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In this paper, a (3 + 1)-dimensional generalized KP-Boussinesq equation is introduced

and its associate Hirota bilinear form is also given. Based on finding the positive
quadratic function solutions of the associate Hirota bilinear equation, the lump solu-

tions of the proposed (3 + 1)-dimensional generalized KP-Boussinesq equation and its

corresponding reduced equations in (2 + 1) dimensions are obtained. Furthermore, the
sufficient and necessary conditions for guaranteeing the analyticity and rational localiza-

tion of lump solutions are derived and expressed in the form of free parameters, which

are involved in lump solutions and play a key role in controlling the dynamic properties
of lump solutions. The localized properties are also analyzed and shown graphically.

Keywords: Dynamic analysis; lump solutions; Hirota bilinear method; dimensionally

reduced Hirota bilinear equations.

1. Introduction

It has been known that soliton solutions exist in all integrable systems, which

have been used to model nonlinear phenomena in nature. Particularly, the research

on exact and analytic solutions has attracted many researchers, such as breathers

and rogue waves, which are rational solutions and exponentially localized in both

space and time. Compared with rogue waves and breathers, lump solutions are a

particular type of rational solutions, localized in all spatial directions.1–10 In 1977,

the lump solutions were first found since they have important physical meanings.11

Therefore, it is natural and meaningful to study lump solutions of partial differential

equations (PDEs) by using different approaches, for instance, the long-wave-limit

method12 and the Hirota bilinear method,13 and so on Refs. 14–38. Up until now,

it has been found that numerous integrable systems have lump solutions such as

the KPI equation,12 the (2 + 1)-dimensional Sawada–Kotera equation,39 and the

(2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation,40 and so forth.

In 2015, based on the Hirota bilinear operator theory, Ma proposed a novel direct

method for constructing lump solutions of the KP equation.41 So far, this method

has been applied to finding lump solutions of many nonlinear PDEs since it is

natural and effective to search for lump solutions. For example, the KPI equation,41

the (2 + 1)-dimensional KdV equation,42 the dimensionally reduced p-gKP and

p-gBKP equations43 and the BKP equation.44

Inspired by the aforementioned discussions and physical concerns, we, in this

paper, focus on a (3+1)-dimensional generalized KP-Boussinesq equation that reads

uxxxy + 3(uxuy)x + α(ux + uy + ut)t + βuzz = 0, (1)

where α, β are arbitrary real constants. If α = 1, β = −1, then the equation

(1) becomes the generalized KP-Boussinesq equation proposed and studied in the

reference.45
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Substituting a dependent variable transformation

u = 2(ln f)x (2)

into Eq. (1) yields the associate Hirota bilinear equation

[D3
xDy + α(DxDt +DyDt +D2

t ) + βD2
z ]f · f

= 2[fxxxyf − fxxxfy − 3fxxyfx + 3fxxfxy + α(fxtf

−fxft + fytf − fyft + fttf − f2t ) + β(fxxf − f2x)]

= 0 (3)

which is identified as the generalized Hirota bilinear KP-Boussinesq equation. As a

matter of fact, the transformation equation (2) plays an important role in establish-

ing Bell polynomial theories of soliton equations.46,47 It is obvious that if f solves

Eq. (3), then u = 2(ln f)x solves Eq. (1). The following are the Hirota bilinear

operators defined by

Dm
x D

n
yD

l
t(f · g) =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂y
− ∂

∂y′

)n

×
(
∂

∂t
− ∂

∂t′

)l

f(x, y, t)g(x′, y′, t′)|x′=x,y′=y,t′=t, (4)

where m, n, l are all non-negative integers.13

In this paper, we study the lump solutions and dynamic properties of the intro-

duced (3 + 1)-dimensional generalized KP-Boussinesq equation (1) and its dimen-

sionally reduced forms by using symbolic computations with Maple. We would like

to search for positive quadratic function solutions of the bilinear equation (3) and

its dimensionally reduced forms, which in turn yields lump solutions of Eq. (1)

and its dimensionally reduced forms with free parameters, by which the sufficient

and necessary conditions to guarantee analyticity and rational localization of the

obtained solutions are also derived. Finally, the work ends up with some conclusions

and remarks.

2. Lump Solutions of Eq. (1)

In this section, we aim to derive the lump solutions of the (3 + 1)-dimensional gen-

eralized KP-Boussinesq equation (1) in light of its corresponding bilinear equation.

Hence, we first study the quadratic function solutions of Eq. (3) as
f = g2 + h2 + l2 + a16,

g = a1x+ a2y + a3z + a4t+ a5,

h = a6x+ a7y + a8z + a9t+ a10,

l = a11x+ a12y + a13z + a14t+ a15,

(5)
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where ai(1 ≤ i ≤ 16) are real parameters to be determined later. It is evident that

if f(x, y, z, t) solves Eq. (3), then u = 2(ln f)x is a solution of Eq. (1).

Plugging function f in Eq. (5) directly into Eq. (3) results in three sets of

constraint equations for the parameters. All the details can be found in Appendix

A.

For Case 1, which needs to satisfy the conditions

αβa43a14(a23 + a28) 6= 0, (6)

M1

αβa14
> 0, (7)

to guarantee the well-definedness and the positiveness of f and the localization of u

in all spatial directions, respectively. A class of positive quadratic function solution

of Eq. (3) is derived according to the parameters in Case 1 as

f =

(
a1x−

αa1a14 + 2βa3a13
αa14

y + a3z + a5

)2

+

(
a1a8
a3

x− a8(αa1a14 + 2βa3a13)

αa3a14
y

+ a8z + a10

)2

+

(
a11x−

(a213 − a23 − a28)β + αa14(a11 + a14)

αa14
y

+ a13z + a14t+ a15

)2

+
M1

αβa43a14(a23 + a28)
(8)

which in turn further yields a class of lump solution of Eq. (1) via the transformation

u = 2(ln f)x as follows:

u(I) =
4(a1g + a1a8

a3
h+ a11l)

f
, (9)

where f is defined by Eq. (8) and g, h, l are given in the following forms:

g = a1x−
αa1a14 + 2βa3a13

αa14
y + a3z + a5,

h =
a1a8
a3

x− a8(αa1a14 + 2βa3a13)

αa3a14
y + a8z + a10,

l = a11x−
(a213 − a23 − a28)β + αa14(a11 + a14)

αa14
y

+ a13z + a14t+ a15.

(10)

It should be noted that nine parameters a1, a3, a5, a8, a10, a11, a13, a14 and a15 are

involved in the solution u(I), among which a1, a5, a10, a11, a13 and a15 are free

parameters, but a3, a8, a14 are required to satisfy conditions (6) and (7) to ensure

that the lump solution u(I) exist shown by Fig. 1.
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Fig. 1. (Color online) Lump dynamic characteristics of u(I) via (9) with a1 = 1, a3 = 1, a5 =

2, a8 = 3, a10 = 1, a11 = 1, a13 = 1, a14 = 2, a15 = 2, α = 2, β = 3, z = 1, t = 1. (a) 3D plot; (b)
contourplot; (c) density plot; (d) x-curve; (e) y-curve.

For Case 2, in order to guarantee the well-definedness and the positiveness of

f and the localization of u in all directions in the space, the parameters need to

satisfy conditions

a14(a213(a29 + a214) + a23a
2
9) 6= 0, (11)

a16 > 0. (12)

A class of positive quadratic function solution of Eq. (3) is generated by the

parameters in Case 2 as

f =

(
a3a11
a13

x− a3a11
a13

y + a3z + a5

)2

+

(
−a11a14

a9
x

+
a11a

2
14 + a29a11 + a29a12

a9a14
y − a13a14

a9
z + a9t+ a10

)2

+

(
a11x+ a12y + a13z + a14t

2250203-5



February 24, 2023 15:51 147-mplb S0217984922502037 page 6

FA

M.-M. Liu et al.

+
a5a13(a29 + a214) + a3a9a10a14

a3a29

)2

+
3a41a14(a213(a29 + a214)2 + a23a

2
9)2

αa49a
4
13(a214 + a29)(a11 + a12 + a14)

, (13)

under the transformation u = 2(ln f)x, which further generates a class of lump

solution of Eq. (1) as

u(II) =
4(a3a11

a13
g − a11a14

a9
h+ a11l)

f
, (14)

where f is presented by Eq. (13) and g, h, l are given in the following forms:

g =
a3a11
a13

x− a3a11
a13

y + a3z + a5,

h = −a11a14
a9

x+
a11a

2
14 + a29a11 + a29a12

a9a14
y − a13a14

a9
z + a9t+ a10,

l = a11x+ a12y + a13z + a14t+
a5a13(a29 + a214) + a3a9a10a14

a3a29
.

(15)

It is worth noting that eight parameters a3, a5, a9, a10, a11, a12, a13 and a14 are

involved in the solution u(II), among which the rest have to satisfy the conditions

Eqs. (11) and (12) for the existence of the lump solution u(II) illustrated by Fig. 2.

For Case 3, which must satisfy the following conditions:

αβa9a
4
13(a23 + a213) 6= 0, (16)

M2

αβa9
> 0, (17)

to ensure the well-definedness and the positiveness of f and the localization of u

in all directions in the space, respectively. The parameters in Case 3 lead to the

following class of positive quadratic function solution of Eq. (3):

f =

(
−a3a12

a13
x+

a3a12
a13

y + a3z + a5

)2

+

(
a6x+

−αa9(a6 + a9) + β(a23 + a213)

αa9
y

+ a9t+ a10

)2

+ (−a12x+ a12y + a13z + a15)2 +
M2

αβa9a413(a23 + a213)
, (18)

through the transformation u = 2(ln f)x, which generates a class of lump solution

of Eq. (1) as follows:

u(III) =
4(−a3a12

a13
g + a6h− a12l)
f

, (19)

2250203-6
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Fig. 2. (Color online) Lump dynamic characteristics of u(II) via (14) with a3 = 1, a5 = 1, a9 =
2, a10 = 1, a11 = 2, a12 = 1, a13 = 2, a14 = 3, α = 1, β = 2, x = 1, t = 0. (a) 3D plot; (b)

contourplot; (c) density plot; (d) y-curve; (e) z-curve.

with f defined by Eq. (18) and g, h and l are defined as follows:

g = −a3a12
a13

x+
a3a12
a13

y + a3z + a5,

h = a6x+
−αa9(a6 + a9) + β(a23 + a213)

αa9
y + a9t+ a10,

l = −a12x+ a12y + a13z + a15.

(20)

It should be noticed that eight parameters a3, a5, a6, a9, a10, a12, a13 and a15 are

involved in u(III), among which a3, a9, a13 have to meet the conditions (16) and (17)

to ensure the existence of the lump solution u(III).

3. Lump Solutions of the Reduction with z = x

In this section, let us consider the reduction of the (3 + 1)-dimensional generalized

KP-Boussinesq equation (1) with z = x, then Eq. (1) is reduced to

uxxxy + 3(uxuy)x + α(ux + uy + ut)t + βuxx = 0. (21)

2250203-7
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Fig. 3. (Color online) Lump dynamic characteristics of u(III) via (19) with a3 = 1, a5 = 2, a6 =
2, a9 = 2, a10 = 2, a12 = 1, a13 = 2, a15 = 1, α = −1, β = 2, y = 1, t = 0. (a) 3D plot; (b)

contourplot; (c) density plot; (d) x-curve; (e) z-curve.

Furthermore, this equation in turn leads to dimensionally reduced form of the

Hirota bilinear equation (3) as follows:

[D3
xDy + α(DxDt +DyDt +D2

t ) + βD2
x]f · f = 0. (22)

It is obvious that if f = f(x, y, t) solves the Hirota bilinear equation (22), then

u = 2(ln f)x will solve Eq. (21). Therefore, we will derive positive quadratic function

solutions of the dimensionally reduced Hirota bilinear equation (22) by starting

with 
f = g2 + h2 + a9,

g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8,

(23)

where the real parameters ai(1 ≤ i ≤ 9) will be determined later. The direct sub-

stitution of f in (23) into Eq. (22) yields the following set of constraining equations

for the parameters:{
a2 =

M1

α(a23 + a27)
, a6 =

M2

α(a23 + a27)
, a9 =

M

αβ(a1a7 − a3a5)2

}
(24)

2250203-8
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Fig. 4. (Color online) The amplitude of u(V) via (29) is 4
√
93

31
and situated in (− 20t

37
− 56

11
±
√
93
6

,
8t
37

+ 52
111

) with t = 1, a1 = 2, a3 = 2, a4 = 3, a5 = 5, a7 = 2, a8 = 1, α = 2, β = −2. (a) 3D plot;

(b) contourplot; (c) density plot; (d) x-curve; (e) y-curve.

with 
M = 3(a21 + a25)(a23 + a27)(a21 + a1a3 + a25 + a5a7)α+ 3(a21

+ a25)2(a1a3 + a5a7)β,

M1 = −α(a1 + a3)(a23 + a27) + β(a3a
2
5 − a21a3 − 2a1a5a7),

M2 = −α(a23 + a27)(a5 + a7) + β(a21a7 − a25a7 − 2a1a3a5)

(25)

which have to satisfy the following conditions:

∆ =

∣∣∣∣∣a1 a3

a5 a7

∣∣∣∣∣ = a1a7 − a3a5 6= 0, (26)

M

αβ
> 0, (27)

to guarantee the well-definedness and the positiveness of f and the localization of

u in all directions in the space.

2250203-9
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A class of positive quadratic function solution of (22) is obtained by the param-

eters in the set (24), which is

f = (a1x+
M1

α(a23 + a27)
y + a3t+ a4)2 + (a5x

+
M2

α(a23 + a27)
y + a7t+ a8)2 +

M

αβ(a1a7 − a3a5)2
. (28)

Through transformation u = 2(ln f)x, a class of lump solution is generated for

Eq. (21), which is

u(IV) =
4(a1g + a5h)

f
, (29)

where Eq. (28) defines the function f , and the functions g and h are presented in

the following form: 
g = a1x+

M1

α(a23 + a27)
y + a3t+ a4,

h = a5x+
M2

α(a23 + a27)
y + a7t+ a8.

(30)

It should be noted that the solution u(IV) involves six parameters a1, a3, a4, a5, a7
and a8, among which a4 and a8 are arbitrary parameters, and other parameters

must meet conditions (26) and (27) to ensure that u(IV) is a lump solution.

It is also observed that the corresponding lump solution u(IV) tends to zero

while the determinant ∆ in (26) tends to zero. Particularly, taking

{a1 = 1, a3 = 3, a4 = 0, a5 = 1, a7 = 1 + ε, a8 = 0, α = 1, β = 2} (31)

which implies ∆ = ε. As the following is the lump solution obtained from Eq. (29),

u =
4ε2p(ε)

q(ε)
, (32)

where 

p(ε) = (t− y)ε3 + (2x− 6y + 4t)ε2 + (4x− 14y + 6t)ε

+ 4x− 16y + 4t,

q(ε) = 96 + (t− y)2ε6 + (4t2 + (2x− 10y)t− 2xy + 6y2

+ 3)ε5 + (8t2 + (8x− 24y)t+ 2x2 − 12xy + 18y2

+ 24)ε4 + (8t2 + (12x− 44y)t+ 4x2 − 28xy + 48y2

+ 84)ε3 + (4t2 + (8x− 32y)t+ 4x2 − 32xy + 64y2

+ 168)ε2 + 180ε.

(33)

It is obvious that the limit of this lump solution u in (32) is zero while ε tends

to zero. Three different contour plots are displayed in Fig. 5 with t = 1 and three

different values of ∆.

2250203-10



February 24, 2023 15:51 147-mplb S0217984922502037 page 11

FA

Dynamic analysis of solutions of rgKPB equation

Fig. 5. (Color online) Lump dynamic characteristics of u via (32) with t = 1. (a) ∆ = 0.3; (b)

∆ = 0.2; (c) ∆ = 0.1.

4. Lump Solutions of the Reduction with z = y

The reduction of the (3 + 1)-dimensional generalized KP-Boussinesq equation (1)

with z = y will be discussed in this section, and Eq. (1) is reduced as

uxxxy + 3(uxuy)x + α(ux + uy + ut)t + βuyy = 0. (34)

Moreover, the corresponding reduction form of Hirota bilinear equation (3) is as

follows:

[D3
xDy + α(DxDt +DyDt +D2

t ) + βD2
y]f · f = 0. (35)

Obviously, if f = f(x, y, t) is the solution of the Hirota bilinear equation (35),

then u = 2(ln f)x will be able to solve Eq. (34). In order to find the lump solution

of Eq. (34), we begin with the quadratic solution of the Hirota bilinear equation

(35) as follows:


f = g2 + h2 + a9,

g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8,

(36)

where ai (1 ≤ i ≤ 9) are real parameters to be determined later. By the direct

substitution of f in Eq. (36) into Eq. (35), the set of constraint equations for the

parameters are obtained as follows:

{
a1 =

M1

α(a23 + a27)
, a5 =

M2

α(a23 + a27)
, a9 =

M

α3β(a23 + a27)(a2a7 − a3a6)2

}
(37)

2250203-11
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with 

M = 3((a23 + a27)(a22 + a2a3 + a26 + a6a7)α

+β(a22 + a26)(a2a3 + a6a7))((a23 + a27)(a22 + 2a2a3 + a23 + a26

+ 2a6a7 + a27)α2 + 2β((a22 − a26)a23 + a2(a22 + a26

+ 4a6a7)a3 + a7((−a22 + a26)a7 + a22a6 + a36))α

+β2(a22 + a26)2),

M1 = −α(a23 + a27)(a2 + a3) + β(a3a
2
6 − a22a3 − 2a2a6a7),

M2 = −(a23 + a27)(a6 + a7)α+ β(a22a7 − a26a7 − 2a2a3a6)

(38)

which need to satisfy the conditions

∆ =

∣∣∣∣∣a2 a3

a6 a7

∣∣∣∣∣ = a2a7 − a3a6 6= 0, (39)

M

α3β
> 0, (40)

to ensure the good definition and the positiveness of f and the locality of u in

all directions of space, respectively. The parameters in the set (37) generate the

following class of positive quadratic function solution of Eq. (35) as

f =

(
M1

α(a23 + a27)
x+ a2y + a3t+ a4

)2

+

(
M2

α(a23 + a27)
x

+ a6y + a7t+ a8

)2

+
M

α3β(a23 + a27)(a2a7 − a3a6)2
. (41)

By means of the transformation u = 2(ln f)x, a class of lump solution of Eq. (34)

can be further obtained, that is

u(V) =
4(a1g + a5h)

f
, (42)

where f is defined by Eq. (41), then g and h are given as follows:
g =

M1

α(a23 + a27)
x+ a2y + a3t+ a4,

h =
M2

α(a23 + a27)
x+ a6y + a7t+ a8.

(43)

It is worth noting that six parameters a2, a3, a4, a6, a7 and a8 are involved in

the solution u(V), among which the rest are required to satisfy the conditions (39)

and (40) to guarantee both analyticity and localization of u(V).

Based on Eq. (42), we can find that the lump solution u(V) tends to zero when the

determinant in Eq. (39) tends to zero. We take the following particular parameters:

{a2 = 1, a3 = 1, a4 = 0, a6 = 1, a7 = 1 + ε, a8 = 0, α = 1, β = 2} (44)

2250203-12
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Fig. 6. (Color online) The amplitude of u(V) via (42) is 2
√

6 and situated in (5t ±
√
6

6
, t) with

a2 = −1, a3 = 2, a4 = 0, a6 = 1, a7 = 1, a8 = 0, α = 1, β = 2, t = 1. (a) 3D plot; (b) contourplot;
(c) density plot; (d) x-curve; (e) y-curve.

which indicates ∆ = ε, from Eq. (42) we can obtain the lump solution as follows:

u =
−8ε2p(ε)

q(ε)
, (45)

where 

p(ε) = (t− x)ε4 + (5t− 6x+ y)ε3 + (12t− 18x+ 6y)ε2

+ (22t− 48x+ 14y)ε− 64x+ 16y + 16t,

q(ε) = 3072 + 3ε7 + (2t2 − 4xt+ 2x2 + 36)ε6 + (8t2

+ (−20x+ 4y)t+ 12x2 − 4xy + 204)ε5 + (16t2

+ (−48x+ 16y)t+ 36x2 − 24xy + 4y2 + 768)ε4

+ (16t2 + (−88x+ 24y)t+ 96x2 − 56xy + 8y2

+ 2100)ε3 + (8t2 + (−64x+ 16y)t+ 128x2

− 64xy + 8y2 + 4032)ε2 + 4992ε.

(46)
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Fig. 7. (Color online) Lump dynamic characteristics of u via (45) with t = 1. (a) ∆ = 0.3; (b)
∆ = 0.2; (c) ∆ = 0.1.

Obviously, the limit of this lump solution u in Eq. (45) tends to zero while ε

tends to zero. The contour plots are displayed in Fig. 7 when t = 1 with different

values of ∆.

5. Lump Solutions of the Reduction with y = x

In this section, we will continue to discuss the reduction of Eq. (1). For y = x,

Eq. (1) is reduced to

uxxxx + 3(u2x)x + α(2ux + ut)t + βuzz = 0, (47)

and the bilinear equation (3) is reduced to the following form:

[D4
xDy + α(2DxDt +D2

t ) + βD2
z ]f · f = 0. (48)

It is clear that if f = f(x, z, t) solves the bilinear equation (48), then u = 2(ln f)x
will solve Eq. (47). To study lump solutions of Eq. (47), we suppose the quadratic

function solutions of the bilinear equation (48) as follows:
f = g2 + h2 + a9,

g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8,

(49)

where ai(1 ≤ i ≤ 9) are real parameters will be determined later. By using symbolic

computation with Maple on the direct substitution of f in Eq. (49) into Eq. (48),

which yields the following set of constraining equations for the parameters{
a1 =

M1

2α(a23 + a27)
, a5 =

M2

2α(a23 + a27)
, a9 = − M

16α4β(a23 + a27)(a2a7 − a3a6)2

}
,

(50)
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where 
M = 3((a23 + a27)2α2 + 2β((a2 + a6)a3 − a7(a2 − a6))

× ((a2 − a6)a3 + a7(a2 + a6))α+ β2(a22 + a26)2)2,

M1 = −αa3(a23 + a27) + β((−a22 + a26)a3 − 2a2a6a7,

M2 = −αa7(a23 + a27) + β((a22 − a26)a7 − 2a2a3a6).

(51)

In order to guarantee the good definiteness and the positiveness of f and the

localization of u in all directions in the space, the parameters in (50) need to satisfy

the following conditions:

∆ =

∣∣∣∣∣a2 a3

a6 a7

∣∣∣∣∣ = a2a7 − a3a6 6= 0, (52)

β < 0. (53)

The parameters in the set (50) generate the following class of quadratic function

solution of the bilinear equation (48):

f =

(
M1

2α(a23 + a27)
x+ a2z + a3t+ a4

)2

+

(
M2

2α(a23 + a27)
x

+ a6z + a7t+ a8

)2

− M

16α4β(a23 + a27)(a2a7 − a3a6)2
. (54)

By virtue of the transformation u = 2(ln f)x, a class of lump solutions to equa-

tion (47) is derived as

u(VI) =
4(a1g + a5h)

f
, (55)

where f is defined by Eq. (54), and g and h are presented in the following forms:
g =

M1

2α(a23 + a27)
x+ a2z + a3t+ a4,

h =
M2

2α(a23 + a27)
x+ a6z + a7t+ a8.

(56)

It is observed that six parameters a2, a3, a4, a6, a7 and a8 are involved in u(VI),

among which the rest need to satisfy the conditions (52) and (53) to guarantee the

existence of the lump solution u(VI) illustrated by Fig. 8.

On account of (55), we find that the lump solution u(VI) approaches to zero as

the determinant ∆ in (52) tends to zero. Generally, we take the following special

parameters:

{a2 = 1, a3 = 1, a4 = 0, a6 = 1, a7 = 1 + ε, a8 = 0, α = 1, β = −2} (57)

which gives a rise to ∆ = ε, substituting Eq. (57) into Eq. (55), we have the

following lump solution:

u =
−64ε2p(ε)

q(ε)
, (58)
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Fig. 8. (Color online) The amplitude of u(VI) via (55) is 4
√
6

9
and situated in ( 2

3
± 3
√
6

4
, 0) with

a2 = −1, a3 = 1, a4 = 0, a6 = 1, a7 = 1, a8 = 0, α = 1, β = −2, t = 1. (a) 3D plot; (b) contourplot;

(c) density plot; (d) x-curve; (e) z-curve.

where 

p(ε) =
(
t− x

2

)
ε4 + (4t− 2x+ z)ε3 + (8t− 4x+ 4z)ε2 + (16t

− 12x+ 10z)ε+ 12t− 18x+ 12z,

q(ε) = 3888 + 3ε8 + 24ε7 + (32t2 − 32xt+ 8x2 + 96)ε6 + (128t2

+ (−128x+ 64z)t+ 32x2 − 32xz + 336)ε5 + (256t2

+ (−256x+ 256z)t+ 64x2 − 128xz + 64z2 + 984)ε4

+ (256t2 + (−512x+ 384z)t+ 192x2 − 320xz + 128z2

+ 2016)ε3 + (128t2 + (−384x+ 256z)t+ 288x2 − 384xz

+ 128z2 + 3456)ε2 + 5184ε.

(59)

Apparently, when ε approaches to zero, the limit of lump solution u in Eq. (58)

is zero. This is fully illustrated by Fig. 9 with different values of ∆.
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Fig. 9. (Color online) Lump dynamic characteristics of u via (58) with t = 1. (a) ∆ = 0.3; (b)
∆ = 0.2; (c) ∆ = 0.1.

6. Lump Solutions of the Reduction with y = t

Equation (1) is reduced to the following equation in (2 + 1) dimensions by consid-

ering y = t as follows:

uxxxt + 3(uxut)x + α(ux + 2ut)t + βuzz = 0, (60)

of which the corresponding Hirota bilinear equation is

[D3
xDt + α(DxDt + 2D2

t ) + βD2
z ]f · f = 0. (61)

It is clear that if f = f(x, z, t) solves Eq. (61), then u = 2(ln f)x is the solution

of Eq. (60). Hence, we first take the positive quadratic function solution of Eq. (61)

by starting with 
f = g2 + h2 + a9,

g = a1x+ a2y + a3t+ a4,

h = a5x+ a6y + a7t+ a8,

(62)

where the real parameters ai(1 ≤ i ≤ 9) will be determined later. By substituting

f in Eq. (62) into Eq. (61), a set of constraint equations for the parameters are

obtained as follows:{
a1 =

M1

α(a23 + a27)
, a5 =

M2

α(a23 + a27)
, a9 =

M

α3β(a23 + a27)(a2a7 − a3a6)2

}
(63)

with 

M = 3(((a22 + a26)2β2 + 4((a2 + a6)a3 − a7(a2 − a6))

× ((a2 − a6)a3 + a7(a2 + a6))αβ + 4α2(a23 + a27)2)

× (((a22 − a26)a23 + 4a2a3a6a7 + (−a22 + a26)a27)β

+ 2α(a23 + a27)2)),

M1 = −2αa3(a23 + a27) + β(−a22a3 + a3a
2
6 − 2a2a6a7),

M2 = −2αa7(a23 + a27) + β((a22 − a26)a7 − 2a2a3a6).

(64)
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In order to guarantee the well-definedness and the positiveness of f and the

localization of u in all directions in the space, respectively, the parameters in the

set (63) are required to satisfy the following conditions:

∆ =

∣∣∣∣∣a2 a3

a6 a7

∣∣∣∣∣ = a2a7 − a3a6 6= 0, (65)

M

α3β
> 0. (66)

The set (63) yields the following class of positive quadratic function solution of

Eq. (61):

f =

(
M1

α(a23 + a27)
x+ a2z + a3t+ a4

)2

+

(
M2

α(a23 + a27)
x

+ a6z + a7t+ a8

)2

+
M

α3β(a23 + a27)(a2a7 − a3a6)2
. (67)

Via the transformation u = 2(ln f)x, a class of lump solution of Eq. (60) is

obtained as follows:

u(VII) =
4(a1g + a5h)

f
, (68)

where f is defined by Eq. (67) g and h are defined as
g =

M1

α(a23 + a27)
x+ a2z + a3t+ a4,

h =
M2

α(a23 + a27)
x+ a6z + a7t+ a8.

(69)

It should be noted that the solution u(VII) involves six parameters

a2, a3, a4, a6, a7 and a8, among which a4 and a8 are arbitrary parameters, and other

parameters must satisfy conditions (65) and (66) to ensure that u(VII) is a lump

solution illustrated by Fig. 10.

To sum up, according to Eq. (68), we can find that the corresponding lump

solution u(VII) approaches zero while the determinant ∆ tends to zero. We take

special parameters as follows:

{a2 = 1, a3 = 1, a4 = 0, a6 = 1, a7 = 1 + ε, a8 = 0, α = −2, β = 2} (70)

which indicates ∆ = ε, then the lump solution of Eq. (68) is derived as follows:

u =
−8ε2p(ε)

q(ε)
, (71)
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Fig. 10. (Color online) The amplitude of u(VII) via (68) is 1 and situated in ( t
7
± 2, 2t

7
) with

a2 = −1, a3 = 1, a4 = 0, a6 = 1, a7 = 1, a8 = 0, α = −1, β = 2, t = 1. (a) 3D plot; (b) contourplot;

(c) density plot; (d) x-curve; (e) z-curve.

where 

p(ε) = (t− 2x)ε4 + (4t− 8x+ z)ε3 + (8t− 16x+ 4z)ε2

+ (6t− 8x+ 5z)ε+ 2t− 2x+ 2z,

q(ε) = 24 + 12ε8 + 96ε7 + (t2 − 4xt+ 4x2 + 384)ε6 + (4t2

+ (−16x+ 2z)t+ 16x2 − 4xz + 888)ε5 + (8t2

+ (−32x+ 8z)t+ 32x2 − 16xz + 2z2 + 1284)ε4

+ (8t2 + (−24x+ 12z)t+ 16x2 − 20xz + 4z2

+ 1104)ε3 + (4t2 + (−8x+ 8z)t+ 4x2 − 8xz

+ 4z2 + 576)ε2 + 168ε.

(72)

Obviously, the limit of the lump solution u in Eq. (71) equals zero while ε

tends to zero, which is illustrated by Fig. 11 with t = 1 and three different

values of ∆.
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Fig. 11. (Color online) Lump dynamic characteristics of u via (71) with t = 1. (a) ∆ = 0.3; (b)

∆ = 0.2; (c) ∆ = 0.1.

7. Conclusions

Using the Hirota bilinear operator theory and symbolic computation with Maple,

we have studied the positive quadratic functions solutions of the (3+1)-dimensional

generalized KP-Boussinesq equation (1) and its four reduction forms in (2 + 1)

dimensions. As a consequence, some lump solutions of these equations have been

derived. Furthermore, the restriction conditions for guaranteeing the analyticity and

positiveness and localization of these obtained solutions has been also derived. The

dynamic properties have been illustrated by the corresponding graphs with specific

parameters. It should be noted that the lump solutions of Eq. (1) are constructed

by using the sum of three positive quadratic functions. As a direct and simple and

robust method, this method can be used to construct rogue wave solutions in terms

of positive polynomial solutions of the associated bilinear equations. This will be

our future research project.

Appendix A.

Case 1.{
a2 = −αa1a14 + 2βa3a13

αa14
, a4 = 0, a6 =

a1a8
a3

, a7 = −a8(αa1a14 + 2βa3a13)

αa3a14
,

a9 = 0, a12 = − (a213 − a23 − a28)β + αa14(a11 + a14)

αa14
,

a16 =
M1

αβa43a14(a23 + a28)

}
,

where

M1 =

(
− a43a14β(a3a10 − a5a8)2 + 3a43a14(a21 + a211)(a21 + a211 + a11a14)
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+ 6a21a
2
8a14

(
a21(a23 +

a28
2

) + a23a11

(
a11 +

a14
2

)))
α+ 6a3((a21 + a211)a23

+ a21a
2
8)

(
−a

2
3a11
2

+ a1a
2
3a13 + a3a11

(
−a

2
8

2
+
a213
2

)
+ a1a

2
8a13

)
β.

Case 2.{
a1 =

a3a11
a13

, a2 = −a3a11
a13

, a4 = 0, a6 = −a11a14
a9

, a7 =
a11a

2
14 + a29a11 + a29a12

a9a14
,

a15 =
a5a13(a29 + a214) + a3a9a10a14

a3a29
, β =

αa29(a29 + a214)(a11 + a12 + a14)

a14(a213(a29 + a214) + a23a
2
9)

a8 = −a13a14
a9

, a16 =
3a41a14(a213(a29 + a214)2 + a23a

2
9)2

αa49a
4
13(a214 + a29)(a11 + a12 + a14)

}
.

Case 3.{
a1 = −a3a12

a13
, a2 =

a3a12
a13

, a4 = 0, a7 =
−αa9(a6 + a9) + β(a23 + a213)

αa9
,

a8 = 0, a11 = −a12, a14 = 0, a16 =
M2

αβa9a413(a23 + a213)

}
,

where

M2 =
(
− βa9a413(−a5a13 + a3a15)2 + 3a9a

4
13(a26 + a212)(a26 + a212 + a6a9)

+ 6a23a9a
2
12a

2
13

(
a212 + a6

(
a6 +

a9
2

))
+ 3a43a9a

4
12

)
α− 3βa6a

2
13(a23

+ a213)(a213(a26 + a212) + a23a
2
12).
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25. X. Lü et al., Nonlinear Dyn. 106 (2021) 1491.
26. B. Ren, X. P. Cheng and J. Lin, Nonlinear Dyn. 86 (2016) 1855.
27. S. Kumar, M. Niwas, M. S. Osman and M. A. Abdou, Commun. Theor. Phys. 73

(2021) 105007.
28. S. Kumar, V. Jaduan and W. X. Ma, Eur. Phys. J. Plus. 136 (2021) 843.
29. S. Kumar, V. Jaduan and W. X. Ma, Chinese J. Phys. 69 (2021) 1.
30. B. Ren, J. Lin and Z. W. Lou, Appl. Math. Lett. 105 (2020) 106326.
31. D. S. Wang and J. Liu, Appl. Math. Lett. 79 (2018) 211.
32. D. S. Wang and X. L. Wang, Nonlinear Anal.: Real World Appl. 41 (2018) 334.
33. Z. L. Zhao and L. C. He, Eur. Phys. J. Plus. 135 (2020) 639.
34. D. S. Wang, B. L. Guo and X. L. Wang, J. Differ. Equ. 266 (2019) 5209.
35. J. P. Yu and Y. L. Sun, Nonlinear Dyn. 90 (2017) 2263.
36. Z. L. Zhao and L. C. He, Theor. Math. Phys. 206 (2021) 142.
37. J. P. Yu, W. X. Ma, Y. L. Sun and C. M. Khalique, Mod. Phys. Lett. B 32 (2018)

1850409.
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