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1. Introduction

The inverse scattering transform is one of the most significant methods to obtain solutions of numerous integrable
nonlinear equations. With the in-depth study of integrable systems, the Riemann-Hilbert method is proposed which
is more straightforward and simplified compared with the inverse scattering transform method [1]. A large number of
integrable nonlinear equations have been studied by using Riemann-Hilbert method, such as the nonlinear Schrédinger
(NLS) equation [2-4], the modified Korteweg-de Vries (mKdV) equation [5], the focusing and defocusing Hirota equa-
tions [6], the Fokas-Lenells (FL) equation [7,8], and the Dullin-Gottwald-Holm (DGH) equation [9]. This method is also
widely investigated and applied to generate soliton solutions of the coupled higher-order nonlinear Schrédinger (HNLS)
equations [10] and the multi-component cubic-quintic NLS system [11].

The Sasa-Satsuma equation is derived from the HNLS equation [12-15] by using the suitable transformations, and
such equation with higher-order terms still preserves integrability. The Sasa-Satsuma equation can describe the wave
development in the complex scalar field and the pulse propagation in birefringent fibers [16,17], so as to increase the
bit rate in optical fibers, or achieve wavelength-division multiplexing [18]. And it is worth mentioning that the Sasa-
Satsuma equation could contribute different dynamic characteristics of optical solitons such as bright solitons, dark
solitons, breather, single-hump, double-hump, rogue waves and W-shaped soliton, and the related studies can be found
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in [19-25]. The Lax pair of the Sasa-Satsuma equation has been constructed in [26], and there are many studies to show
its integrability [27,28]. Xu et al. derive N-soliton solutions and construct two different types of femto-second soliton
solutions of the coupled Sasa-Satsuma system by using Darboux transformation [29,30]. In both vanishing and non-
vanishing backgrounds, the explicit solutions of the coupled Sasa-Satsuma equations are generated through the binary
Darboux transformation method [31]. Using Riccati equation mapping technique, periodic solitons and solitary waves
for the Sasa-satsuma equation are derived in [32]. Nth-order semi-rational solutions of the Sasa-Satsuma equation are
derived via a modified dressing transformation [33]. The nonlinear steepest descent method is applied to analyze the
long-time asymptotics for the Sasa-Satsuma equation with decaying initial data [34]. Liu and Guo follow the modifications
of nonlinear steepest descent approach and find the long-time asymptotic behaviors for the Sasa-Satsuma equation
using Cauchy formula [35]. The inverse scattering transform is constructed for the Sasa-Satsuma equation with nonzero
boundary condition in [36]. Geng et al. [17,37,38] study the one-, two- and three-component Sasa-Satsuma equations
through the Riemann-Hilbert method, and describe the different dynamic behaviors of soliton solutions. Through a
standard dressing procedure, soliton matrices for simple and elementary high-order zeros for Sasa-Satsuma equation are
constructed [39]. Wu [40] analyzes spectral and soliton structures of the Sasa-Satsuma equation by solving the Riemann-
Hilbert problem. Wang and Han [41] derive N-soliton solutions of a three-component coupled Sasa-Satsuma equation,
and discuss the dynamics of the soliton solutions. To the authors’ best knowledge, the soliton solutions and asymptotic
analysis about the generalized coupled Sasa-Satsuma equation with arbitrary constant coefficients have not been reported
until now.
In this paper, we consider the generalized coupled Sasa-Satsuma equation as follows

Up + U + 6(01 [ul* + 02|01y + 3u(oq[ul® + 02]v]*)y = 0,
Ve + Ve + 6(01ul? + 02 |v|*)vx + 3v(o1|ul* + 02 [v[* ) = 0,

where u and v represent complex-valued functions for the independent spatial variable x and temporal variable t, the
parameters o1 and o, are arbitrary real numbers, and the subscript x (or t) denotes the partial derivative with respect to x
(or t) of functions u and v. In the generalized coupled Sasa-Satsuma equation, the last three terms account for third order
dispersion, Kerr dispersion and self-frequency shift under Raman effect, respectively. In order to explore the origin of
the generalized coupled Sasa-Satsuma Eq. (1), the multi-component Sasa-Satsuma integrable hierarchies are constructed
from the zero curvature formulation. In the meantime, the corresponding bi-Hamiltonian structure is also constructed.
Several types of solutions are obtained via the Riemann-Hilbert method, such as the bright solitons, breather, single-
hump solitons and double-hump solitons. And dynamic behaviors are investigated, which enrich the physical features of
nonlinear systems. It is noted that the elastic interaction between one (or two) single-hump solution(s) and one (or two)
breather-type solution(s) of the generalized coupled Sasa-Satsuma equation are investigated, and polarization-changing
collisions between two single-hump solitons are also analyzed. For the purpose of observing phase shifts of the two-soliton
solutions before interaction and after interaction, we give the asymptotic expressions of two-soliton solutions through
long-time behavior analysis.

The outline of this paper is presented as follows. In Section 2, according to the zero curvature formulation, the multi-
component Sasa-Satsuma integrable hierarchies are constructed, which contribute to derive the generalized coupled
Sasa-Satsuma equation. And a bi-Hamiltonian structure is also constructed, which displays the integrability of the Sasa-
Satsuma system. In Section 3, the inverse scattering transform of the generalized coupled Sasa-Satsuma equation with
the spectral analysis is studied through the Riemann-Hilbert method. In Section 4, the N-soliton solutions are derived
explicitly via the reflectionless transforms in two cases. The expressions of one- and two-soliton solutions are presented,
and some figures are given to describe the dynamic characteristics of them. In Section 5, the long-time asymptotic analysis
on two-soliton solutions of the generalized coupled Sasa-Satsuma equation is given. Finally, the conclusions of this paper
are stated in Section 6.

(1)

2. The multi-component Sasa-Satsuma integrable hierarchies
2.1. Zero curvature formulation

Integrable hierarchies can be constructed by using zero curvature formulation. Firstly, a square spectral matrix U =
U(u, u*, 1) can be introduced with vector potentials u, u* and a spectral parameter A. In order to solve the stationary zero
curvature equation

Vy =[U, V], (2)

we assume a solution
o0 o0
V=V, )= Vph =) Ve u (3)
m=0 m=0

Based on the solution V of the stationary zero curvature Eq. (2), we would like to derive an integrable hierarchy from the
zero curvature equations

Up, - Vi +[U, V"] =0, n>1. (4)
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In order to make the left side of the above equations appear to the zero power of A, a series of Lax matrix expressions
VI in the above zero curvature Eqs. (4) are constructed as [42]
Vit = vt ut 3) = (AV), + 4, =1, (5)

where the term of (A"V'), represents a polynomial part in A, and A, is the modification term. With different values of n,
we select appropriate A,, and then the integrable hierarchy could be given as follows

u
< u%”T >=Kn(u, u) =K (x. touut uul, L), n>1, (6)
n

where K, is the formal differential operator representing Ky (x, t, u, u*, uy, uj, .. .) [43].
The associated spatial and temporal matrix spectral problems of the nth evolution equation in the hierarchy (6) are
given as follows

Y, =UY =U(u,u*, A)Y, Y, =Vy=v@u* Ay, n>1, (7)

where Y is the matrix eigenfunction, and the compatibility condition of these matrix spectral problems is the zero
curvature equation (4).

Then, we would like to analyze the bi-Hamiltonian structures of the hierarchy (6), which can be usually provided by
trace identification [44,45]:

) ou 0 ou A d
— (V= )dx=17"— [Vt (Vv—=]]|, y= —f—1n|tr(V2)
u aA oA ou 2.dx

or more generally, the variational identity:

s aU B au A d
— [ {v,=)dx=17"— |27 (v, —=)|, y=-S—Mn|(V,V)|, (9)
su ar ar ou 2 da

) (8)

where (-, -) is a non-degenerate, symmetric and ad-invariant bilinear form [46], and % stands for the variational derivative
which is defined as

) _ n J _ J M) _ an
@—g—a) Gy (0= u=0"). (10)

The bi-Hamiltonian structure is provided

uy, 8Hni1 SH,
=K, = = s n> ‘l’ 11
< T ) n=n S b2 S > (11)

which could help to analyze the Liouville integrability [43] of the hierarchy (6). The J; and J, are the Hamiltonian pairs [47].
2.2. The multi-component Sasa-Satsuma integrable hierarchies

In order to generate the Sasa-Satsuma integrable hierarchies with multiple components, the 2n+1 order matrix spectral
problem is constructed as follows

iAl u
Y, =UY = U, u*, \)Y, U= L (12)
—u* —iA
where X is a spectral parameter, u is a 2n-dimensional column vector and u* is a 2n-dimensional row vector
T
u = (uq, o1U7, Uz, Ool3, ..., Up, Onlly)  U" = (oqU], Uy, O2U3, Uy, ..., Oplly, Up), (13)

where o1, 03, ...0, are arbitrary real numbers, and the superscript * and T denote the conjugate and the transpose,
respectively.
Then, we introduce a solution V of the corresponding stationary zero curvature Eq. (2)

a b
v:(c d), (14)

where a is a 2n x 2n matrix, b and ¢ are 2n-dimensional columns, and d is a scalar. So as to derive the multi-component
Sasa-Satsuma integrable hierarchies, we substitute the above matrix (14) into the corresponding stationary zero curvature
Eq. (2). Based on the matrix operation, the equations are given as follows

a, = uc + bu*,

b, = 2iAb + ud — au,

cx = —u*a — 2ikc + du*,
dy, = —u*b — cu.
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Then, we give the expression of V
o0
a b _ . glml  piml
V= ( c d ) = va}\ m Vin = Vip(u, u™) = ( clml - giml , m=>0, (16)
m=0

where al™, p™ and c!™ are expressed as
a™ = (al[}nj)ZnXZm m>0,
b™ = ™ p™ L BIMYT m >0, (17)
cm =Ml m>o.
Substituting the Eq. (16) into the equation set (15), the recursion relations are derived as follows
b =0, =0, d”=0, d¥=0,

i i i
pimtl — —Eb}(mj + —ud™ — Ea[m]u,

2
i i i
clmeil — Letmi  Lypequmi L gy (18)
2 2 2
al™ = uct™ + p™y*,
di™ = —w*p™ — ™y,
We take the initial values
d” = ailn,  d¥ = ay, (19)

where o1, o; are arbitrary real constants. The recursion relation (18) can determine all matrices V,;,, m > 1, and the
coefficients are derived as follows

i i
pll = —5ou = §Otu*, a'=0, d"=0, a"=a3h,, d"=ay,
1 i 1 i
b = ——ou,— —pu, ¥ =——oul + -pu’,
405 X 2’8 4(X X Zﬂ
1 1
al?! = —Zoc(uu;‘ +uar), dP = Zd(u*ux + wu),
1 1
al? = —Zauu* + ashy, d? = Zozu*u + o,
i 1 i i
b = —oqu,, — - Buy + —auuu — —yu,
3 4 4 2 (20)
e = Lo I,Bu* L— + iyu"‘
g x4 F Ty 2 ’
al¥l = ioz(uxu* —uul), — 1 (uu*)y,
X 8 X 4
i 1

i
di¥ = goz(u;’;u —utuy) + Z,B(u*u)x,

i 1
al®l = ga(uxu* —uul) — Zﬂuu* + azby,
i 1
di3 = goz(ujju —utuy) + Zﬂu*u + ag,
where « = a1 — oy, f = a3 —ay, ¥y = a5 —ag and «; (i = 3,4,5,6,7,8) are arbitrary real constants. On the basis of
Eq. (18), the recursion relation of b™ and ¢!™ is given as follows

pim+1 pim
clmtuT ) = r cmt ), M= 1, (21)
where I' is a 4n x 4n matrix integro-differential operator

n
By + ud ' + Z h; ud u" 4+ (uo tu)T
i i
I=—— = N . (22)
_(u*Tax—lu*)T _ u*Tax—lu* -0y — Z hj _ u*Tax—luT
j=1

4
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In the above matrix I", h; is presented as
h; = (Tjuj‘a,:]Ll? + qu}"&;luj. (23)

Then, we introduce the Lax matrix of temporal matrix spectral problems of the nth evolution equation in the hierarchy

(6)

n
VT = VIt ) = (V) =) Ve n> 1, (24)
m=0
where the V,, is defined in (16). According to the zero curvature Eq. (4), the multi-component Sasa-Satsuma integrable
hierarchies are given as follows

utl‘l . b[n+l]
u;knT =2i C["+1]T , n= 1. (25)

When n = 3, we take the functions u, = u3 = 0 and let the coefficients « = 8i, 8 = 0, y = 0 and @7 = «g. The
generalized one-component Sasa-Satsuma equation is derived from the above hierarchies (25) in the following form

Ut ¢ + Utxxe + BUix(o|ur]?) + 3us(orug*)x = 0. (26)

Additionally, we take the function u; = 0, and let the coefficients « = 8i, 8 = 0, y = 0 and o7 = ag. The generalized
coupled Sasa-Satsuma equation is derived from the above hierarchies (25) as follows

Uty + Ut + BUix(01 1] + 02[U2]?) + 3us(or|ur|* + o2 ]uz]*)x = 0,
Uy ey + Unwex + Bliok(01 |11 + 02[U2]?) + 3uz(o1|us|* + 02 |uz]*)y = 0.

So as to analyze the Liouville integrability of the multi-component Sasa-Satsuma integrable hierarchies (25), bi-
Hamiltonian structures can be presented using the trace identity or the variational identity. According to the matrix U,
the traces satisfy

(27)

oo 2n

., _ . - ml _ glmly; —
(v ) = iltr() — dl =il ) (Y ™ —d™i, (28)
m=0 j=1
ou c’ m
(V)= ( b ) =2 Gna2 ", (29)
m>0
where
cmT
Gmo1= _b[mJ , m>=1 (30)
Substituting the above (28)-(29) into the trace identity, we get
SH i [
m o oo — [m+1] _ 4lm+1]
sy = Gnts Hn = — /(;aﬁ d™Mdx, m> 1. (31)
Then, the bi-Hamiltonian structure for the multi-component Sasa-Satsuma Eqs. (1) is derived as
Uy, al:ln‘H-l (Si‘}m
=Ky = =Hh—, m=>1, 32
( u;kn‘lr ) m .’1 su .]2 su - ( )
where
_ 0 -2
.]l - ( 21211 0 )a (33)
and

n
—ud; 'u’ — (ud u")" O + ud; 'ut + Z h;
h=i ; = : (34)
3 + Z hj + u*Tax—luT _(u*Tax—lu*)T _ u*Tax_lu*
j=1
The bi-Hamiltonian structure is constructed which displays the integrability of multi-component Sasa-Satsuma integrable

system. Thus, adjoint symmetry constraints decompose each multi-component Sasa-Satsuma system (25) into two
commuting finite-dimensional Hamiltonian systems being Liouville integrable .

5
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3. Inverse scattering for the generalized coupled Sasa-Satsuma equation

In order to obtain the N-soliton solution of the generalized coupled Sasa-Satsuma Eq. (1), the symmetry relations of
discrete scattering data should be derived first. In this section, we use the inverse scattering transform method to analyze
the problem. We begin our analysis with the following Lax pair which can be derived from a five-order matrix spectral
problem when u3 and uj are zero in (12),

Y, =UY, Y,=VY, (35)
where Y = Y(x, t, 1) is the matrix eigenfunction with the complex spectral parameter A. And
U=—irA+Q, (36)
V = —4i)’ A +42°Q — 2iA(Q% + QA + QQ — QQu — Qu +2Q°, (37)
where
0 0 0 0 u
0 0 0 0 ot
Q= 0 0 0 0 v , (38)
0 0 0 0 oyv*
—alu* —u —O'ZU>k —v 0
and
A = diag(—1, -1, -1, -1, 1). (39)

Based on the Lax pair (35), we study inverse scattering transform for the generalized coupled Sasa-Satsuma Eq. (1)
via Riemann-Hilbert framework. Assume the solution (u, v) — 0 as x — =00, and the expression of Y can be given as
follows

Y =]efiAAx74i13At (40)
where the matrix function J is (x, t)-independent at infinity. Substituting (40) into (35), we get
Jx = —iAlA, JT+ O, (41)
Jo = —4i’[A, J1+[42°Q — 2iM(Q% 4+ Q)A + QQ — QQ« — Qu +2Q°Y (42)
= —4il’[4, J1+QJ,
where [A, [J] = A] — ] A.
Notice that the matrix Q satisfies the following property
Qf = —FQF 1, (43)
where the superscript 1 represents the Hermitian transpose (i.e., conjugate transpose) of a matrix, and
ocp 0 0 0 O
0 - 0 0 0
F=| 0 0 o, 0 O (44)
00 0 - 0
0 0 o0 0 1

In the scattering problem, the matrix Jost solutions J.(x, A) of Eq. (41) are given with the asymptotic condition as x
approaches +oo

Je(x, A) —> I, x— oo, (45)
where [ is the 5 x 5 unit matrix. The notations are also given as follows

J-E =@ = (¢1, $2, 3, P4, $5), (46)

J+E =W = (Y1, V2, ¥3, Ya, ¥s), (47)
where E(x, 1) = e"*4X Since @ and ¥ are both fundamental matrices of (35), they could be related as

DX, t, L) =W(x, t,A)S(t, 1), A€ER, (48)

where S(t, A) = [s;] for real A. In addition, it is easy to verify that the matrix Jost solutions J.(x, 1) are uniquely determined
by the Volterra integral equations

X
]_ =1 +f eiAA(y—x)QJ_e—iAA(y—x)dy’ (49)

—00
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+oo )
]+ -] — f EIAA(Y_X)Q]+€_IAA(y_X)dy. (50)
X

Then we analyze the analytic properties of column vectors of J.(x, A). According to the expression (38) of Q, it is obvious
that the first to fourth columns of matrix J_ and the fifth column of matrix J, can be analytically continued to the lower
half plane A € C_, while the fifth column of matrix J_ and the first to fourth columns of matrix J, can be analytically
continued to the upper half plane A € C,. The Jost solutions are derived as

P* = (1. Y2, Y3, Vs, ¢5)e™ ™ = J_Hy + ] Ha, (51)
which are analytic in A € C,.. In the above expression (51), the H; and H, are given as follows

H, = diag(0,0,0,0, 1), H, =diag(1,1,1,1,0). (52)
Meanwhile, some notations of the inverse Jost solutions are introduced as

J =Eo, ];1 —Fy, (53)
where

O = (1. b2, b3, fa. p5)T. W = (Y1, Vo, U3, Y Ps) T (54)

In a similar way, the analytic properties of row vectors of Jz!(x, 1) can be analyzed, and the inverse Jost solutions are
derived as

P~ = e Xy, Yo, 3, ra, p5) " = HiJ = + HoJ 1, (55)

which are analytic in A € C_. When the X approaches oo, these analytical solutions are

PE(x,t,A) > Is, 1€ Cy— o0. (56)
The relation between P* and P~ is given on the real line

P=(x, t, \)PT(x,t,A) = G(x, t, 1), L€ER, (57)
where

G=(HyJ-'+HoJ " J-Hy +J:H,)
1 0 0 0 S15
0 1 0 0 S25 (58)
=E| 0 0 1 0 s |E!

0O 0 O 1 sy

S5 Ssp Ss3 854 1
and S~I(t, 1) = [Si]- Eq. (57) determines a matrix Riemann-Hilbert problem under the normalization condition (56).
Then, we consider the expanded form of P as A approaches co

PH(x,t,A) =1+ 27" (x, t)+ O(x72), A — oo. (59)

Based on the reason that P is the solution of Eq. (41), we substitute the above expansion (59) into Eq. (41) and compare
coefficients of terms O(1), and then the potential Q is derived as

Q =ilA, P{]. (60)
Hence u, v, oqu*, o,v* can be constructed as

u= —2i(P; )15 = —2i(P )52, o1u* = —2i(P] )p5 = —2i(P] )51, (61)

v = —2i(P{ )35 = —2i(P{ )sa, 020" = —=2i(P a5 = —2i(P{ )s3. (62)

4. The N-soliton solutions and their dynamics

The determinants of P* are derived as
detP™(x, t, 1) = ss5(t, &), detP (x,t,A) = 8s5(t, 1), (63)

which get through the definitions of P* and the scattering relation (48). Based on the different assumptions of zeros of
ss5(t, A) and $s5(t, A), we analyze the N-soliton solution of generalized coupled Sasa-Satsuma Eq. (1) in two cases. In the
first case, we suppose sss5(t, ) and Ss5(t, A) have N simple zeros at A1, € C4 and A, € C_(1 < k < N), respectively.
In this case, A1 is pure imaginary, and we call this case as ‘purely imaginary case’. In the second case, we assume that
sss(t, 1) and Ss5(t, A) have 2N simple zeros at A, € Cy and A, € C_(1 < k < 2N), respectively. In this case, A, has no
restriction of pure imaginary, and we call the second case as ‘imaginary case’.

7
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4.1. The N-soliton solutions in purely imaginary case

From the above discussion, the zeros of det P* and det P~ have been assumed. In this case, the kernels of PT(x, t, A1)
and P~ (x, t, A1 k) contain only a single column vector w1, and row vector @ k, respectively,

P+(X5 t7 )“l,k)wl,k = Oa ‘:)1,’<P7(Xa ta Xl,k) = 07 1 =< k =< Na (64)

where the vectors @1 x and @1 x are (x, t)-dependent.
Combining the symmetry relation of the matrix Q in (43), these symmetry constraints of discrete scattering data are
found to be

Fk=2e @ = @uF T, ST A = BT AL OF (65)
Since PT satisfies the Egs. (41)-(42), the differential equations of @ are given as
dwy i ) dwq i .3
dx = —l)kaAwl,k, 7 = —41)»1,,(/‘(01,10 (66)

Solving the above Eq. (66) and noticing the relationship between w1 x and @1 x in the second formula of (65), we obtain

,i)qyk/\x—4i)\?’ (AL i)LT’kAx+4i)LT’3kAt 67
)

- t
Wik =¢ @1k, @1k = @ oFe

where w1 ko is a constant column vector.
When the scattering coefficients (sis, S5, S35, S45, S51, S52, S53, S54) = 0 and P™P* = I, the Riemann-Hilbert problem
can be solved explicitly. At this moment, the expression of the solution P* is

w“( )jkwl k
Pr(x, t,A) =1+ —_— 68
( Z P (68)
Jj.k=
where
My = 2 <jk<n. (69)
Aj— A1k
From (59), (61) and (62), the N-soliton solution of the generalized coupled Sasa-Satsuma Eq. (1) is derived as follows
N
= —2i( Z @1 i (M~ @115 = —2i( Z @1 j (M~ )@1.1)s52, (70)
Jk= jk=
N
o’ = —21(2 @1 j(M™ " )jk@1, )25 = —21(2 @1 (M~ )e@1 )51, (71)
jk=1 jk=1
= —2i( Z @1 j (M~ @1 )35 = —2i( Z @1 j (M~ )@1 )54, (72)
k=1 jok=1
oV = —2i( Z w1 (M~ ]k(m ks = —2i( Z w1 j(M™ ]kwl k)53 (73)
Jk=1 k=1

and it is obvious that the expressions (70) and (72) are equivalent to (71) and (73), respectively. The normative column
eigenvector @1 yo and row eigenvector @, , are given as

@140 = (@ b, e, di, 1), @] o = (@, by, ¢, di, 1). (74)
For simplification, the notations are given as follows

O1k = il X + 4iAT t, 0, = —ik} x — 4iATt. (75)
Then in this case, the N-soliton solutions of the generalized coupled Sasa-Satsuma Eq. (1) can be given as follows

N
( 3& 3 ) =-2i) ( g]»‘ )e%ie{"(l\’f—])jk

k=1

N 1
—by Lo
= ( Gidi )e_gwgl'kw_l)}'k’

k=1

(76)
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(b) (©

0 0 0
-2

—
|
[N]

X

X

Fig. 1. Single-hump solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o1 = 1, 0, = 1; (b) and (e) with parameters:
o1 = 0.5, 05 = —1; (c) and (f) with parameters: o1 = —1, 03 = 2.

where
(01a*a, + Lb*by + oactc, + Ldrdy etk 4 e 00k
J o1 ] i) oy ] .
I\djk= )"* —}rlk ’ 15]7k§N9 (77)
1j .
and the expressions of by and dj, are derived from (76)
by = ma}‘ezeii_ze”‘, dy = 029*629;1_29“‘. (78)

When N = 1, from (76) and (77), the single-soliton solution can be obtained with one purely imaginary eigenvalue
A1,1 and its eigenvector w1, 1. The single-soliton solution is

u= 20", (M) = —iay(A], — Apa)el T sech(6r 1 + 67, + k), (79)

v =—2ie" 1l (M) = —ici (W], — Aaa)e” 7 sech(611 + 05 | + ), (80)
where

(orlar]? + Llbr* + oaler + L 1y P)e Tt e
My = ! - 2 , (81)
}\1,1 - )\1,1
and
2K 2 1 2 2 1 2
e = oqla1]* + —[b1]* + o2l |” + —1dq|". (82)
o1 02

The figures of single-soliton solution are shown in Figs. 1-2. The single-hump solution and the breather-type solution
are obtained by setting three different parameters of (11,1, a;, ¢1) in Fig. 1 (0.71, —i, 2i), (1.2i, 2, 0.5), (0.5, 0.540.5i, 1+
3i), and (2.5i, —i, 1.5i), (3i, —1.5i, 1.5i), (2.5i, —i, 1.5i) in Fig. 2. The peak amplitudes remain unchanged of both single-
hump solution and breather-type solution in Figs. 1-2. From the images, it is not difficult to find that the amplitude and
direction of the wave propagation vary in different parameter values of o and o5.

9
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Fig. 2. The breather-type solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o7 = 2, 0, = 1.5; (b) and (e) with
parameters: oy = 1.5, 0o = —1; (c¢) and (f) with parameters: oy = —2, 0, = 1.5.

When N = 2, the two-soliton solution can be obtained with two purely imaginary eigenvalues A1 1, 212 and with their
eigenvectors 1,1, @12, respectively. The two-soliton solution is derived as follows

o 01105 - 01,165 — 01, —0F _
u=— 2" (M) 4+ €M g, (M g + €2 gy (M Y (83)
—g* —
"2 2, (M~ )],
. 01.1-0F - 01.1—05 — 01, —0F _
v =—2i[e" ey (M) 4 T2 (M7 ) 4 12T (M )+ (84)
01207 -1
e’ 20 (MT )],
where
0F +6 —0% . —0
(arlar* + b1 P+ oaler P 4 iy [P)elt T 4 e
1 = )
M=t
* _p* _
(01a%ay + bthy + oactcy + Ldidy)e’ T2 4 702
Mz = = = ,
A — M2
LT (85)
(G1a3a1 + L biby + oacicy + Ldidy)e’i2 1 4 o020
M 16,41 012 1 PASAD! oy 2 1 : :
21 = B
M2 =t
0F_+0 —0F_—6
(o1lazl* + b2 [* + ozlca | + 1dy [P)e"12712 4 e 1272
22 =

*
AMa— M2

The figures of two-soliton solution are shown in Figs. 3-4. The oblique elastic collision behaviors for two single-
hump solutions are described in Fig. 3, and the parameters (11,1, A1.2, a1, d2, 1, C2) of the figures are (0.65i, 0.49i, 0.25 +
0.5i, 1.2, 0.5 + 0.25i, 0.5 + 0.25i), (0.65i, 0.49i, 1 + 0.5i, 0.25 + 0.5i,0.7 + 0.7i, 0.5 4+ 0.25i) and (0.65i, 0.49i, 0.6, 1.2 +
0.25i, 1 4+ i, 1.7 + 2i), respectively. Based on the two single-hump solutions remaining their individual intensities and
velocities after the interaction, the images in Fig. 3 display the elastic interaction, and there is no energy exchange
between two different solitons. Elastic collisions between a single-hump soliton and a breather of generalized coupled

10
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(b) ©

-0 19

-10 9

Fig. 3. Oblique elastic collision behaviors for two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters:
o1 = 0.5, 0, = 1; (b) and (e) with parameters: oy = 1.5, 0, = —1; (c) and (f) with parameters: oy = —0.5, 0, = 0.5.

Sasa-Satsuma equation are shown in Fig. 4, and the three different parameters of (A1 1, 112, a1, Gz, ¢y, ¢3) for the figures
are (0.6i, 1.9, 0.25, 1.2 + 0.25i,0.7 4+ 0.7i, 0.7 + 2i), (1.5i, 0.5i, 0.5i,0.25, 1 + i, 0.7 + 0.7i) and (0.6i, 1.9i,0.25, 1.2 +
0.251, 0.7 4+ 0.7i, 1.7 + 2i). It could be observed that the amplitudes of two solitons change after interaction, so energy
exchange may take place between some interacting soliton and cause the shape change of such soliton after interaction.

4.2. The N-soliton solutions in imaginary case

Since the potential matrix Q satisfies not only the symmetry relation (43) but also

Q* = F~'F1QF/F, (86)
where
01 0 0 O
1 0 0 0 O
FF=|0o0 0 10|, (87)
0 01 00
0 0 0 0 1
there are some symmetry constraints of /. and S
Ji(—=2") = F'FJ(A)FF, (88)
S*(—1*) = F'F,S(1)F;F. (89)

From the Eq. (89), we know if A is the zero of s55(t, 1), —A} is also the zero of ss55(t, 1). So, we suppose ss5(¢, A) has
2N simple zeros at A, € C,, and Ss5(t, A) has 2N simple zeros at A, € C_. In this case, A, satisfies the following

conditions
(@) hae =23, 1<k=<2N, (50)
(b) Azkan = —A3, 1<k=<N.

11
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(a) (b)

Fig. 4. Elastic collisions between a single-hump soliton and a breather of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters:
o1 =1, 0, = 1; (b) and (e) with parameters: o1 = 0.5, 0, = —1; (c) and (f) with parameters: oy = —2, 0, = 1.

The kernels of P*(x, t, Apx) and P~(x, t, )_»2,,() contain only a single column vector w, ; and row vector ®; y, respectively,
PH(X, t, kg )@2k =0, @2kP~(X,t,A2) =0, 1<k <2N. (91)
And w,  satisfies the following conditions
(@) @2 = @ F. 1<k<2N, (92)
(b) w2 k4n = FiFw3,, 1<k<N.

In general, the matrix Riemann-Hilbert problem (57) could yield explicit analytical solutions under the normalization
condition (56). If P~PT™ = I, the explicit solution P* is given as

w2 (M~ i@
P(xtA—I+Z 2/(M” Dy e R L S (93)
Jj.k=1 A= AZk
where
@7 i@
My = —2I228 1 <j k <2N. (94)
A2j— A2k

From (59), (61) and (62), the N-soliton solution of the two-component Sasa-Satsuma Eq. (1) is derived as follows

= —21(2 @2 j(M™ @215 = —2i( Z @2 j(M™ D )@2.1)s52, (95)
J.k=1 J.k=1
2N 2N
o = =20 ) @y (M~ ks = —2i( Y @i (M~ o )51, (96)
Jik=1 Jok=1
2N N
= —2i() 0y (M™ ua)ss = —2i( Y @2 j(M~ )3 k)sa. (97)
Jik=1 k=1

12
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0" = —=2i( Z w2 j(M™je@s 1 )as = —2i( Z @2, j(M™ @2 )53, (98)
Jj.k=1 Jj.k=1
and it is obvious that the expressions (95) and (97) are equivalent to (96) and (98), respectively.
In order to give the precise expressions for the N-soliton solutions of the two-component Sasa-Satsuma equation, the
normative column eigenvector w; o and row eigenvector ), are given as
T
@240 = (@ by, C, di, 1), @) 0 = (@, by, ¢, di, 1). (99)
For simplification, the notations are introduced as follows

Ook = iho X + 4iA3 t, 05 = —ik} x — 4iAS5t. (100)

Then, the expressions are derived as

:_zl[zaeﬂz; 92k k+Z Z aeng_e?kN )]k+

jk— j=1 k=N+1

Z Z —b* Ne9§.j—N ; ]k + Z N 03 j-N 92,1(—N(M—1)jk]’

Jj=N+1 k= J.k= N+l

(101)

N
V= — ZI[Z C]e J 92 k ]k + Z Z C692J792k N 71)jk+

jk—l j=1 k=N+1

Z Z—d* NN TR (MY, + Z 7(1* 2NN (M,

j=N+1 k=1 ]k—N+l

(102)

where M satisfies the following conditions

(a)1<j<N,1<k<N
3
Feu;JAme* Ate—mz kAX— 4;/\2 At

@2 ko (103)

’

“’2 jo

My, =
! Ay — Ao

(1<j<N, N+1<k<2N

i} Ax-+4ins3 %At iM% Ax+4ini3 At
] joFe 2t FiFe" 244020 ) 1 no (104)
jk = * * ’
At Az kN

(c)N+1<j<2N,1<k<N

Zihy 403 —i
iAp j—NAX 41}L2»1'*NA[FF1F€ Ay g AX— 41A2 kAtw2 10 (105)

’

.
®) . e
2,j-NO
My, =

—A2j-N — Aok

(AN+1<j<2N, N+1<k<2N

T —i)hz_j_NAx—AliA%_jiNA[ FF,FF, Feik;_kaAx+4iA;3kiNAt

@y,j-No® @2 k—NO (106)

My =
" —A2j-N + A3 N

When N = 1, from (101)-(106), the single-soliton solution can be obtained with an imaginary eigenvalue A, ; and an
eigenvector w;, ;. The single-soliton solution is

* 1 ] *
u=—2i[ae 2 (M) + as(M~ iy + —biM ™)y + —bie21 T2 (M )], (107)
o1 o1
_p* 1 ] *
v = =2i[ce” 2 (M) + (Mg + —di(M )y + —dje21 T2 (M )], (108)
0 (o))

13
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(b) (©)
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Fig. 5. Single-hump solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o1 = 1, 0, = 1; (b) and (e) with parameters:
oy =1, 0y = —0.5; (c) and (f) with parameters: o3 = —0.5, 03 = 1.

where
(o1lar2 + L1b1 P + oaler]? + L 1dy 2)e™ 1 %1 4 721

1 — }\,;’1 — )\.2,1 5
o _ (2aib; + 2cid; )e?21 4 e~

12 — 2)\131 5

, (109)

Mos — (2a1bq + 2c1dy )6202*1 + e 2021

21 — _2}\’2’1 )
v _ il + FbiP + ool + Ly e’ 1+ 4

22 =

*
A1~ A

The figures of single-soliton solution are shown in Figs. 5-7. The single-hump solution, the breather-type solution and the
double-hump solution are given in the following figures, which are characterized by seven involved parameters of A; j,
ay, by, ¢1, dq, o1, 02. In Fig. 5, the three different sets of parameters of (1, 1, a1, b1, ¢1, dy) are (0.7 + 0.5i,0, 1, 0.5, 0),
(0.5 4+ 0.25i,1,0,1,0) and (1 + 1.55i, 1,0, 1, 0), respectively. In Fig. 6, the three different sets of parameters of
(Az2.1, a1, b1, €1, dq) are (0.7 +0.5i,0.5 +1i, 1 +1i, —1+0.15i,0.5 4+ 0.7i), (0.7 + 0.5i,0.5 +i, 1 +i, —1 + 0.15i, 0.5 4 0.2i)
and (0.22 + 0.42i,0.5 4 0.51, 0, 0.3 + 0.5i, 1 + i), respectively. In Fig. 7, the parameters of (A, 1, a1, by, ¢1, d;) are all
(0.1 4+ 0.5i,0.5 + 1.5i,0, 1 + i, 0). The peak amplitudes of three types of single-soliton solution remain unchanged. For
the double-hump soliton, they remain separated between two humps during the propagation, and they are not affected
by time position shifts arising from intra-channel interaction in high bit-rate systems [48].

14
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(a) (b) ©

Fig. 6. The breather-type solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o1 = 1, 0, = 1; (b) and (e) with
parameters: o7 = 1, o, = —0.5; (c) and (f) with parameters: oy = —1, 0, = 1.

When N = 2, the two-soliton solution can be obtained with two imaginary eigenvalues X, 1, A2 and with their

eigenvectors w; 1 and ; », respectively. The two-soliton solution is derived as

u=- 25[‘11392’179;1(1\/1_1)11 + 01392‘170;2(1\/1_1)12 +ai(M™ i3 + are”1722(M 1)y,
+ @22 (M )y 4 ape™2 22 (M7 )y + aze®2 2 (M )5 + ap(M T )yg

] 1 * ¥ 1 * ] *
+ —bj(M )51 + —bije’ 1722 (M s + —bie’a T2 (M )53 + —bie®21 7722
01 [oa] 01 g1

(110)
1 P 1 1 x
(M~ ")3q + —b3e22 21 (M~ )gy + —Db3(M ™ gy + —b3e’22721 (M~ ")gs
o1 01 01
1 *
+ —bye’2 ™22 (M)
01
v=- 2i[C1€92'179;'1(M_1)11 + C1€92'179;'2(M_1)12 + (M~ M)3 + cre217%22(M 1y,

+ 0”2 EAM T )1 + 006" B2M T )y + "2 (M )y + 6o (M g
1 1 * ¥ 1 * ] *
+ —di M+ —dieh (M ) + i (M )y - —die 2
o o 02 02 (111)
1 *__g* 1 1 *
(M~ V)3 + —die22 %1 (M )y + —d5(M™ g + —dje™22 21 (M 1)
[op) (o5} 02
1 *
+ —dye’ 2T (M)
[ep]
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(b) (©)

t 10 10 X t 10 10 b ¢

Fig. 7. Double-hump solution of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: oy = 1, o0, = 1; (b) and (e) with
parameters: o1 = 1, o = —1; (c) and (f) with parameters: o1 = —0.5, 0 = 1.

7, ox —0y 1—0F
(@1lar” + b + oales | + Lldy[*)e™ 20 4 o710

e A1 — A ,
(010302 + L b3y + 02y + Ldidy)eh 122 4 P2
e M= 22 ;
Mis = —M, = (2atbt + 2} *{iez% 4 e |
2334
Mg = Ma3 = (a3} + @b} + djcs + cjdg)e’sn iz 4 00 ,
A1 +As, * * .
My = M3y = (o + %bm; +ox0105 + %d1d§)€62'1+02,2 + e 02170,
Ao = A2
Moy = My = (o1laz|* + %|b2|2 + oule? + %|d2|2)602’2+92*,2 n 6_92‘2_9;12’
222~ 22
M4 = —Mj; = (2a3b3 + 2c5d3)e™2 + e %2 ,
223,
M3z, = My = _(a2b1 + a1by + dicy + c1dy)ef211022 4 e=021-022 ‘
A1+ A2
The figures of two-soliton solution are shown in Figs. 8-12. Choosing parameters A1 = 1+ 2i, A, = 14 1.5i,

a; =a; =c¢; =¢c; = 1and by = b, = d; = d; = 0, the elastic collision behaviors for two single-hump solutions of the
generalized coupled Sasa-Satsuma Eq. (1) are given in Fig. 8. Polarization-changing collisions between two single-hump
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(b) (©)

Fig. 8. Elastic collision behaviors for two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o1 = 1,
o, = 1; (b) and (e) with parameters: o7 = 1.5, 0, = —1; (c) and (f) with parameters: oy = —0.5, 0, = 1.

solutions are obtained through choosing the parameters (1+2i, 1+i, 1,1, 0,0, 1,0, 0, 0), (1+2i, 1+i,0, 1, 1,0, 0, 1, 0, 0),
(14+2i,1+1i,1,1,0,0,0,1,0,0) of (Az1, 22, a1, az, by, by, c1, 2, dy, d2) in Fig. 9. Choosing parameters A1 = 1+ 1,
Ay = 14,04 = a = ¢ = ¢ = land by = b, = di = d, = 0, the collisions between two single-hump
solutions are given in Fig. 10. Elastic collisions between a single-hump soliton and a breather are obtained through
choosing the parameters (1 +1i,0.5i,1,1,1,1,1,1,0,0),(1+1i,05i,1,1,1,1,1,1,0,0), (1+1i,0.5{,1,1,0,0,1,1,1, 1)
of (Aa,1, A2,2, a1, a2, by, ba, €1, C2, dq, d2) in Fig. 11. Elastic collisions between two breather-type solutions are obtained
through choosing the parameters (0.8 + 0.5i, 1.2 +0.5i,1,1,1,0,1, 1,0, 0), (0.8 +0.5i,1.2 4+ 0.5,1,1, 1,0, 1, 1,0, 0),
(0.8 +0.5i,1.2+0.5i,1,1,0,0,1, 1, 1, 0) of (A21, A2.2, a1, G2, b1, by, ¢1, €2, dy, d2) in Fig. 12. For the elastic interactions
between one (or two) single-hump solution(s) and one (two) breather-type solution(s) of generalized coupled Sasa-
Satsuma equation, the individual solitons remain their individual intensities and velocities after the interaction in Figs. 8,
11 and 12. The polarization-changing collisions could contribute to the enhancement of intensity in one soliton, and the
intensity of the other soliton is suppressed in Fig. 9. In Fig. 10, one of single-hump solutions transforms into a breather
after the interaction, and their density evolution admits a periodic oscillation behavior.

5. Asymptotic analysis

After the solitons collide, there exists possibility of soliton’s shape restoration. Asymptotic analyses are made to
investigate the elastic and inelastic interactions between two-soliton solutions. Now, we consider the asymptotic analysis
of two-soliton solutions of the generalized coupled Sasa-Satsuma Eq. (1) in the pure imaginary case. First, we suppose
that

Mr=&x+ink k=12 (113)
Then the Re(6; ;) and Re(6; ;) can be derived as follows
Re(61.1) = —nialx + (1267, — 4n7 ,)t], (114)

Re(12) = —nialx + (1267, — 4n? )]

1,2
= Re(61,1) + (1262, — 412 ) — (1262, — 4n? )]t

(115)
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(b) (©

25

Fig. 9. Polarization-changing collisions between two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with
parameters: o1 = 1, o = 1; (b) and (e) with parameters: oy = 1.5, o = —0.5; (c) and (f) with parameters: o; = —0.2, o, = 0.5.

In order to simplify the above equations, assume that
v = 1267, —4nj,. k=12 (116)

Considering the two-soliton solutions (83) and (84), without loss of generality, we assume that 74,1, 712 > 0. For fixed
Re(0;,1), suppose that vy1 > v12.

(i) Taking limit as t — —oo: Re(0;1,1) ~ 0, Re(0;2) ~ —oo, the dominant terms are those which contain the factor
—01)2—6*

e 1.2 in this case. The asymptotic expressions of the two solitons before interaction can be given by
_ . _px o1t
u'” ~ i, = M) = AR — A e T
heo,, + 67, — 21 4 92 (117)
sec - — 4+ =),
1,1 1,1 2 )
. « _px _wtep
VT~ =00, = M)A = A = A et T T
* oy o (118)
sech(011+ 67, — = + =),
' 2 2
where
e = (A1 — A1 )2 — A1),
) 1,1 1,22 o . (119)
e*? = =2(o1|la1|” + o2l ") A1 5 — Ar1)(Ar2 — AT )
(ii) Taking limit as t — +o00: Re(61,1) ~ 0, Re(#;2) ~ +o0, the dominant terms are those which contain the factor
1292 in this case. The asymptotic expressions of the two solitons after interaction can be given by
_gr o3t o o
u' ~ =i T sech(6; ) + 07, — 73 + 7“), (120)
_pr 93t o o
W~ =iy 1T sech(6 4 + 07, — ?3 + ?“), (121)
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(a) (b) (©

Fig. 10. Collisions between two single-hump solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o3 =1, 0 = 1;
(b) and (e) with parameters: oy = 1.5, 0, = —1; (c) and (f) with parameters: oy = —1, 05 = 2.

where

e = —2(01]az* + 022 P ) (A 5 — M)Az — AT 4),
e = y1(A11A] 1 + 21247 5) + v2(hiadiz + AT AT ,) + v3(AaAT, + AT A02),
Br =(A1.1 — A (M2 — A Dlonar|aa (A2 + A%, — 2h4.1) + 200a [ P(Af 5 — A1)

(122)
— 0201165 (A} 5 — A1.2)],
B2 =(h11 — A5 )Mz — A lozct|ca (Mg + A5 — 2h11) + 20161102 *(Af, — A11)
— 010165C2(A] 5, — A12)],
and
y1 = —dotla @) — 407 lci)Pleal? — doroa(larPleal? + laal*lr]?),
v2 =207 |01 *|az* + 203 01 Pleaf? + 201022101 Pleaf? + 202 e — aaacics (123)

— a1a3ccy),
2 2 2 2 2 2
vz = 207]a1]%|az|® + 205 |17 |2l + 20102(ajaacic; + aid;cic).

For fixed Re(0; ), similarly suppose that vy ; > vy3.
(iii) Taking limit as t — —oo: Re(61.2) ~ 0, Re(61,1) ~ +00, the dominant terms are those which contain the factor
111 in this case. The asymptotic expressions of the two solitons before interaction can be given by

_px @ +a, o .
w2~ —ipse”2 2T sech(6;, + 0F, — 32 + 3“), (124)
* ay+a
v ~ —ifaet2 2 sech(0r5 + 07, — % n %), (125)
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(a) (b) (©)

Fig. 11. Elastic collisions between a single-hump soliton and a breather of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters:
o1 =1, 0, = 1; (b) and (e) with parameters: o1 = 1, 0, = —0.5; (c) and (f) with parameters: oy = —0.5, 0, = 0.2.

where
Bz =M% 5 — A1)(A 5 — A2dlonazlar P (A1 + A — 2412) — 20220112 (h12 — A )
+ oaicica(Aia — A7)l
Ba =55 — A1)(A 5 — A2dloacalcr P(Ar1 + AT — 2042) — 20162001 [ (A12 — AT ;)
+ o1ajaxci(hia — A7 )]

(iv) Taking limit as t — +o00: Re(61.2) ~ 0, Re(0;,1) ~ —oo, the dominant terms are those which contain the factor
_91,1_6*

(126)

e 1.1 in this case. The asymptotic expressions of the two solitons after interaction can be given by
. _g+__cates
W~ iR — A1)y — M)A — A )age"2 2T
T (127)
sech(012 + 67, — — + =),
’ 2 2
* a1t
VP~ iz — 2,000 — M)Ay — A e T
. a0 a3 (128)
Sech(eLz —+ 9172 — 7 =+ 7)

Comparing the single-soliton solution (79) and (80), we can see the asymptotic expressions u'~, v!~, u'*, v!*, u?>~,
v®>~, u**, v** are single-soliton. After the collision of two single solitons, each soliton has a position shift or a phase shift.
The asymptotic analysis of imaginary case shows similar results, for which we only give the asymptotic expression of the
case Re(6,1) ~ 0, Re(f,2) ~ —oo (as t — —oo) in Appendix, and the other cases can be obtained in a similar way.

6. Conclusions

In this paper, the multi-component Sasa-Satsuma integrable hierarchies were obtained firstly by giving a (2N +
1)-order spectral matrix through the corresponding stationary zero curvature equation. Furthermore, the generalized
one-component and coupled Sasa-Satsuma equation were derived from the multi-component Sasa-Satsuma integrable
hierarchies when N = 3, and a bi-Hamiltonian structure was constructed for the hierarchies, which displayed their
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(a) (b) (©

LT

Fig. 12. Elastic collisions between two breather-type solutions of generalized coupled Sasa-Satsuma equation. (a) and (d) with parameters: o7 = 0.5,
oy = 1; (b) and (e) with parameters: o1 = 1, 0, = —0.5; (c¢) and (f) with parameters: oy = —0.2, 0, = 0.5.

Liouville integrability. Then the generalized coupled Sasa-Satsuma Eq. (1) was considered by the inverse scattering
transform, and the N-soliton solutions were derived via the Riemann-Hilbert method. The one- and two-soliton solu-
tions were presented graphically, and their dynamics was investigated. In these figures, the bright solitons, breather,
single-hump solitons, double-hump solitons were shown through selecting different values of the involved parameters.
Moreover, the elastic interactions between one (two) single-hump solution(s) and one (two) breather-type solution(s)
of the generalized coupled Sasa-Satsuma Eq. (1) were analyzed, and the polarization-changing collisions between two
single-hump solitons were explored. Additionally, asymptotic analysis for two-soliton solutions of the generalized coupled
Sasa-Satsuma equation was made in the last part. It is expected that all these results would be helpful to understand
physical phenomena and develop novel applications of the Riemann-Hilbert technique to other nonlinear systems.
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Appendix. Asymptotic analysis of two solitons solution in imaginary case

formonsidering the expressions of two solitons solution (110) and (111), the equations can also be written in the following

== 2ldetM
e"21* My, Mz My My e %21% Mz My
(age21 97992’2* My,  Mzs Moy + aye®22 My e %22%  Mys My, I lb*
e 21 Mz M3 My M3y e %21 My Msy op !
e2 Mgp Mg Mu My e %2 Mgz My
My My e 1% My, My Mpz Mgz e %1%
JORE My; My e %225 My, 4 lb %22 My My My e %22% )
Ms; Mz e %21 Mgy o1 2 Ms; M Mi e %1 |7
My Mgy e %22 My Msyi Ma Mg e %22
and the matrix M is given as
Ky 146031 02,1703 4 Kze";.l*ellﬂ"’f,l"’ll ngzgf.l_,_e‘ze;,l K4e9;~1+9;2+e79;)176;2
A2.1*A2<1 A;,flﬂ 2)”*,1 A’2‘,1*)”3,2
K;eez.Hﬁ{z+e—92,179§‘_2 K5e9;2+92'2+e79;2792‘2 Ko 05 103, 240 —63 =63 K6e29§’2+e729;2
M= 73,2 75,22 LB 3, ’
K21 o221 k21400 (21700 B 105102105 Ky 021403, 021705,
2021 —A2,17A2,2 A3 1=*21 A3 ,=k21
Kpe’2.1102.2 1e~02.17%2.2 Kpe¥2.2 e 2022 K239§_1+92,2+e—9§,1—92,2 K569§_2+92,2+e—9§‘,2—92.2
—A21—222 2022 2517222 232 h2.2
where
2, 1 2 2, 1 2
Ky = o1la4| +*|b1| + ozl +*|d1| ,

K2=O'1Cl (12+ b bz—i—*ClCz—i- d dz,
K3 = 2ajb] + ZCTdT, K4 = ajb; + ajb’]‘ + cjd; + c5dj,
1 1
Ks = o1]a; > + —|b2|* + oale)* + —|da |, Ks = 2a3b} + 2c5dj.
o1 (o))
Make a similar assumption to the one in above subsection,
ok =&k +imk k=1,2.
Then the Re(6,,1) and Re(6,2) can be derived as follows

Re(62,1) = —mo1[x + (1265, — 403 )t],
Re(652) = —ma2[x + (1262, — 43 ,)t]

n2,2
1 Re(6,1) + m2(12€5 | — 4n3 1) — (1267, — 4n3 )]t

In order to simplify the above equations, suppose that

Uk = 12“;:22’,{—47]%,,(, k= 1, 2.

Considering the above two solitons solution Eqs. (110)-(111), without loss of generality, we assume that 3 1, 722 > 0.
For fixed Re(6,,1), suppose that v, ; > v, ». Taking limit as t — —oo: Re(6,,1) ~ 0, Re(6, 2) ~ —oo, the dominant terms are

those which contain the factor e‘w2 2203, in this case. The numerator of asymptotic expression u'~ for the two solitons
u before interaction can be given by

PTG LIS S ES oY S
)»;1 —)»21 20])\2_]1 2

biK;
o1(A3 1 — A1)

b%
LSRRy
}»* 1 ) 01

~ 2 *
Rire*21],

22
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where
1 _1 1 1 1 1 1 1
A2 225 4 251423, 2312, 2317422 231+45
1 ¥ 1 3 1 ¥ ;* E3 1 ¥ 1 +
R WBah22 M tha, 23, Ro| P2 33222 %3,
1 1 1 ’ 1 1 1 ’
—h1—ha2 A3 q—ha1 A3, —232,1 —h2,1—222 252=22,1
1 1 1 1 1 1 1
—222 M q—R22 A=k —A2,1—A2.2 —22,2 250222

and ﬁ?t,, and 9 are the cofactor of I’éij and Ry, respectively. The denominator of asymptotic expression u'~ for the two
solitons u before interaction can be given by

2
Re 2217251 | ( K3 KaK3 )( 1 L ) 020214205
* 2 * * *
()\2,1 - )\2,1)2 4|)\.2,1| ()\2,2 - )\2,2)()»2’2 - )‘2,2) 4)V2,2)\2,2
K3 o 29,202 K3 = 29 _2p 2K, -
- N31e72 17721  ——Ny3e” 217 T2 f ———— s,
2h21 2054 Ay — A2
where
1 1 1 1
A.;'.lf)\.zv‘l )‘;17)‘2,2 2)‘2,1 A.;V1+A.;'2
1 1 1 1
- ¥ i3 3 E3 E3
R=| %2272 Moh22 A athg, 2432
1 1 1 1 ’
—2)2.1 —h1=h22 A3 A1 Aj,—20
1 1 1 1
—)Lzy]—)uz,z —2)»2,2 )‘;,1_)"2*2 )L;Z_}LZ,Z

and 9 is the cofactor of Ry;.
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