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In this paper, a (3 + 1)-dimensional generalized KP-Boussinesq equation is introduced
and its associate Hirota bilinear form is also given. Based on finding the positive
quadratic function solutions of the associate Hirota bilinear equation, the lump solu-
tions of the proposed (3 4 1)-dimensional generalized KP-Boussinesq equation and its
corresponding reduced equations in (2 + 1) dimensions are obtained. Furthermore, the
sufficient and necessary conditions for guaranteeing the analyticity and rational localiza-
tion of lump solutions are derived and expressed in the form of free parameters, which
are involved in lump solutions and play a key role in controlling the dynamic properties
of lump solutions. The localized properties are also analyzed and shown graphically.

Keywords: Dynamic analysis; lump solutions; Hirota bilinear method; dimensionally
reduced Hirota bilinear equations.

1. Introduction

It has been known that soliton solutions exist in all integrable systems, which
have been used to model nonlinear phenomena in nature. Particularly, the research
on exact and analytic solutions has attracted many researchers, such as breathers
and rogue waves, which are rational solutions and exponentially localized in both
space and time. Compared with rogue waves and breathers, lump solutions are a
particular type of rational solutions, localized in all spatial directions.' % In 1977,
the lump solutions were first found since they have important physical meanings.'!
Therefore, it is natural and meaningful to study lump solutions of partial differential
equations (PDEs) by using different approaches, for instance, the long-wave-limit
method!? and the Hirota bilinear method,'® and so on Refs. 14-38. Up until now,
it has been found that numerous integrable systems have lump solutions such as
the KPI equation,'? the (2 + 1)-dimensional Sawada—Kotera equation,3 and the
(2 4+ 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation,*® and so forth.

In 2015, based on the Hirota bilinear operator theory, Ma proposed a novel direct
method for constructing lump solutions of the KP equation.*! So far, this method
has been applied to finding lump solutions of many nonlinear PDEs since it is
natural and effective to search for lump solutions. For example, the KPI equation,*!
the (2 + 1)-dimensional KdV equation,*? the dimensionally reduced p-gKP and
p-gBKP equations*® and the BKP equation.**

Inspired by the aforementioned discussions and physical concerns, we, in this
paper, focus on a (3+1)-dimensional generalized KP-Boussinesq equation that reads

where «, (§ are arbitrary real constants. If « = 1, § = —1, then the equation

(1) becomes the generalized KP-Boussinesq equation proposed and studied in the

reference.®?
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Dynamic analysis of solutions of rgKPB equation

Substituting a dependent variable transformation
u=2(In f), (2)
into Eq. (1) yields the associate Hirota bilinear equation
[D3D, + a(DyDy + Dy Dy + D7) + BD?]f - f
= 2(fazayf — fooofy = 3faayfo + 3foafoy + a(farf
—foft + fyrf — fyfe + fuuf — ft2) + B(fouf — ff)]
-0 (3)

which is identified as the generalized Hirota bilinear KP-Boussinesq equation. As a
matter of fact, the transformation equation (2) plays an important role in establish-
ing Bell polynomial theories of soliton equations.*47 It is obvious that if f solves
Eq. (3), then v = 2(In f), solves Eq. (1). The following are the Hirota bilinear
operators defined by

0 oN" [0 o\"
m yn nl . _ _ —_ _
D7Dy Dy(f - g) <8$ ax’) (ay 8y’>

o 9\ Vo
X a B % f($7y,t)g($ Y ’t )|x’:z,y’:y,t’:t> (4)

where m, n, [ are all non-negative integers.!3

In this paper, we study the lump solutions and dynamic properties of the intro-
duced (3 + 1)-dimensional generalized KP-Boussinesq equation (1) and its dimen-
sionally reduced forms by using symbolic computations with Maple. We would like
to search for positive quadratic function solutions of the bilinear equation (3) and
its dimensionally reduced forms, which in turn yields lump solutions of Eq. (1)
and its dimensionally reduced forms with free parameters, by which the sufficient
and necessary conditions to guarantee analyticity and rational localization of the
obtained solutions are also derived. Finally, the work ends up with some conclusions
and remarks.

2. Lump Solutions of Eq. (1)

In this section, we aim to derive the lump solutions of the (3 + 1)-dimensional gen-
eralized KP-Boussinesq equation (1) in light of its corresponding bilinear equation.
Hence, we first study the quadratic function solutions of Eq. (3) as

f=gQ+h2+l2+a16,
g = a1Z + agy + azz + aqt + as,
h = agx + ary + agz + agt + a1o,

I =anz+ apy + a3z + aiat + as,
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where a;(1 <1 < 16) are real parameters to be determined later. It is evident that
if f(z,y,2,t) solves Eq. (3), then u = 2(In f),, is a solution of Eq. (1).

Plugging function f in Eq. (5) directly into Eq. (3) results in three sets of
constraint equations for the parameters. All the details can be found in Appendix
A.

For Case 1, which needs to satisfy the conditions

afazais(a3 + a3) # 0, (6)
M,

0 7

TR (7)

to guarantee the well-definedness and the positiveness of f and the localization of u
in all spatial directions, respectively. A class of positive quadratic function solution
of Eq. (3) is derived according to the parameters in Case 1 as

aiag ag(aaiais + 2PBasa;s)

2
y—|—a3z+a5) —|—< T —
as a3ai4

aaiaiy + 2Bazars
f=ax—
a4
2

2 2 2
aj3 —az —ag)p +aaisla; +a
—l—agz—i—aw) + (alll‘—( 13 3 S)fM 14(an 14)y
14

M,
afazais(ai + ag)

2
+ a132 + a4t + C115> + (8)

which in turn further yields a class of lump solution of Eq. (1) via the transformation
u=2(In f), as follows:
4(arg + %h + a11l)
f )
where f is defined by Eq. (8) and g, h,[ are given in the following forms:

u = (9)

aaiays + 2Bazars

g=a1x — Yy +asz + as,
Qa4
a1a as(aaiais + 2Basa
p o 198 g(aaiaiy Bas 13)y+agz—|—a10,
as aazaig (10)

(a3 — a3 — a3)B + aara(arn + ai4)
Qa4

l:anx—

+a13z + ayat + azs.

It should be noted that nine parameters a1, as, as, asg, 19, a11, @13, a14 and a5 are
involved in the solution u(I)7 among which ai,as,a19,a11,a13 and a5 are free
parameters, but ag, ag, a4 are required to satisfy conditions (6) and (7) to ensure
that the lump solution u?) exist shown by Fig. 1.
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Fig. 1. (Color online) Lump dynamic characteristics of u® via (9) with a1 = 1,a3 = 1,a5 =
2,a8 = 3,a10 = 1,a11 = 1,013 = 1,014 = 2,a15 = 2, = 2, = 3,z = 1,t = 1. (a) 3D plot; (b)
contourplot; (c) density plot; (d) z-curve; (e) y-curve.

For Case 2, in order to guarantee the well-definedness and the positiveness of

f and the localization of u in all directions in the space, the parameters need to
satisfy conditions

ara(ais(ag + aty) + a3ag) # 0, (11)

aig > 0. (12)

A class of positive quadratic function solution of Eq. (3) is generated by the
parameters in Case 2 as

2

azail azail 11014
f= (—x——y+a3z~|—a5 + | ———=
a13 a13 a9

2 2 2 2
ai1aiy + agai + agaie 13414 t
Y- z+ aglt + aig
agaig ag

+ (anaz + ajoy + a13z + aat
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2 2 2
asai3(ag + aiy) + azagaioais
agag
4 2 (24 22, 2 2\2
3ajais(ats(ag + aiy)” + a3ag)

aagats(ai, + ag)(ar + az + aia)’

(13)

under the transformation v = 2(In f),, which further generates a class of lump
solution of Eq. (1) as

wy _ A(meg — 2uma + an)

( (14)
u )
f
where f is presented by Eq. (13) and g, h,[ are given in the following forms:
aza asa
= gx_ gy—i_aSZ“v_a{”
a3 a3
2 2 2
aia aila aga aga a13a
p— Gt oan 14 t+agai; + 912y_ 13 14z—|—a9t+a10, (1)
a9 a9ai4 ag
2 2
asaiz(ag + aj,) + azagaipa
I =anz+ a2y + a13z + aist + 5a13(4s ;422 37971074
39

It is worth noting that eight parameters as, as, ag, a10, @11, a12,a13 and a4 are
involved in the solution "), among which the rest have to satisfy the conditions
Egs. (11) and (12) for the existence of the lump solution ™ illustrated by Fig. 2.

For Case 3, which must satisfy the following conditions:

afagats(as + aiz) # 0, (16)
M,
ofs > 0, (17)

to ensure the well-definedness and the positiveness of f and the localization of
in all directions in the space, respectively. The parameters in Case 3 lead to the
following class of positive quadratic function solution of Eq. (3):

2 2 2

asa asa —aagl(ag + ag) + plasg +a

f= <_ 3 12x+ 3 12y+a3z+a5) 4 <a6a:+ 9( 6 9) »3( 3 13)y
a13 a3 aag

My

afag a%:a (a% + a%3) 7

2
+ agt + a10> + (—a12z + a12y + a13z + a15)2 + (18)

through the transformation u = 2(In f),, which generates a class of lump solution
of Eq. (1) as follows:

4(7%9 -+ a6h — Cngl)
f b

2250203-6
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Fig. 2. (Color online) Lump dynamic characteristics of wdD via (14) with a3 = 1,a5 = 1,a9 =
2,a10 = 1,011 = 2,a12 = 1,013 = 2,a14 = 3,0 = 1,8 = 2,z = 1,t = 0. (a) 3D plot; (b)
contourplot; (c¢) density plot; (d) y-curve; (e) z-curve.

with f defined by Eq. (18) and g, h and [ are defined as follows:

asa asa
g= —ﬂx+ﬂy+a3z+a5,
a13 a13
. 2 2 20
h:a6x+ 04019(@6+a9)+ﬂ(a3+a13)y+a9t+alo7 ( )
Qag
I = —a12x + a2y + a132 + ais.

It should be noticed that eight parameters as, as, ag, ag, a1, @12, a13 and a5 are
involved in v among which a3, ag, a3 have to meet the conditions (16) and (17)
to ensure the existence of the lump solution ("D,

3. Lump Solutions of the Reduction with z =«

In this section, let us consider the reduction of the (3 4 1)-dimensional generalized
KP-Boussinesq equation (1) with z = z, then Eq. (1) is reduced to

Upgay + 3(Ugly)z + a(uz + Uy + us)t + Bugy = 0. (21)

2250203-7
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Fig. 3. (Color online) Lump dynamic characteristics of «(I'D) via (19) with a3 = 1,a5 = 2, a6 =
2,a9 = 2,a10 = 2,a12 = l,a13 = 2,a15 = l,a = =1, = 2,y = 1,t = 0. (a) 3D plot; (b)
contourplot; (c¢) density plot; (d) z-curve; (e) z-curve.

Furthermore, this equation in turn leads to dimensionally reduced form of the
Hirota bilinear equation (3) as follows:
[D3D, + a(D. Dy + D,D; + D) + BDZ|f - f = 0. (22)

Tt is obvious that if f = f(z,y,t) solves the Hirota bilinear equation (22), then
u = 2(In f), will solve Eq. (21). Therefore, we will derive positive quadratic function
solutions of the dimensionally reduced Hirota bilinear equation (22) by starting
with
f=9>+h +a,,
g = a1z + asy + ast + ay, (23)
h = asx + agy + art + asg,
where the real parameters a;(1 < i < 9) will be determined later. The direct sub-

stitution of f in (23) into Eq. (22) yields the following set of constraining equations
for the parameters:

{a = My ag = M, ag = M } (24)
2= a(a3 + a2)’ 6= a(a3 + a2)’ 97 aB(arar — azas)?

2250203-8
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Fig. 4. (Color online) The amplitude of u(Y) via (29) is 4‘3/1973 and situated in (—% — % + @,

S %) witht =1,a1 = 2,a3 = 2,a4 = 3,a5 = 5,a7 = 2,a8 = 1,a = 2,8 = —2. (a) 3D plot;
(b) contourplot; (c) density plot; (d) z-curve; (e) y-curve.

with

M = 3(a? + a?)(a3 + a?)(a? + a1a3 + a2 + asar)a + 3(a?

+a2)?(aras + asar)B,

(25)
M; = —af(ay + az)(a3 + a?) + B(aza? — a2az — 2aiasa7),
My = —a(d? + a?)(as + a7) + B(atar — alay — 2a1a3as)
which have to satisfy the following conditions:
a1 a
A= ! s = a1a7 — asas 75 0, (26)
as ar
M
=50 27
— >0, (27)

to guarantee the well-definedness and the positiveness of f and the localization of
w in all directions in the space.

2250203-9



M.-M. Liu et al.

A class of positive quadratic function solution of (22) is obtained by the param-
eters in the set (24), which is

f=(mz+ Y+ ast + ag)? + (asz

1
a(a3 + a3)
M,
a(a3 + a3

M

af(arar — 0305)2' (28)

Y+ art + ag)? +

)
Through transformation v = 2(In f),, a class of lump solution is generated for
Eq. (21), which is

LV) 4(arg + ash)
f
where Eq. (28) defines the function f, and the functions g and h are presented in

(29)

the following form:

g=amz+ y +asl + aq,

a(a3 +az) (30)

h =asx + Yy + a7t + asg.

2
afai + a?)
It should be noted that the solution u('V) involves six parameters a1, as, a, as, a7
and ag, among which a4 and ag are arbitrary parameters, and other parameters
must meet conditions (26) and (27) to ensure that «") is a lump solution.
It is also observed that the corresponding lump solution «™) tends to zero
while the determinant A in (26) tends to zero. Particularly, taking

{a1 =1,a3 =3,a4 =0,a5 = l,a7 = 1+¢,a8 =0,a = 1,8 =2} (31)
which implies A = . As the following is the lump solution obtained from Eq. (29),
4 2
w— i(g)7 (32)
q(e)

where
p(e) = (t —y)e® + (2z — 6y + 4t)e? + (4z — 14y + 6t)e
+ 4z — 16y + 4t,
q(e) = 96 + (t — y)?e® + (4% + (22 — 10y)t — 2zy + 63>
+3)e® + (8% + (82 — 24y)t + 222 — 12y + 18y (33)
+24)et + (812 + (122 — 44y)t + 42? — 28xy + 48y
+84)e? + (412 + (8x — 32y)t + 4a? — 322y + 64y>
+168)e? + 180e.

It is obvious that the limit of this lump solution u in (32) is zero while € tends
to zero. Three different contour plots are displayed in Fig. 5 with ¢ = 1 and three
different values of A.

2250203-10
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Fig. 5. (Color online) Lump dynamic characteristics of u via (32) with t = 1. (a) A = 0.3; (b)
A =0.2; (c) A=0.1.

4. Lump Solutions of the Reduction with z =y

The reduction of the (3 + 1)-dimensional generalized KP-Boussinesq equation (1)
with z = y will be discussed in this section, and Eq. (1) is reduced as

~—~

Upgay + 3(Ugly)z + a(Uy + Uy + ug)r + Puyy = 0. (34

Moreover, the corresponding reduction form of Hirota bilinear equation (3) is as
follows:

[D3Dy + oDy Dy + DyDy + D7) + BD21f - f = 0. (35

~~

Obviously, if f = f(x,y,t) is the solution of the Hirota bilinear equation (35),
then v = 2(In f), will be able to solve Eq. (34). In order to find the lump solution
of Eq. (34), we begin with the quadratic solution of the Hirota bilinear equation
(35) as follows:

f=9>+h?+aq,
g = a1z + azy + ast + ag, (36

~

h = asx + agy + ast + asg,

where a; (1 < i < 9) are real parameters to be determined later. By the direct
substitution of f in Eq. (36) into Eq. (35), the set of constraint equations for the
parameters are obtained as follows:

{al = My M, M } (37)

ar = =
aZ+a2) " alai+d2) " a3B(a2 + a2)(azar — asag)?

2250203-11
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with
M = 3((a3 + a2)(a3 + azas + a2 + agar)a
+B(a3 + a§)(azas + asar))((a3 + a7)(a3 + 20203 + a3 + af

+2aga7 + a7)a? + 28((a3 — a§)a3 + az(a3 + af

+4agar)az + a7((—a3 + ad)ar + a3as + ad))a (38)
+6(a3 + ad)?)

M; = —a(d? + a2)(az + a3) + B(aza? — a3as — 2azasaz),

My = —(a? + a2)(ag + ar)a + B(adar — aday — 2aza3ae)

which need to satisfy the conditions

A= 4z a3 = Qg0a7 — a30g 75 0, (39)
as ar
M

—— >0 40

5 > 0. (40)

to ensure the good definition and the positiveness of f and the locality of u in
all directions of space, respectively. The parameters in the set (37) generate the
following class of positive quadratic function solution of Eq. (35) as

f Myt any + ast + 2 + My
= — 5 o &L a a Qa — 5 oL
a(ad+ag)” TN T a(ad ag)
2 N M
adB(a3 + a2)(azar — azag)?’

By means of the transformation u = 2(In f),, a class of lump solution of Eq. (34)
can be further obtained, that is

vy _ 4arg +ash)

+ agy + art + ag (41)

w = ——— 42
7 (42)
where f is defined by Eq. (41), then g and h are given as follows:
= M ey tast+

g = a(ag i a%)m a2y -+ as a4,

(43)
My
h = T + agy + art + as.

a(a3 + a2)
It is worth noting that six parameters as,as, a4, ag, a7 and ag are involved in
the solution u(Y), among which the rest are required to satisfy the conditions (39)
and (40) to guarantee both analyticity and localization of u(V).
Based on Eq. (42), we can find that the lump solution 1Y) tends to zero when the
determinant in Eq. (39) tends to zero. We take the following particular parameters:

{as =1,a3 =1,a4 = 0,a6 = 1,a7 =14+¢,a8 =0,a = 1,6 = 2} (44)

2250203-12
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Fig. 6. (Color online) The amplitude of u(V) via (42) is 2v/6 and situated in (5t i%, t) with
az = —1,a3 = 2,a4 = 0,a6 = 1,a7 = 1,a8 = 0,a = 1,8 = 2,t = 1. (a) 3D plot; (b) contourplot;
(c) density plot; (d) z-curve; (e) y-curve.

which indicates A = ¢, from Eq. (42) we can obtain the lump solution as follows:

_ —8%p(e)

U= 45
q(e) ()
where
(p(e) = (t — 2)e* + (5t — 62 + y)e® + (12t — 18z + 6y)e>
4 (22t — 48z + 14y)e — 64a + 16y + 161,
q(e) = 3072 + 37 + (2t% — dat + 222 + 36)e8 + (8t2
+ (=202 + 4y)t + 1222 — 4oy + 204)e5 + (16t (16)

+ (—48z + 16y)t + 3622 — 24xy + 4y? + 768)e?
+ (162 + (—88x + 24y)t + 9622 — 56xy + 8y?
+2100)e3 + (8t% + (—64x + 16y)t + 12822

— 64y + 8y? + 4032)e? + 4992¢.

2250203-13
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Fig. 7. (Color online) Lump dynamic characteristics of u via (45) with t = 1. (a) A = 0.3; (b)
A =02 (c) A=0.1.

Obviously, the limit of this lump solution u in Eq. (45) tends to zero while €
tends to zero. The contour plots are displayed in Fig. 7 when ¢ = 1 with different
values of A.

5. Lump Solutions of the Reduction with y = «
In this section, we will continue to discuss the reduction of Eq. (1). For y = =z,
Eq. (1) is reduced to

Upgzar + 3(“3;)1: + 05(2'“1: + ut)t + 5uzz = 07 (47)
and the bilinear equation (3) is reduced to the following form:

[D3Dy + (2D, Dy + D7) + 8D f - f = 0. (48)

It is clear that if f = f(x, z,t) solves the bilinear equation (48), then v = 2(In f),,
will solve Eq. (47). To study lump solutions of Eq. (47), we suppose the quadratic
function solutions of the bilinear equation (48) as follows:

f=¢"+nh*+aq,
g = a17 + asy + ast + aq, (49)
h = asx + agy + a7t + as,

where a;(1 < i < 9) are real parameters will be determined later. By using symbolic

computation with Maple on the direct substitution of f in Eq. (49) into Eq. (48),
which yields the following set of constraining equations for the parameters

M, My M
A = 55,05 = — 55,09 = — ,
YT 20t +a2) " 2a(ak+a2) 1604 8(a3 + a2)(azar — azag)?
(50)

2250203-14
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where
M = 3((a% + a2)%a?® + 2B((az + ag)az — az(az — ag))
x ((a2 — ag)as + az(az + ag))o + 5%(a3 + ag)?)?,
M; = —aaz(a? + a2) + B((—a3 + a2)az — 2azasar,
My = —aar(a3 + a2) + B((a3 — a?)ar — 2aza3a6).
In order to guarantee the good definiteness and the positiveness of f and the

localization of w in all directions in the space, the parameters in (50) need to satisfy
the following conditions:

(51)

A= 9 %) _ asar — agag 7 0, (52)
ag ary
B <O0. (53)

The parameters in the set (50) generate the following class of quadratic function
solution of the bilinear equation (48):

M, ? M,
= (2a(a§+a%>““2”a3”““> " <2a<a§ ra))”
? M
> B 1604 8(a3 + a2)(azar — aszag)?’
By virtue of the transformation u = 2(In f),, a class of lump solutions to equa-
tion (47) is derived as

+ agz + art + ag

(54)

L (VD) 4(a1g + ash)

= 7 : (55)
where f is defined by Eq. (54), and g and h are presented in the following forms:
M,
g = Wx+agz+a3t+a4,
(56)

-

- 20(df +a?)

It is observed that six parameters as, as, a4, ag, a7 and ag are involved in u(

among which the rest need to satisfy the conditions (52) and (53) to guarantee the
existence of the lump solution u(VD illustrated by Fig. 8.

On account of (55), we find that the lump solution uVD approaches to zero as

the determinant A in (52) tends to zero. Generally, we take the following special

T+ agz + a7t + as.

VI)
)

parameters:
{ag =1,a3 =1,a4 = 0,a6 = l,a7 =1+¢,a3 =0,a = 1,8 = -2} (57)

which gives a rise to A = ¢, substituting Eq. (57) into Eq. (55), we have the

following lump solution:

_ —64e?p(e)

YT e (58)
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-30 -20 -10 O 100 20 30

100

-0.6

—27=-10—7=0—7=10 [—x=-10—x=0—x=10
(d) (e)

Fig. 8. (Color online) The amplitude of u(VD via (55) is % and situated in (% + %, 0) with
az =—1,a3 =1,a4 =0,a6 = l,a7y = 1l,a8 =0,a = 1,8 = —2,¢t = 1. (a) 3D plot; (b) contourplot;

(¢) density plot; (d) z-curve; (e) z-curve.

where

ple) = (t - ;) et + (4t — 2z + 2)e® + (8t — 4w + 42)e? + (16t

— 12z + 102)e + 12t — 182 + 12z,
q(g) = 3888 + 3c® + 247 + (32t — 32zt + 822 + 96)£8 + (128¢2
+ (—128z + 642)t + 3222 — 3222 + 336)e® + (25612 (59)
+ (—256x + 2562)t + 6422 — 12822 + 6422 + 984)e?
+ (25612 + (—5122 + 3842)t + 1922% — 3202z + 12822
+2016)e® 4 (12812 + (—384x + 2562)t + 2882 — 384x2

+ 12822 + 3456)e? + 5184e.

Apparently, when e approaches to zero, the limit of lump solution u in Eq. (58)
is zero. This is fully illustrated by Fig. 9 with different values of A.
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60
/ 40

(a) (b) (©)

Fig. 9. (Color online) Lump dynamic characteristics of u via (58) with t = 1. (a) A = 0.3; (b)
A =0.2; (c) A=0.1.

60

40

6. Lump Solutions of the Reduction with y =t

Equation (1) is reduced to the following equation in (2 4 1) dimensions by consid-
ering y =t as follows:

Ugzet + 3(Usly) e + (U + 2us); + Pu.. =0, (60)
of which the corresponding Hirota bilinear equation is
[D3D; + a(Dy Dy + 2D?) + BD)f - f = 0. (61)
Tt is clear that if f = f(x, z,t) solves Eq. (61), then v = 2(In f), is the solution
of Eq. (60). Hence, we first take the positive quadratic function solution of Eq. (61)
by starting with
f=9>+h +a,,
g = a1z + asy + ast + aq, (62)
h = asx + agy + art + asg,
where the real parameters a;(1 < i < 9) will be determined later. By substituting

f in Eq. (62) into Eq. (61), a set of constraint equations for the parameters are
obtained as follows:

{a = My as = M, ag = M } (63)
YT a2 4a2) " a(@@+a2) T aBp(ak + a2)(agar — azag)?

with
M = 3(((a3 + a§)*8* + 4((az + ag)as — ar(az — ag))
x ((ag — ag)ag + az(az + ag))aB + 4a2(a3 + a2)?)

x (((a% — a2)a3 + 4asazagar + (—a3 + a2)a?)s

(64)
+2a(a + a?)?)),
M; = —2aasz(a3 + a?) + B(—a3as + aza — 2azasar),
My = —2aaz(a2 + a2) + B((a3 — a?)ay — 2aza3ae).

2250203-17



M.-M. Liu et al.

In order to guarantee the well-definedness and the positiveness of f and the
localization of w in all directions in the space, respectively, the parameters in the
set (63) are required to satisfy the following conditions:

ag as

A= = Q207 — Q306 7é O7 (65)
ag ary
M

—— > 0. 66

5 (66)

The set (63) yields the following class of positive quadratic function solution of
Eq. (61):

f Mt apetast+ 2 + My
= — 5 5 &L asz a a — 5 5 &L
a(@g+ag)” ) T \a(a3 + a?)
M

2
+ agz+art+a + .
‘ ! 8) a3B(a3 + a3)(agar — azap)?

(67)

Via the transformation v = 2(In f),, a class of lump solution of Eq. (60) is
obtained as follows:

L VID — 4(ar1g + ash)

, 68
7 (68)
where f is defined by Eq. (67) g and h are defined as
= Lx + a2z +ast +a
g = O((CL?)) + CI,%) 2 3 4,
(69)
h= Lm—i—a z4+art+a
Ca(@g e T

It should be noted that the solution u(V™ involves six parameters
as, as, a4, ag, a7 and ag, among which a4 and ag are arbitrary parameters, and other
parameters must satisfy conditions (65) and (66) to ensure that u(V is a lump
solution illustrated by Fig. 10.

To sum up, according to Eq. (68), we can find that the corresponding lump
solution u(V™) approaches zero while the determinant A tends to zero. We take
special parameters as follows:

{aa=1,a3=1,a4=0,a6 =l,a7 =1+¢e,a3 =0, = —2,6 =2} (70)
which indicates A = ¢, then the lump solution of Eq. (68) is derived as follows:

_ —8%p(e)

T e )
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Fig. 10. (Color online) The amplitude of u(VID via (68) is 1 and situated in (£ + 2, 2¢) with
az =—1,a3 =1,a4 =0,a6 = 1,a7 = 1l,a8 =0, = —1,8 = 2,¢t = 1. (a) 3D plot; (b) contourplot;
(¢) density plot; (d) z-curve; (e) z-curve.

where

p(e) = (t — 2z)e* + (4t — 8z + 2)e3 + (8t — 167 + 42)e2
+ (6t — 8x + 5z)e + 2t — 2z + 2z,
q(e) = 24 4 12e® 4 96" + (1* — 4ot + 422 + 384)e® + (412
+ (=162 + 22)t + 1622 — 4xz + 888)e® + (82
+ (=322 + 82)t + 3222 — 1622 + 222 + 1284)e* 72)
+ (8% + (—24x + 122)t + 1622 — 20x2 + 422

+1104)e3 + (4¢% + (—8z + 8z)t + 4a* — 8xz

+42% + 576)e? + 168¢.

\

Obviously, the limit of the lump solution u in Eq. (71) equals zero while
tends to zero, which is illustrated by Fig. 11 with ¢ = 1 and three different
values of A.
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Fig. 11. (Color online) Lump dynamic characteristics of u via (71) with ¢t = 1. (a) A = 0.3; (b)
A =02 (c) A=0.1.

7. Conclusions

Using the Hirota bilinear operator theory and symbolic computation with Maple,
we have studied the positive quadratic functions solutions of the (3+1)-dimensional
generalized KP-Boussinesq equation (1) and its four reduction forms in (2 4 1)
dimensions. As a consequence, some lump solutions of these equations have been
derived. Furthermore, the restriction conditions for guaranteeing the analyticity and
positiveness and localization of these obtained solutions has been also derived. The
dynamic properties have been illustrated by the corresponding graphs with specific
parameters. It should be noted that the lump solutions of Eq. (1) are constructed
by using the sum of three positive quadratic functions. As a direct and simple and
robust method, this method can be used to construct rogue wave solutions in terms
of positive polynomial solutions of the associated bilinear equations. This will be
our future research project.

Appendix A.
Case 1.

_aayais + 2Bazaiz
az = — 7CL4—O7GJ6— , a7 = — )
Qa4 as aaszalq

aiag ag(aaiaiy + 2Baza;s)

2 2 2
ais — a5 —a§)B + aais(a; + aiq
a9:0,a12:—<13 3 —ag) ( )7

ad1g

M, }

ale =
afBaiais(ad +a?) |’

where

M, = ( — a§a145(a3a10 — a5a8)2 + 3@?&14(&% + a?l)(af + a%l + a11a14)
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2
a a
+ 6a%a§a14 (a%(ag + 58) + a§a11 (011 + ;))) a+ 6az((af + a%l)ag

agall a% a23
2 2 : 2 1 2
+ ajag) <— B) + ai1a3a13 + asaqy (— + ) + a1a8a13) s.

2 2
Case 2.
2 2 2
azaiy _ Gza11 _ (11014 __a11674 + agair + agaiz
ay = , a2 = — 7@4—0,@6—— , a7 = )
ais ais ag agai4
2 2 20,2 2
a 0,50,13((19 + 014) + a3zagai1pdig B _ ozag(ag + a14)(a11 + a9 + a14)
15 = 2 Lt 2 (42 2 2.2
asag aa(aiz(ag + aiy) + a3ag)
4 2 (.2 2 )2 2212
__ai3a14 _3ajais(aiz(ag + aiy)” + a3a3)
ag = a ,A16 = 44(2+2)( + n ) .
9 Qagaz\aiy T ag)lA11 T G12 T A14
Case 3.
2 2
__Ggaiz _ azaiz _ —oaag(as + ag) + (a3 + afs)
a1 = — , A2 = ,a470,(17— }
a13 a13 Qag
M,y
ag =U,a11 = —a12,014 =Y, 016 = a5a9a4 (a2 T a2 ) s
13143 13

where

My = ( — Bagats(—asarz + azars)? + 3agais(ai + a2y) (a2 + a2y + agag)

a
+ 6a3agai,als (a%z + ag (aa + g)) + 3a§a9a‘112) o — 3Bagats (a3

+ai3)(ais(ag + aiy) + a3al,).
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