of three types of single-soliton solution remain unchanged. For

the double-hump soliton, they remain separated between two humps during the propagation, and they are not affected

by time position shifts arising from intra-channel interaction in high bit-rate systems [48].
14



Y. Liu, W.-X. Zhang and W.-X. Ma Communications in Nonlinear Science and Numerical Simulation 118 (2023) 107052
Fig. 6. The breather-type solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 1, σ2 = 1; (b) and (e) with
parameters: σ1 = 1, σ2 = −0.5; (c) and (f) with parameters: σ1 = −1, σ2 = 1.

When N = 2, the two-soliton solution can be obtained with two imaginary eigenvalues λ2,1, λ2,2 and with their

eigenvectors ω2,1 and ω2,2, respectively. The two-soliton solution is derived as

u = − 2i[a1e
θ2,1−θ∗

2,1 (M−1)11 + a1e
θ2,1−θ∗

2,2 (M−1)12 + a1(M−1)13 + a1eθ2,1−θ2,2 (M−1)14

+ a2e
θ2,2−θ∗

2,1 (M−1)21 + a2e
θ2,2−θ∗

2,2 (M−1)22 + a2eθ2,2−θ2,1 (M−1)23 + a2(M−1)24

+
1
σ1

b∗

1(M
−1)31 +

1
σ1

b∗

1e
θ∗
2,1−θ∗

2,2 (M−1)32 +
1
σ1

b∗

1e
θ∗
2,1−θ2,1 (M−1)33 +

1
σ1

b∗

1e
θ∗
2,1−θ2,2

(M−1)34 +
1
σ1

b∗

2e
θ∗
2,2−θ∗

2,1 (M−1)41 +
1
σ1

b∗

2(M
−1)42 +

1
σ1

b∗

2e
θ∗
2,2−θ2,1 (M−1)43

+
1
σ1

b∗

2e
θ∗
2,2−θ2,2 (M−1)44],

(110)

v = − 2i[c1e
θ2,1−θ∗

2,1 (M−1)11 + c1e
θ2,1−θ∗

2,2 (M−1)12 + c1(M−1)13 + c1eθ2,1−θ2,2 (M−1)14

+ c2e
θ2,2−θ∗

2,1 (M−1)21 + c2e
θ2,2−θ∗

2,2 (M−1)22 + c2eθ2,2−θ2,1 (M−1)23 + c2(M−1)24

+
1
σ2

d∗

1(M
−1)31 +

1
σ2

d∗

1e
θ∗
2,1−θ∗

2,2 (M−1)32 +
1
σ2

d∗

1e
θ∗
2,1−θ2,1 (M−1)33 +

1
σ2

d∗

1e
θ∗
2,1−θ2,2

(M−1)34 +
1
σ2

d∗

2e
θ∗
2,2−θ∗

2,1 (M−1)41 +
1
σ2

d∗

2(M
−1)42 +

1
σ2

d∗

2e
θ∗
2,2−θ2,1 (M−1)43

+
1
d∗

2e
θ∗
2,2−θ2,2 (M−1)44],

(111)
σ2

15
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T
a
g

Fig. 7. Double-hump solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 1, σ2 = 1; (b) and (e) with
parameters: σ1 = 1, σ2 = −1; (c) and (f) with parameters: σ1 = −0.5, σ2 = 1.

where

M11 = M33 =

(σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2)e
θ2,1+θ∗

2,1 + e−θ2,1−θ∗
2,1

λ∗

2,1 − λ2,1
,

M12 = M43 =

(σ1a∗

1a2 +
1
σ1
b∗

1b2 + σ2c∗

1 c2 +
1
σ2
d∗

1d2)e
θ∗
2,1+θ2,2 + e−θ∗

2,1−θ2,2

λ∗

2,1 − λ2,2
,

M13 = −M∗

31 =
(2a∗

1b
∗

1 + 2c∗

1d
∗

1)e
2θ∗

2,1 + e−2θ∗
2,1

2λ∗

2,1
,

M14 = M23 =
(a∗

2b
∗

1 + a∗

1b
∗

2 + d∗

1c
∗

2 + c∗

1d
∗

2)e
θ∗
2,1+θ∗

2,2 + e−θ∗
2,1−θ∗

2,2

λ∗

2,1 + λ∗

2,2
,

M21 = M34 =

(σ1a1a∗

2 +
1
σ1
b1b∗

2 + σ2c1c∗

2 +
1
σ2
d1d∗

2)e
θ2,1+θ∗

2,2 + e−θ2,1−θ∗
2,2

λ∗

2,2 − λ2,1

M22 = M44 =

(σ1|a2|2 +
1
σ1

|b2|2 + σ2|c2|2 +
1
σ2

|d2|2)e
θ2,2+θ∗

2,2 + e−θ2,2−θ∗
2,2

λ∗

2,2 − λ2,2
,

M24 = −M∗

42 =
(2a∗

2b
∗

2 + 2c∗

2d
∗

2)e
2θ∗

2,2 + e−2θ∗
2,2

2λ∗

2,2
,

M32 = M41 = −
(a2b1 + a1b2 + d1c2 + c1d2)eθ2,1+θ2,2 + e−θ2,1−θ2,2

λ2,1 + λ2,2
.

(112)

he figures of two-soliton solution are shown in Figs. 8–12. Choosing parameters λ2,1 = 1 + 2i, λ2,2 = 1 + 1.5i,
1 = a2 = c1 = c2 = 1 and b1 = b2 = d1 = d2 = 0, the elastic collision behaviors for two single-hump solutions of the
eneralized coupled Sasa-Satsuma Eq. (1) are given in Fig. 8. Polarization-changing collisions between two single-hump
16
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σ

s

Fig. 8. Elastic collision behaviors for two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 1,
2 = 1; (b) and (e) with parameters: σ1 = 1.5, σ2 = −1; (c) and (f) with parameters: σ1 = −0.5, σ2 = 1.

olutions are obtained through choosing the parameters (1+2i, 1+i, 1, 1, 0, 0, 1, 0, 0, 0), (1+2i, 1+i, 0, 1, 1, 0, 0, 1, 0, 0),
(1 + 2i, 1 + i, 1, 1, 0, 0, 0, 1, 0, 0) of (λ2,1, λ2,2, a1, a2, b1, b2, c1, c2, d1, d2) in Fig. 9. Choosing parameters λ2,1 = 1 + i,
λ2,2 = i, a1 = a2 = c1 = c2 = 1 and b1 = b2 = d1 = d2 = 0, the collisions between two single-hump
solutions are given in Fig. 10. Elastic collisions between a single-hump soliton and a breather are obtained through
choosing the parameters (1 + i, 0.5i, 1, 1, 1, 1, 1, 1, 0, 0), (1 + i, 0.5i, 1, 1, 1, 1, 1, 1, 0, 0), (1 + i, 0.5i, 1, 1, 0, 0, 1, 1, 1, 1)
of (λ2,1, λ2,2, a1, a2, b1, b2, c1, c2, d1, d2) in Fig. 11. Elastic collisions between two breather-type solutions are obtained
through choosing the parameters (0.8 + 0.5i, 1.2 + 0.5i, 1, 1, 1, 0, 1, 1, 0, 0), (0.8 + 0.5i, 1.2 + 0.5i, 1, 1, 1, 0, 1, 1, 0, 0),
(0.8 + 0.5i, 1.2 + 0.5i, 1, 1, 0, 0, 1, 1, 1, 0) of (λ2,1, λ2,2, a1, a2, b1, b2, c1, c2, d1, d2) in Fig. 12. For the elastic interactions
between one (or two) single-hump solution(s) and one (two) breather-type solution(s) of generalized coupled Sasa-
Satsuma equation, the individual solitons remain their individual intensities and velocities after the interaction in Figs. 8,
11 and 12. The polarization-changing collisions could contribute to the enhancement of intensity in one soliton, and the
intensity of the other soliton is suppressed in Fig. 9. In Fig. 10, one of single-hump solutions transforms into a breather
after the interaction, and their density evolution admits a periodic oscillation behavior.

5. Asymptotic analysis

After the solitons collide, there exists possibility of soliton’s shape restoration. Asymptotic analyses are made to
investigate the elastic and inelastic interactions between two-soliton solutions. Now, we consider the asymptotic analysis
of two-soliton solutions of the generalized coupled Sasa-Satsuma Eq. (1) in the pure imaginary case. First, we suppose
that

λ1,k = ξ1,k + iη1,k, k = 1, 2. (113)

Then the Re(θ1,1) and Re(θ1,2) can be derived as follows

Re(θ1,1) = −η1,1[x + (12ξ 21,1 − 4η21,1)t], (114)

Re(θ1,2) = −η1,2[x + (12ξ 21,2 − 4η21,2)t]

=
η1,2 Re(θ1,1) + η2[(12ξ 21,1 − 4η21,1) − (12ξ 21,2 − 4η21,2)]t.

(115)

η1,1

17
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Fig. 9. Polarization-changing collisions between two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with
arameters: σ1 = 1, σ2 = 1; (b) and (e) with parameters: σ1 = 1.5, σ2 = −0.5; (c) and (f) with parameters: σ1 = −0.2, σ2 = 0.5.

n order to simplify the above equations, assume that

v1,k = 12ξ 21,k − 4η21,k, k = 1, 2. (116)

Considering the two-soliton solutions (83) and (84), without loss of generality, we assume that η1,1, η1,2 > 0. For fixed
Re(θ1,1), suppose that v1,1 > v1,2.

(i) Taking limit as t → −∞: Re(θ1,1) ∼ 0, Re(θ1,2) ∼ −∞, the dominant terms are those which contain the factor
e−θ1,2−θ∗

1,2 in this case. The asymptotic expressions of the two solitons before interaction can be given by

u1−
∼ − i(λ∗

1,2 − λ1,1)(λ∗

1,1 − λ1,1)(λ∗

1,1 − λ∗

1,2)a1e
θ1,1−θ∗

1,1−
α1+α2

2

sech(θ1,1 + θ∗

1,1 −
α1

2
+
α2

2
),

(117)

v1− ∼ − i(λ∗

1,2 − λ1,1)(λ∗

1,1 − λ1,1)(λ∗

1,1 − λ∗

1,2)c1e
θ1,1−θ∗

1,1−
α1+α2

2

sech(θ1,1 + θ∗

1,1 −
α1

2
+
α2

2
),

(118)

here

eα1 = (λ∗

1,1 − λ∗

1,2)(λ1,2 − λ1,1),

eα2 = −2(σ1|a1|2 + σ2|c1|2)(λ∗

1,2 − λ1,1)(λ1,2 − λ∗

1,1).
(119)

(ii) Taking limit as t → +∞: Re(θ1,1) ∼ 0, Re(θ1,2) ∼ +∞, the dominant terms are those which contain the factor
θ1,2+θ∗

1,2 in this case. The asymptotic expressions of the two solitons after interaction can be given by

u1+
∼ −iβ1e

θ1,1−θ∗
1,1−

α3+α4
2 sech(θ1,1 + θ∗

1,1 −
α3

2
+
α4

2
), (120)

v1+ ∼ −iβ2e
θ1,1−θ∗

1,1−
α3+α4

2 sech(θ1,1 + θ∗

1,1 −
α3

2
+
α4

2
), (121)
18
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(

w

a

Fig. 10. Collisions between two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 1, σ2 = 1;
b) and (e) with parameters: σ1 = 1.5, σ2 = −1; (c) and (f) with parameters: σ1 = −1, σ2 = 2.

here

eα3 = −2(σ1|a2|2 + σ2|c2|2)(λ∗

1,2 − λ1,1)(λ1,2 − λ∗

1,1),
eα4 = γ1(λ1,1λ∗

1,1 + λ1,2λ
∗

1,2) + γ2(λ1,1λ1,2 + λ∗

1,1λ
∗

1,2) + γ3(λ1,1λ∗

1,2 + λ∗

1,1λ1,2),

β1 =(λ1,1 − λ∗

1,1)(λ1,2 − λ∗

1,1)[σ1a1|a2|
2(λ1,2 + λ∗

1,2 − 2λ1,1) + 2σ2a1|c2|2(λ∗

1,2 − λ1,1)
− σ2a1c1c∗

2 (λ
∗

1,2 − λ1,2)],

β2 =(λ1,1 − λ∗

1,1)(λ1,2 − λ∗

1,1)[σ2c1|c2|
2(λ1,2 + λ∗

1,2 − 2λ1,1) + 2σ1c1|a2|2(λ∗

1,2 − λ1,1)
− σ1a1a∗

2c2(λ
∗

1,2 − λ1,2)],

(122)

nd

γ1 = −4σ 2
1 |a1|2|a2|2 − 4σ 2

2 |c1|2|c2|2 − 4σ1σ2(|a1|2|c2|2 + |a2|2|c1|2),

γ2 =2σ 2
1 |a1|2|a2|2 + 2σ 2

2 |c1|2|c2|2 + 2σ1σ2(2|a1|2|c2|2 + 2|a2|2|c1|2 − a∗

1a2c1c
∗

2

− a1a∗

2c
∗

1 c2),

γ3 = 2σ 2
1 |a1|2|a2|2 + 2σ 2

2 |c1|2|c2|2 + 2σ1σ2(a∗

1a2c1c
∗

2 + a1a∗

2c
∗

1 c2).

(123)

For fixed Re(θ1,2), similarly suppose that v1,1 > v1,2.

(iii) Taking limit as t → −∞: Re(θ1,2) ∼ 0, Re(θ1,1) ∼ +∞, the dominant terms are those which contain the factor
eθ1,1+θ∗

1,1 in this case. The asymptotic expressions of the two solitons before interaction can be given by

u2−
∼ −iβ3e

θ1,2−θ∗
1,2−

α2+α4
2 sech(θ1,2 + θ∗

1,2 −
α2

2
+
α4

2
), (124)

v2− ∼ −iβ4e
θ1,2−θ∗

1,2−
α2+α4

2 sech(θ1,2 + θ∗

1,2 −
α2

2
+
α4

2
), (125)
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Fig. 11. Elastic collisions between a single-hump soliton and a breather of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters:
σ1 = 1, σ2 = 1; (b) and (e) with parameters: σ1 = 1, σ2 = −0.5; (c) and (f) with parameters: σ1 = −0.5, σ2 = 0.2.

here

β3 =(λ∗

1,2 − λ1,1)(λ∗

1,2 − λ1,2)[σ1a2|a1|2(λ1,1 + λ∗

1,1 − 2λ1,2) − 2σ2a2|c1|2(λ1,2 − λ∗

1,1)
+ σ2a1c∗

1 c2(λ1,1 − λ∗

1,1)],

β4 =(λ∗

1,2 − λ1,1)(λ∗

1,2 − λ1,2)[σ2c2|c1|2(λ1,1 + λ∗

1,1 − 2λ1,2) − 2σ1c2|a1|2(λ1,2 − λ∗

1,1)
+ σ1a∗

1a2c1(λ1,1 − λ∗

1,1)].

(126)

(iv) Taking limit as t → +∞: Re(θ1,2) ∼ 0, Re(θ1,1) ∼ −∞, the dominant terms are those which contain the factor
e−θ1,1−θ∗

1,1 in this case. The asymptotic expressions of the two solitons after interaction can be given by

u2+
∼ − i(λ1,2 − λ∗

1,2)(λ
∗

1,1 − λ1,2)(λ∗

1,1 − λ∗

1,2)a2e
θ1,2−θ∗

1,2−
α1+α3

2

sech(θ1,2 + θ∗

1,2 −
α1

2
+
α3

2
),

(127)

v2+ ∼ − i(λ1,2 − λ∗

1,2)(λ
∗

1,1 − λ1,2)(λ∗

1,1 − λ∗

1,2)c2e
θ1,2−θ∗

1,2−
α1+α3

2

sech(θ1,2 + θ∗

1,2 −
α1

2
+
α3

2
).

(128)

Comparing the single-soliton solution (79) and (80), we can see the asymptotic expressions u1−, v1−, u1+, v1+, u2−,
2−, u2+, v2+ are single-soliton. After the collision of two single solitons, each soliton has a position shift or a phase shift.
he asymptotic analysis of imaginary case shows similar results, for which we only give the asymptotic expression of the
ase Re(θ2,1) ∼ 0, Re(θ2,2) ∼ −∞ (as t → −∞) in Appendix, and the other cases can be obtained in a similar way.

. Conclusions

In this paper, the multi-component Sasa-Satsuma integrable hierarchies were obtained firstly by giving a (2N +

)-order spectral matrix through the corresponding stationary zero curvature equation. Furthermore, the generalized
ne-component and coupled Sasa-Satsuma equation were derived from the multi-component Sasa-Satsuma integrable
ierarchies when N = 3, and a bi-Hamiltonian structure was constructed for the hierarchies, which displayed their
20
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Fig. 12. Elastic collisions between two breather-type solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: σ1 = 0.5,
2 = 1; (b) and (e) with parameters: σ1 = 1, σ2 = −0.5; (c) and (f) with parameters: σ1 = −0.2, σ2 = 0.5.

iouville integrability. Then the generalized coupled Sasa-Satsuma Eq. (1) was considered by the inverse scattering
ransform, and the N-soliton solutions were derived via the Riemann–Hilbert method. The one- and two-soliton solu-
ions were presented graphically, and their dynamics was investigated. In these figures, the bright solitons, breather,
ingle-hump solitons, double-hump solitons were shown through selecting different values of the involved parameters.
oreover, the elastic interactions between one (two) single-hump solution(s) and one (two) breather-type solution(s)
f the generalized coupled Sasa-Satsuma Eq. (1) were analyzed, and the polarization-changing collisions between two
ingle-hump solitons were explored. Additionally, asymptotic analysis for two-soliton solutions of the generalized coupled
asa-Satsuma equation was made in the last part. It is expected that all these results would be helpful to understand
hysical phenomena and develop novel applications of the Riemann–Hilbert technique to other nonlinear systems.
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Appendix. Asymptotic analysis of two solitons solution in imaginary case

Considering the expressions of two solitons solution (110) and (111), the equations can also be written in the followingform

u = − 2i
1

detM

(a1eθ2,1

⏐⏐⏐⏐⏐⏐⏐
e−θ2,1∗ M12 M13 M14
e−θ2,2∗ M22 M23 M24
e−θ2,1 M32 M33 M34
e−θ2,2 M42 M43 M44

⏐⏐⏐⏐⏐⏐⏐+ a2eθ2,2

⏐⏐⏐⏐⏐⏐⏐
M11 e−θ2,1∗ M13 M14
M21 e−θ2,2∗ M23 M24
M31 e−θ2,1 M33 M34
M41 e−θ2,2 M43 M44

⏐⏐⏐⏐⏐⏐⏐+
1
σ1

b∗

1

eθ2,1∗

⏐⏐⏐⏐⏐⏐⏐
M11 M12 e−θ2,1∗ M14
M21 M22 e−θ2,2∗ M24
M31 M32 e−θ2,1 M34
M41 M42 e−θ2,2 M44

⏐⏐⏐⏐⏐⏐⏐+
1
σ1

b2∗eθ2,2∗

⏐⏐⏐⏐⏐⏐⏐
M11 M12 M13 e−θ2,1∗

M21 M22 M23 e−θ2,2∗

M31 M32 M33 e−θ2,1

M41 M42 M43 e−θ2,2

⏐⏐⏐⏐⏐⏐⏐),
and the matrix M is given as

M =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

K1e
θ2,1+θ∗2,1+e

−θ2,1−θ∗2,1

λ∗
2,1−λ2,1

K2e
θ∗2,1+θ2,2

+e
−θ∗2,1−θ2,2

λ∗
2,1−λ2,2

K3e
2θ∗2,1+e

−2θ∗2,1

2λ∗
2,1

K4e
θ∗2,1+θ∗2,2+e

−θ∗2,1−θ∗2,2

λ∗
2,1−λ∗

2,2

K∗
2 e
θ2,1+θ∗2,2+e

−θ2,1−θ∗2,2

λ∗
2,2−λ2,1

K5e
θ∗2,2+θ2,2

+e
−θ∗2,2−θ2,2

λ∗
2,2−λ2,2

K4e
θ∗2,1+θ∗2,2+e

−θ∗2,1−θ∗2,2

λ∗
2,1+λ∗

2,2

K6e
2θ∗2,2+e

−2θ∗2,2

2λ∗
2,2

−
K∗
3 e

2θ2,1+e−2θ2,1

2λ2,1

K∗
4 e
θ2,1+θ2,2+e−θ2,1−θ2,2

−λ2,1−λ2,2

K1e
θ2,1+θ∗2,1+e

−θ2,1−θ∗2,1

λ∗
2,1−λ2,1

K∗
2 e
θ2,1+θ∗2,2+e

−θ2,1−θ∗2,2

λ∗
2,2−λ2,1

K∗
4 e
θ2,1+θ2,2+e−θ2,1−θ2,2

−λ2,1−λ2,2
−

K∗
6 e

2θ2,2+e−2θ2,2

2λ2,2
K2e

θ∗2,1+θ2,2
+e

−θ∗2,1−θ2,2

λ∗
2,1−λ2,2

K5e
θ∗2,2+θ2,2

+e
−θ∗2,2−θ2,2

λ∗
2,2−λ2,2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
,

here

K1 = σ1|a1|2 +
1
σ1

|b1|2 + σ2|c1|2 +
1
σ2

|d1|2,

K2 = σ1a∗

1a2 +
1
σ1

b∗

1b2 +
1
σ2

c∗

1 c2 +
1
σ2

d∗

1d2,

K3 = 2a∗

1b
∗

1 + 2c∗

1d
∗

1, K4 = a∗

1b
∗

2 + a∗

2b
∗

1 + c∗

1d
∗

2 + c∗

2d
∗

1,

K5 = σ1|a2|2 +
1
σ1

|b2|2 + σ2|c2|2 +
1
σ2

|d2|2, K6 = 2a∗

2b
∗

2 + 2c∗

2d
∗

2.

ake a similar assumption to the one in above subsection,

λ2,k = ξ2,k + iη2,k, k = 1, 2.

hen the Re(θ2,1) and Re(θ2,2) can be derived as follows

Re(θ2,1) = −η2,1[x + (12ξ 22,1 − 4η22,1)t],

Re(θ2,2) = −η2,2[x + (12ξ 22,2 − 4η22,2)t]

=
η2,2

η2,1
Re(θ2,1) + η2[(12ξ 22,1 − 4η22,1) − (12ξ 22,2 − 4η22,2)]t.

In order to simplify the above equations, suppose that

v2,k = 12ξ 22,k − 4η22,k, k = 1, 2.

Considering the above two solitons solution Eqs. (110)–(111), without loss of generality, we assume that η2,1, η2,2 > 0.
For fixed Re(θ2,1), suppose that v2,1 > v2,2. Taking limit as t → −∞: Re(θ2,1) ∼ 0, Re(θ2,2) ∼ −∞, the dominant terms are
those which contain the factor e−2θ2,2−2θ∗

2,2 in this case. The numerator of asymptotic expression u1− for the two solitons
u before interaction can be given by

− 2i[(
a1K1

λ∗

2,1 − λ2,1
ℜ̂33 −

b∗

1K
∗

3

2σ1λ2,1
ℜ̃31)e2θ2,1 + (a1R̂ +

a1K3

2λ∗

1
ℜ̂13)e

−2θ∗
2,1 +

b∗

1

σ1
R̃e−2θ2,1

+
b∗

1K1
∗

ℜ̃11e
2θ∗

2,1 ],

σ1(λ2,1 − λ2,1)

22
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a
s

where

R̂ =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 1
λ∗
2,1−λ2,2

1
2λ∗

2,1

1
λ∗
2,1+λ∗

2,2

1 1
λ∗
2,2−λ2,2

1
λ∗
2,1+λ∗

2,2

1
2λ∗

2,2

1 1
−λ2,1−λ2,2

1
λ∗
2,1−λ2,1

1
λ∗
2,2−λ2,1

1 1
−2λ2,2

1
λ∗
2,1−λ2,2

1
λ∗
2,2−λ2,2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, R̃ =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1
λ∗
2,1−λ2,1

1
λ∗
2,1−λ2,2

1 1
λ∗
2,1+λ∗

2,2
1

λ∗
2,2−λ2,1

1
λ∗
2,2−λ2,2

1 1
2λ∗

2,2
1

−2λ2,1
1

−λ2,1−λ2,2
1 1

λ∗
2,2−λ2,1

1
−λ2,1−λ2,2

1
−2λ2,2

1 1
λ∗
2,2−λ2,2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
,

nd ℜ̂ij and ℜ̃ij are the cofactor of R̂ij and R̃ij, respectively. The denominator of asymptotic expression u1− for the two
olitons u before interaction can be given by

R̄e−2θ2,1−2θ∗
2,1 +

( K 2
1

(λ∗

2,1 − λ2,1)2
+

K2K3

4|λ2,1|2
)( 1

(λ∗

2,2 − λ2,2)(λ∗

2,2 − λ2,2)
+

1
4λ∗

2,2λ2,2

)
e2θ2,1+2θ∗

2,1

−
K3

2λ2,1
ℜ̄31e

2θ2,1−2θ∗
2,1 +

K3

2λ∗

2,1
ℜ̄13e

2θ∗
2,1−2θ2,1 +

2K1

λ∗

2,1 − λ2,1
ℜ̄33,

where

R̄ =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1
λ∗
2,1−λ2,1

1
λ∗
2,1−λ2,2

1
2λ2,1

1
λ∗
2,1+λ∗

2,2
1

λ∗
2,2−λ2,1

1
λ∗
2,2−λ2,2

1
λ∗
2,1+λ∗

2,2

1
2λ∗

2,2
1

−2λ2,1
1

−λ2,1−λ2,2
1

λ∗
2,1−λ2,1

1
λ∗
2,2−λ2,1

1
−λ2,1−λ2,2

1
−2λ2,2

1
λ∗
2,1−λ2,2

1
λ∗
2,2−λ2,2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
,

and ℜ̄ij is the cofactor of R̄ij.
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