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Abstract
We model the operation of a dockless bicycle-sharing system by two groups of interacting components, bicycles on a side-
walk and users of the system. The model illustrates the bicycle-sharing system by a nonlinear evolutionary equation about 
the density of bikes on the sidewalk. Users’ behaviours, which are some straightforward and necessary actions, determine 
coefficients of the nonlinear evolutionary equation. Some nontrivial solutions to the equation show that even if every user 
has no malice, and the environment is stable, it is still possible that heaps of shared-bicycles appear somewhere along the 
road. Based on the data of heaps, parameters of users’ psychological models can be obtained. A numerical simulation shows 
how to calculate features of users and change the supply of bicycles into the system.

Keywords Dockless bicycle-sharing system · Nonlinear evolutionary equation · Soliton solution

1 Introduction

As a crucial last-mile service, a bicycle-sharing system is 
healthy and reduces pollution in a city (Benedini et al. 2020; 
Caspi and Noland 2019; Vieira et al. 2020). Fishman (2016) 
is an early review of bicycle-sharing systems, and (Gala-
toulas et al. 2016; Sun et al. 2021) are two recent reviews 
of bicycle-sharing systems as well as other related issues. 
Among more than 2900 bicycle-sharing systems worldwide, 
dockless bicycle-sharing systems attract more and more 
interest of researchers because of their dramatic growth 
(Bakogiannis et al. 2019; Xu 2020). In a typical Chinese 
city, such a massive dockless bicycle-sharing system often 
has millions of bicycles. A user of the dockless bicycle-
sharing system can walk little time to get a shared-bicycle, 
and the user can park the shared-bicycle anywhere along 
the road near his or her destination. Although many systems 
encourage a user to park a shared-bicycle in rectangle bays 
painted on the sidewalk, lots of bicycles are parked here and 
there for users’ convenience. Notice that convenience is the 
primary motivator for a user of a bicycle-sharing system, as 
pointed out by the study Chen et al. (2020a) of an optimal 
pricing strategy for bicycle-sharing systems.

Those cities with massive dockless bicycle-sharing sys-
tems provide us with much empirical knowledge about the 
advantages and disadvantages of practical massive dockless 
bicycle-sharing systems. We refer to Chen et al. (2020b) 
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for a good review of features, components and regulations 
of a real dockless bicycle-sharing system, and the corre-
sponding challenges. A common unfavourable phenom-
enon among challenges, a clogging sidewalk, is that lots 
of parked shared-bicycles sometimes appear on a narrow 
sidewalk. Gao et al. (2020) pointed out that the phenomenon 
brings tremendous pressure on the city’s management, and 
Yin et al. (2019) presents a pessimistic idea that a clogging 
sidewalk made by dockless bicycle-sharing systems, as well 
as their users, is value co-destruction. Although there are 
millions of bicycles in a city, and hence Wang et al. (2019) 
discusses their overuse issues, users often have to face too 
many or too few shared-bicycles along sidewalks and thus 
fail to use shared-bicycles (Zhai et al. 2019; Yi et al. 2019). 
The disorderly heaps of parked shared-bicycles can be partly 
controlled by collaborative efforts of users, systems, and the 
government (Zhao and Wang 2019).

We now consider who causes the issue of clogging or 
empty sidewalks with a dockless bicycle-sharing system. 
Neither the operating system nor the user group is satisfied 
with a clogging sidewalk or unsensible aggregation of bicy-
cles. Hence in Liu et al. (2020), we proposed a model of a 
dockless bicycle-sharing system where no user has any mal-
ice, and the environment is stable, and we find that there is 
still a clogging sidewalk in the model. In this paper, we will 
present a more general model for a dockless bicycle-shar-
ing system, which is the model in Liu et al. (2020) when a 
parameter is zero. We will investigate how to obtain model’s 
parameters from the data of parked shared-bicycles, and will 
discuss possible remedies for some issues.

In this paper, the proposed model for a dockless bicycle-
sharing system focuses on two kinds of interacting compo-
nents, lots of bicycles on a long road and many users of the 
system. The living period of a user starts from the user’s 
appearing independently and randomly on the road. The 
user wanders and picks up a shared-bicycle, then the user 
becomes a rider who rides the bicycle to his or her destina-
tion located at random position on the road, and finally, the 
rider parks the bicycle and departs from the system. Other 
actions of a user consist of walking and choosing a shared-
bicycle, and the following details are assumed. The chance 
of a user choosing a shared-bicycle depends on the density 
of parked bicycles at the place, as there are more choices for 
the user near more parked bicycles. Because a user checks 
and searches a bicycle according to the situation of parked 
shared-bicycles showed on a mobile phone application, 
we assume that a walking user follows a diffusion process 
whose drift coefficient depends on the density of parked 
shared-bicycles.

The density of parked shared-bicycles along the road 
plays a vital role in the model. The action of a user relies on 
density. On the other hand, the action influences the density: 
the density decreases when a user chooses a shared-bicycle, 

and it increases when a rider parks a shared-bicycle. Hence, 
a nonlinear evolutionary equation about the density can be 
established based on the above assumptions. The equation’s 
solution is used to show heaps along sidewalks, indicates 
methods to obtain the model’s parameters from observation 
data, and derives remedies for some issues.

Notations—For a function f ∶ ℝ → ℝ , f ′ denotes the 
derivative of f. Taking f (x) = x2 as an instance, we have 
f �(x) = 2x and f �(x2) = 2x2 . We use the term d

dx
(f ) for the 

derivative when the expression of f is complex. For a func-
tion f ∶ ℝ

2
→ ℝ with two independent variable, such as 

f(t, y), ft denotes the partial derivative �
�t
(f (t, y)) , fty denotes 

the two-order partial derivative �2

�t�y
(f (t, y)) , and so on. For a 

real number B ∈ ℝ , f (B − 0) denotes the left-hand limit of 
the function f ∶ ℝ → ℝ as the variable x approaches from 
values to the left of B.

The rest of the paper is organized as follows. In Sect. 2, 
we present the model of a dockless bicycle-sharing system 
as well as environment and construct an evolutionary equa-
tion for the density of parked shared-bicycles. Section 3 
investigates solutions of the evolutionary equation in an 
ideal case that parked shared-bicycles in the environment 
do not influence every user’s behaviors, and presents the 
asymptotical density of parked shared-bicycles. The soliton 
solutions of the evolutionary equation for more cases and 
features of the density are discussed in Section 4. Section 5 
concludes the paper.

2  An evolutionary equation 
about the density of parked bicycles

2.1  Dockless bicycle‑sharing system

Different from traditional bike-sharing systems that offer 
rented bicycles going between docking stations, dockless 
bicycle-sharing systems are based on mobile payments and 
tracking techniques. With systems’ mobile applications, a 
user can locate parked bicycles, unlock and pick up a bicy-
cle, and pay for his or her rental By regulations of most 
systems, a user will be barred if he or she improperly parked 
a bicycle. However, most sidewalks are proper places, and 
hence a user can leave a bicycle anywhere along a sidewalk.

Figure 1 illustrates a long road with parked and ridden 
shared-bicycles of a dockless bicycle-sharing system and peo-
ple who are users of the system. From the system’s perspec-
tive, there are three kinds of objects: a user, a parked bicycle, 
and a compound rider that is a user riding a bicycle. The input 
of the systems is new users coming from their homes, substa-
tions, and so on. The output is riders who leave their bicycles 
on the road. The life of a user includes three stages, as illus-
trated in Fig. 1b. At the first stage, a person, as an input of the 
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system, appears on the road. During the second stage, the user 
wanders along the road and looks for a suitable shared-bicy-
cle. At the third stage, the user picks up a shared-bicycle and 
becomes a rider. A parked shared-bicycle departs and becomes 
part of a compound rider when a wandering user picks it up. 
As an output of the system, a rider may leave his or her shared-
bicycle on the road; then, the bicycle reappears in the system 
as a parked bicycle, as illustrated by Fig. 1c.

We assume that numbers of users, parked shared-bicycles, 
input, and output are vast, and we can discuss their densities 
at y, where y ∈ ℝ denotes a position on the road. At a given 
time t, w(t, y) and v(t, y) represents ‘densities’ of input and 

output. Concretely, 
s2∫
s1

x2∫
x1

w(t, y)dtdy is the number of new users 

appear in [x1, x2] and from s1 to s2 , and 
s2∫
s1

x2∫
x1

v(t, y)dtdy is the 

number of riders who park a shared-bicycle in the same region 
and during the same period. In general, the the output function 
v(t, y) relies on the input function w(s, y), where s ∈ (−∞, t] . 
However, if the input function w(t, y) is constant, and the sys-
tem comes to a steady-state after a burning time, Liu et al. 
(2020) showed that the output function v(t, y) becomes a con-
stant, too. The difference between output and input is equal to 
the number of people, including wandering users and riders on 
a bicycle, in the system. Hence any difference between output 
and input implies a blow-up or a disappearance of people in 
the system. This paper assumes that the system is steady and 
the input and output are constant. That is,

Let u(t,  y) denote the density function of parked bicy-
cles. According to Fig. 1c, when a rider leaves his or her 

(1)w(t, y) = v(t, y) ≡ v ∈ ℝ
+.

shared-bicycle on the road, the parked bicycle increases. 
That is, the output v contributes to ut . On the other hand, 
when a user picks up a shared-bicycle, the parked bicycle 
decreases. We assume that q(t, y) is the density caused by a 
user picking up a shared-bicycle. Then we have that

We will model a users’ behaviour and obtain q(t, y).

2.2  User’s behaviour

We follow a classical kinematic theory of traffic flow intro-
duced by Lighthill and Whitham (1955) to model user’s 
behaviour. We refer to Silvia et al. (2021) for a recent review 
of the traffic flow theory. We assume that the crowd of users 
has a density p(t, y) per unit length and a flux p̃(t, y) per unit 
time. It follows from the theory of traffic flow that the flow 
velocity �(t, y) satisfies

and when p(t, x) has continuous derivatives, there is a con-
servation equation

Both sides of (4) have the same meaning, representing the 
rate of change of wandering users near y and t. The left-hand 
side is written by terms of density and flux, and the right-
hand side is by terms of input and q(t, y), which denotes the 
status transformation of a wandering user to a rider.

Notice that the flow velocity �(t, y) is the speed of a wan-
dering user at position y ∈ ℝ and time t. The psychological 

(2)ut = v − q(t, y).

(3)𝜇(t, y) =
p̃(t, y)

p(t, y)
,

(4)pt(t, y) + p̃y(t, y) = v − q(t, y).

(a) Full screen of users and shared-bicycles.

(b) Life of a user: appearing, wandering, and picking up a shared-
bicycles.

(c) Departure and reappearance of a parked shared-bicycles

Fig. 1  Users’ behaviours and evolution of shared-bicycles along a long road
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model of a wandering user’s behaviour relies on local infor-
mation about the density of parked bicycles showing on 
his or her mobile phone application (Xu et al. (2020)). For 
a wandering user at position y ∈ ℝ and time t, his or her 
local information about the density can be described by 
u(t, y), uy(t, y), uyy(t, y),… . After neglecting high-order local 
information uyy(t, y), uyyy(t, y),… , we assume that the flow 
velocity � = b(u(t, y), uy(t, y)) , where the psychological model 
b is a function b ∶ ℝ

2
→ ℝ.

Then we have the following simple model for a user.

However, model (5) is strange because it assumes that every 
wandering user at the same place walks at the same speed. 
To overcome it, the traffic flow theory includes dependence 
of flux p̃(t, y) on py(t, y) and produces a diffusion of the flow. 
Because it means slight randomness of users’ behaviour, we 
can investigate it from a user’s perspective.

Let {B(t)} be a standard Brownian motion, and we denote 
the movement of a wandering user who is finding a shared-
bicycle by a stochastic differential equation. A stochastic diffu-
sion process X(t) denotes the concrete position of a wandering 
users at time t. The stochastic differential equation of X(t) is

Here �dB(t) represents the user’s random walk, and the drift 
item bdt represents, within the same situation, wandering 
users’ average behaviour, including direction and speed for 
finding a bicycle. From the discussion about model (5), � is 
far less than the absolute value of b = b(u(t, y), uy(t, y).

The number of wandering users on the road is vast, then 
the density p(t, y) of wandering users can be derived by the 
probability function of the stochastic diffusion process X(t). 
According to (6), the density satisfies the following heat equa-
tion (Liu (2016); Ross (2014)).

The last item q(t, y) in the right-hand side of (7) represents 
the decrement of density as a wandering user gets a shared-
bicycle and becomes a rider. Notice that the item q(t, y) 
appears in (2) too. We assume that the rate of a user picking 
up a shared-bicycle at y and t is �(t, y) , where �(t, y) ∈ (0, 1) . 
Then we have that

(5)

�

�t
p(t, y) = v − q(t, y)

−
�

�y
(b(u(t, y), uy(t, y))p(t, y)).

(6)dX(t) = �dB(t) + bdt.

(7)pt =
�2

2
pyy − (b p)y + v − q(t, y).

(8)q(t, y) = �(t, y) p(t, y).

2.3  Evolutionary equation

Users and parked shared-bicycles in the dockless bicycle-
sharing system can be described by three Eqs. (2), (7), and 
(8). We can establish unique evolutionary equation for the 
system for some particular function �(t, y).

As the discussion about b, we know that �(t, y) relies on 
many complex factors, such as densities u(t, y) and p(t, y), 
the time between t and a user’s deadline, and the distance 
from y to a user’s destination. When destinations locate 
randomly on the road, the issue turns to a simple case that 
� = �(t) is a function of t. Such a function �(t) corresponds 
to a case that the rate of a user picking up a shared-bicycle 
varies according to time, and an example is a period near the 
beginning of office hours. When there is not a clear deadline, 
�(t) can be a constant �0.

From (2) and (8), we have that �p = q = v − ut , and hence 
�bp = bv − but , �pt = −utt , �pyy = −utyy . Then multiplying 
(7) by � and substituting the above three equalities, we have 
that

Notice that b(u, uy) = b(u(t, y), uy(t, y)) . When we obtain 
u(t, y) from (9), we have that p =

v−ut

�
.

If the rate �(t) is a constant �0 , model (9) becomes

If the parameter v tends to 0, the term v by disappears and 
(10) becomes the model in Liu et al. (2020).

Compared with � = �0 , the assumption that � relies on 
time is more realistic. But the corresponding model (9) is 
complex. Because conditions of model (10) are valid in par-
ticular cases, we will focus on model (10), study its prop-
erties, and manage to obtain its parameters for observed 
real-world data. Most of parameters are still valid for model 
(9), and hence model (9) can be investigated by numerical 
methods.

3  Evolution of density with constant drift 
parameter

A constant drift parameter b ∈ ℝ corresponds to an ideal 
case that wandering users’ behaviour does not rely on 
the environment, that is, a user independently walks and 
chooses a shared-bicycle no matter more or less the den-
sity of parked-bicycles nearby is. If the mobile phone 

(9)

�2

2
utyy(t, y) − utt(t, y) − (b(u, uy)ut(t, y))y

−

(
��(t)

�(t)
− �(t)

)
ut(t, y) + v by =

��(t)

�(t)
v.

(10)
�2

2
utyy(t, y) − utt(t, y) − (b(u, uy)ut(t, y))y

− �0ut(t, y) + v by = 0.
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application of the bicycle-sharing system does not provide 
a user with any information about nearby parked-bicycles, 
an unplanning user searching a bicycle follows the case. 
Moreover, a drift parameter b ≠ 0 corresponds to a com-
mon favour direction of movement of all wandering users. 
We can imagine some scenarios of the case, such as the 
crowd near a transportation hub, and commuters along a 
particular route.

Suppose that a function �(y) has a second derivative. It 
is obvious u(t, y) = �(y) is a trivial solution of (10) with 
constant drift parameter b, and then from (7) and (8) we 
have that p(t, y) = v

�0
 . For any continuous initial condition 

u(0, y) = �1(y) and a bounded initial  f luctuation 
ut(0, y) = �2(y) , the following proposition shows general 
solutions of (10).

Theorem 1 Assume that the drift parameter b is constant. 
The parameter �0 of the exponential distribution satisfies 
𝜆0 > 0 . Let �i(y), i = 1, 2 , be continuous functions and �2(y) 
is bounded. We write the bound of initial fluctuation in time 
as M2 = max{|𝜓2(y)|, y ∈ ℝ} < ∞ . 

1. There is a unique solution u(t, y) to (10) with initial 
conditions u(0, y) = �1(y) and ut(0, y) = �2(y).

2. When b < 2𝜆0 , we have that lim
t→+∞

u(t, y) = 0.
3. When b = 0 , we have that

Proof When b is a constant, model (10) becomes 
�2

2
utyy(t, y) − utt(t, y) − buty(t, y)) − �0ut(t, y) = 0  .  T h e 

equation suggests an auxiliary function ũ = ut , and hence 
ũt =

𝜎2

2
ũyy − b ũy − 𝜆0ũ . According to the Feymann-Kac 

formulae, we can write

and then we have a classical heat equation.

(12) implies that

Then for the above initial condition about w(0, y), the solu-
tion to (13) is unique. Concretely, for t > 0 and y ∈ ℝ , we 
have that

(11)max{|𝜓1(y) − u(t, y)|, y ∈ ℝ, t > 0} ≤ M2

𝜆0
.

(12)ũ(t, y) = w(t, y) exp

(
b

𝜎2
y+

(
−

b2

2𝜎2
−𝜆0

)
t

)
,

(13)wt =
�2

2
wyy.

(14)w(0, y) = exp

(
−
by

�2

)
�2(y).

Therefore, with initial conditions u(0, y) = �1(y) and 
ut(0, y) = �2(y) , there is the following unique solution u(t, y) 
to (10).

Now we turn to cases 2) and 3), and assume that b < 2𝜆0 . It 
follows from (14) that |w(0, x)| ≤ M2 exp

(
−

bx

�2

)
 and hence 

from (15),

Moreover, from definitions of ũ and w, we have that the 
above inequality implies that the fluctuation is restricted by 
its initial bound M2.

T h e r e f o r e ,  f o r  a n y  0 ≤ T ≤ s ≤ t  , 
|u(s, y) − u(t, y)| ≤ ∫ t

0
|ũ(s, y)|ds and hence

As b
2
− 𝜆0 < 0 , the right hand-side of (19) tends to 0 as 

T → +∞ , and we have that lim
t→+∞

u(t, y) exists and equals 0. 
Moreover, let T = s = 0 , (19) implies that

Let b = 0 , we obtain the result 3).
Theorem 1 illustrates the limiting state for the bicycle-

sharing system with the drift parameter being constant. 
Moreover, with a constant drift parameter, from the heat 
equation (7) and (8), we can obtain a limiting solution of the 
density p(+∞, y) of wandering users.

If there is no common direction of movement of wan-
dering users, that is, b = 0 , Theorem 1 illustrates an ideal 
scenario of a bicycle-sharing system. For any initial density 
�1(y) of parked-bicycles, there are little differences between 
the initial density and the limiting density u(+∞, y) as well 
as the density at any time. So we can plan and design the 
initial density of parked-bicycles carefully, and then we are 
sure that the situation of parked-bicycles is under control at 
any time.

When the drift parameter b ≠ 0 and there is a recogniz-
able mean movement of users, although Theorem 1 ensures 
a limiting density curve of parked-bicycles, but (19) shows 
that it is away from the initial density.

(15)w(t, y) = ∫
ℝ

w(0, x)
√
2�t�

exp

�
−
(x − y)2

2�2t

�
dx.

(16)u(t, y) = 𝜓1(y) + ∫
t

0

ũ(s, y)ds.

(17)|w(t, y)| ≤ M2 exp

(
b2t − 2by

�2

)
.

(18)|ut(t, y)| = |ũ(t, y)| ≤ M2 exp
(
−𝜆0t

)
.

(19)|u(s, y) − u(t, y)| ≤ M2

�0
exp

(
−�0T

)
.

(20)|u(t, y) − �1(y)| ≤ M2

�0
.
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Besides other reasons, features of dockless bicycle-shar-
ing systems may rely on users’ behaviour based on informa-
tion about parked shared-bicycles. Details of nearby parked 
shared-bicycles support a user’s carefully searching and 
picking up a shared-bicycle. Users’ specific and necessary 
behaviour finally cause fluctuation of the density of parked 
shared-bicycles. Theorem 1 studies a particular mobile 
phone application, which does not provide a user with any 
information about nearby parked-bicycles, and shows that 
the solution to the model is under control. Of course, we 
think no users would appreciate this application.

4  Solutions of density in the case 
of unconstant drift

Competitive bicycle-sharing systems always improve their 
mobile phone applications, and we can find the applica-
tions more and more appealing because they provide with 
more and more details of parked shared-bicycles. For those 
cases, a constant drift parameter is not a sensible assump-
tion. Here we will study two cases which have bounded 
densities of parked-bicycles. That is, at any time, the 
parked-bicycles of those two cases are under control in 
some sense. However, the bad news is that the densities 
are not constant, and hence there may be too many or too 
few parked-bicycles somewhere.

4.1  Sinusoidal solutions of the density

The following proposition investigates solutions to (10) 
with an unconstant drift parameter.

Theorem  2 For given two constants b0 > 0 and 
A > 𝜆0 + 2b2

0
𝜎−2 , denote the drift parameter by

Let � =
√
2�−2(A − �0) and C1 = v(A − �0)

−1 . Then for any 
parameter � ∈ [0, 2�) and C2 ∈ ℝ such that |C2| < C1,

is a bounded positive sinusoidal solution to (10).

Proof It follows from A > 𝜆0 that C1 > 0 and hence 
0 < u(t, y) < 2C1 , that is, u(t, y) is a bounded positive func-
tion. Moreover, it follows from A > 𝜆0 + 2b2

0
𝜎−2 that 

C1𝜔 <
v

b0
 .  Then i t  fol lows from the fact  and 

|uy| ≤ C2𝜔 < C1𝜔 that uy +
v

b0
> 0.

(21)b(u, uy) = b0 −
Au

uy +
v

b0

.

(22)u(t, y) = C2 cos(�(y − b0t) + �) + C1

Now we turn to confirm that u(t, y) is a solution to (10). 
(22) suggests that (10) has a traveling wave solution such 
that

(23), when substituted into (10), yields

where C is a constant.
We have that from (22),

It follows from the definition of � that �
2�2

2
= A − �0 , and 

hence from C1 =
v

A−�0
 , we have �

2�2

2
C1 = v . Therefore,

On the other hand, from the definition of b(u, uy) , we have 
that

It follows from (26) and (27) that u(t, y) satisfies (24) with 
C = 0.

Theorem 2 presents an unconstant drift parameter which 
corresponds to a bounded sinusoidal density of parked-bicy-
cles. In general, conditions of model (10) are ideal because 
there are many restrictions about conditions such as the input 
and output of the system, destinations and deadlines of users, 
and we must know the expression of b(u, uy) . However, in 
the following, we will show a method provided by Theo-
rem 2 to deduce some parameters of b(u, uy) from observa-
tions of the parked shared-bicycles.

It follows from (22) that the density u(t, y) varies on 
space and time. At a given time t, the maximal density is 
C1 + C2 and minimal density is C1 − C2 along the road. 
When we observe a maximum point of the density, that is, 
one of heaps of parked shared-bicycles, we can find that it 
is moving because wandering users pick up bicycles behind 
the heap and park bicycles ahead. The velocity of a heap, 
or a maximum point, is the constant part b0 of the mean 
speed b(u, uy) of a wandering users. In the following, we 
will obtain more details of b(u, uy) from features of parked 
shared-bicycles.

Due to the property of sinusoidal density in (22), the 
mean density of parked shared-bicycles is C1 on the road. 
Hence C1 can be obtained from data of bicycles. We can 
also obtain v because it is a parameter of the input (1) for 
the system. From expressions of the mean density C1 and the 

(23)ut = −b0uy.

(24)
�2

2
uyy − (b − b0)uy − �0u −

vb

b0
= C,

(25)
�2

2
uyy−�0u = −

(
�2�2

2
+�0

)
u+

�2�2

2
C1.

(26)�2

2
uyy − �0u = −Au + v.

(27)(b−b0)uy+
vb

b0
= b

(
v

b0
+uy

)
−b0uy = v−Au.
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angular frequency � , we have that a relation among them 
and the parameter �.

When we measure the distance from a heap of parked 
shared-bicycles to the next heap, which is the wavelength 
L =

2�

�
 , we have that the parameter � is

It is interesting to study the wavelength L from (22) and 
compare it with our experience. It follows from (29) that

Here � is the standard deviation of our walking speed when 
finding a bicycles, and its order of magnitude is 1 km per hr. √
2� is about 4.4. The supply capacity of the system, C1∕v , 

is the proportion of parked bicycles to new users per unit 
time, its order of magnitude is about 1 because our experi-
ence is that there are enough bicycles on the road although 
few is around us. Then we have L is 4.4 km, which is slightly 
beyond a person’s sight range. Hence we often see a heap of 
parked bicycles located at a ‘mean’ place about 1 km from 
us, and it is moving quicker than us because b(u, uy) < b0.

With initial conditions other than (22), model (10) 
becomes difficult to solve analytically, and we can use the 

(28)�� =

√
2v

C1

.

(29)� =

√
v

2C1

L

�
.

(30)L =
√
2�

�
C1

v
�.

finite difference method (FDM) to solve it numerically 
(Blazek (2015)). Concretely, the numerical simulation uti-
lizing the FDM replaces ut , uy , by , utt , and utyy respectively by

and

where n and j are indices of time t and space y, and Δt and 
Δy are constant increments of time and space, respectively. 
Then we can solve the corresponding linear algebraic equa-
tion of (10) numerically.

The numerical simulation shows other features of the 
model (10) with b(u, uy) given by (21). The parameters are 
� = 0.8 km/h, b0 = 1.1 km/h, and a large input v = 3.2 per 
km. Moreover, we introduce a fluctuation to the initial val-
ues of the density of parked shared-bicycles. The numerical 
solution to (10) presented in Fig. 2 tends to sinusoidal wave 
in about 0.4 h, and the asymptotic sinusoidal wave has a 
wavelength about 2.9 km and a mean density C1 about 0.9 
per km. And the supply capacity C1∕v of the system is about 
0.28.

The numerical simulation corresponds to a scenrio with a 
large pressure on the system, when there is about two parked 

(31)

un+1
j

− un
j

Δt
,
un
j+1

− un
j

Δy
,

bn
j+1

− bn
j

Δy
,
un+1
j

− 2un
j
+ un−1

j

Δt2
,

(32)
(un+1

j+1
−2un+1

j
+un

j−1
)−(un+1

j+1
−2un

j
+un

j−1
)

ΔtΔy2
,

Fig. 2  The influence of a fluc-
tuation to initial values vanishes 
quickly. Dashed curves are of 
(22), and solid curves show the 
evolution of density with an ini-
tial fluctuation. The difference 
between the two curves is in the 
right column
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shared-bicycles for every seven new users. Although a sup-
ply of bicycles, corresponding to the fluctuation of the initial 
values, disappears in 0.4 h due to new users, there is still 
unbalance in the system and the distance between two heaps 
is about 2.9 km. In the simulation, the ratio of maximum to 
minimum of the density is 1.3. The ratio means the system’s 
unbalancing and can be studied by numerical simulations.

4.2  Other travelling waves of the density

The expression of b(u, uy) relies on the mean behaviour of 
users and it follows a psychological model (Xu et al. (2020)). 
We must carefully check the validity of the expression based 
on observed data because the solution to the system may 
differ for different b(u, uy) . The following proposition shows 
that a weak solution to (10) with a linear drift parameter is 
completely different from sinusoidal solutions in Theorem 2.

Theorem 3 For a constant � ∈ ℝ , denote the drift param-
eter by

There exists a bounded nonnegative function h ∶ ℝ → ℝ 
such that

is a weak solution to (10).

Here a weak solution u to a partial differential equation 
Lu = f  means that Lu equals to f in the sense of distribu-
tions. Concretely, we allow the solution u contains singulari-
ties where ut or uy do not exist. However, for any test func-
tion � ∈ C∞

c
(R × (0,∞)) such that � has compact support, 

we have that,

The proof of Theorem 3 is in Appendix 2, and it is based on 
the following Lemma 1.

Lemma 1 For constants �, � , � ∈ (0,+∞) , such that 
𝜂 < 𝛾𝛼−2 and denote a function f(u) as

1. There is B > 0 such that for u ∈ [0,B) , f (u) < 0 and 
f (B − 0) = −∞.

2. For u ∈ [0,B) , 

(33)b(u, uy) = �u + v�−2
0
�2uy.

(34)u(t, y) = h

(
y +

v�

�0
t

)

(35)∫
ℝ2

(
�2

2
utyy−utt−(but)y−�0ut+vby

)
�dtdy=0.

(36)f (u) =
exp(−�u)

� − ��−2(1 + �u) exp(−�u)
.

3. For u ∈ [0,B) , write 

 Then F(0) = 0 and F(B − 0) = −∞ .  For any 
u1, u2 ∈ [0,B) such that u1 < u2 ,  we have that 
0 ≥ F(u1) > F(u2) . That is, F ∶ [0,B) → (−∞, 0] is 
decreasing.

The proof of Lemma 1 is in Appendix 1.

5  Conclusion and future works

Dockless bicycle-sharing systems improve users’ feeling 
of convenience, and they bring tremendous pressure on the 
city’s management because of disorderly heaps of parked 
shared-bicycles. To investigate the phenomenon of clog-
ging or empty sidewalks, we proposed a model of a dock-
less bicycle-sharing system where no user has any malice, 
and the environment is stable. In some situations with ideal 
conditions, we can obtain the exact solutions to the nonlinear 
evolutionary equation derived by the model.

The ideal conditions include the following assumptions 
and limitations: The environment is a long road without any 
fork or cross. There are lots of bicycles and users in the sys-
tem so that a continuous function can describe their densi-
ties. Both the flow of users entering the system and the flow 
of leaving users are steady at any time. The departure points 
and destinations are distributed uniformly on the road so that 
flows of entering and leaving are balanced and two flows are 
steady in space.

Even in ideal conditions, the results show that an ambi-
tious and competitive bicycle-sharing system, who wants to 
provide a good user experience by its mobile applications, 
must face the problem of unbalance. Based on the data of 
parked shared-bicycles, we proposed a method to obtain 
parameters of users’ psychological models. Numerical sim-
ulation provides the ratio of the maximum density to the 
minimum, which can use to change the supply of bicycles 
into the system. Another theorem points out that we must 
carefully check users model’s validity based on observed 
data because the solution to the system may differ for dif-
ferent users models.

There are many problems worth investigating in future 
research. The ideal conditions of investigated model are valid 
in some particular cases, the swarming behaviour of users 
and distributions of bicycles may be different under environ-
ments and flows such as a complex road network, unbalanced 
flows of entering and leaving by commuters, specific flows 

(37)f �(u) + �uf 2(u) + �f (u) = 0.

(38)F(u) = ∫
u

0

f (x)dx.
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illustrating transfer between transit system, and so on. It is an 
interesting problem whether and which of the obtained param-
eters under ideal conditions are still valid for realistic models. 
The problem is important for exploring the realistic model 
by numerical methods and for providing more suggestions 
to dockless bicycle-sharing systems in the future. Finally, a 
theoretical problem is the physical meaning of weak solutions 
of the system.

Appendix 1 Proof of Lemma 1

Proof For any u, the numerator f(u) is positive and it does 
not influence the sign of f(u). We consider the denominator 
�(u) of f(u):

As 0 < 𝜂 < 𝛾𝛼−2 , it is obvious that 𝜙(0) < 0 . Moreover, 
𝜙(∞) = 𝜂 > 0 . And for u > 0 , 𝜙�(u) = 𝛾u exp(−𝛼u) > 0 . So 
there is a unique B > 0 such that �(B) = 0 and for u ∈ [0,B) , 
𝜙(u) < 0 . Then the result of 1) follows.

We write g(u) = f (u) exp(�u) . It follows from

and (37) that

Therefore

Notice that it follows from 1) that for u ∈ [0,B) , the above 
function is not zeros at u and hence (36) follows. That is, f 
is a solution to (37) on [0, B).

As f(u) is continuous at any u ∈ [0,B) , (38) is a proper defi-
nition to F(u). It follows from f (u) < 0 that F(u) is decreasing. 
From its definition, we have that F(0) = 0 . Finally, to prove 
that F(B − 0) = −∞ , we only need to prove that for some 
𝛿 > 0,

Now we study

where  �(u) i s  g iven in  (39) .  As for  u > 0  , 
𝜙�(u) = 𝛾u exp(−𝛼u) > 0,

(39)�(u) = � − ��−2(1 + �u) exp(−�u).

(40)f �(u) = −�f (u) + g�(u) exp(−�u)

(41)
1

g2(u)
g�(u) = −�u exp(−�u).

(42)
1

g(u)
= � − ��−2(1 + �u) exp(−�u).

(43)F(B − 0) − F(B − �) = ∫
B

B−�

f (u)du = −∞.

(44)
1

f (u)
= exp(�u)�(u),

Moreover,  i t  fol lows from f (B − 0) = −∞ that 
1∕f (B − 0) = 0 . Therefore, there is a constant C and 𝛿 > 0 
such that for u ∈ [B − �,B]

and hence f (u) ≤ C−1(u − B)−1 . So we can obtain

Appendix 2 Proof of Theorem 3

.
We write 𝛼 =

2v𝛽2

𝜎2𝜆2
0

> 0 , 𝛾 =
2𝛽

𝜎2
> 0 and let � be a positive 

number such that 𝜂 < 𝛾𝛼−2 . It follows from 3) of Lemma 1 
that F has an inverse F−1 ∶ (−∞, 0] → [0,B) such that 
F−1(−∞) = B and F−1(0) = 0 . We write

We will show that u(t, y) given by (34) satisfies (10) at any 
(t, y) such that �0y + v�t ≠ 0.

Let k = v�∕�0 . It is clear that ut(t, y) = kuy(t, y) for 
�0y + v�t ≠ 0 . Substituting ut(t, y) = kuy(t, y) into (10), we 
have

And hence

where C is a constant.
We will show that for C = 0 , (50) has two solutions: 

u(t, y) = 0 and u(t, y) = F−1
(
y +

v�

�0
t
)
 and hence u(t, y) given 

by (34) is a weak solution to (50). It is clear that u(t, y) = 0 
is a trivial solution. Substituting b(u, uy) given in (33) into 
(50) and notice C = 0 , we have that ū(y) = u(0, y) satisfies

(45)
d((f (u))−1)

du

|||||u=B
= exp(�B)��(B) ≠ 0.

(46)
1

f (u)
≥ C(u − B),

(47)�
B

B−�

f (u)du ≤ �
B

B−�

1

C(u − B)
du = −∞.

(48)h(y) =

{
F−1(y), y ≤ 0,

0, y ≥ 0.

(49)
�2k

2
uyyy − k2uyy

− k(buy)y − �0kuy + v by = 0.

(50)�2k

2
uyy − k2uy − k(buy) − �0ku + v b = C,

(51)

𝜎2k

2
ūyy − k2ūy − k𝛽ūūy − k

v𝛽2

𝜆2
0

(ūy)
2

− 𝜆0kū + v𝛽ū +
v2𝛽2

𝜆2
0

ūy = 0.
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The coefficient of ū in the above (51) is −�0k + v� = 0 , 
that follows from k = v�∕�0 , and the coefficient of ūy is 
−k2 + v2�2�−2

0
= 0 . Hence (51) yields

Consider the inverse y = y(ū) of ū = ū(y) . Substituting

into (52), we have that

Let f (ū) = yū , then we have

As � =
2v�2

�2�2
0

 and � =
2�

�2
 , the above (55) and (37) is the same 

one. It follows from Lemma 1 that y(ū) = F(ū) . Therefore 
ū = F−1(y) i s  a  so lu t ion  to  (51) ,  and hence 
u(t, y) = F−1

(
y +

v�

�0
t
)
 is a solution to (50).
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ū
+

v𝛽2

𝜆2
0
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