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Abstract

The operation of a dockless bicycle-sharing system is modeled by a stochastic system characterized by two kinds of
interacting components, the distribution of bicycles on a sidewalk and behaviors of riders, whose simple and basic actions lead
to complex results. From the model, the collective behavior emerging in the bicycle-sharing system is described by a nonlinear
evolutionary equation for the density of bicycles on the sidewalk, which has a non-trivial lump solution. The solution describes
a heap of bicycles at somewhere on the sidewalk, and the width and the movement of the heap is determined by the mean
behaviors of riders. Such a lump solution implies that the phenomenon of clogging sidewalks may be an endogenous processes
within some dockless bicycle-sharing system.

(© 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.
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1. Introduction

As an important last-mile service, a bicycle-sharing system is healthy and can reduce pollution in a city [2,4,20].
Recently, huge dockless bicycle-sharing systems with millions of bicycles appear in China. In a city with such a
system, a rider does not walk several minutes to come across a share bicycle, and she or he can park it anywhere
along the road near the destination. Although many systems encourage a rider to park a share bicycle in rectangle
bays painted on the sidewalk, lots of bicycles are parked here and there for riders’ convenience. Notice that
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convenience is a major motivator for a rider, as pointed out by the review [6] of bicycle-sharing systems. Those
cities provide us with much empirical knowledge about advantages and disadvantages of practical huge dockless
bicycle-sharing systems. Here we consider the phenomenon of a clogging sidewalk that, sometimes, many share
bicycles are parked at a narrow sidewalk.

There is an extensive literature about bicycle-sharing systems. [6] is a good review of bicycle-sharing systems
before 2015. [5] concludes that a share bicycle can compete with a car in some conditions. [3] and [24] provide a
statistical and spatial quantitative analysis for bicycle-sharing systems. [22] and [8] establish different models for
bicycle-sharing systems to study the operation of a system and how to keep a balance between expenditure and
revenue for a system. A recent model in [9] investigates on safety problems on road segments shared by automobiles
and bikes from bicycle-sharing systems. However, those macro level models do not involve the phenomenon of a
clogging sidewalk. We assume that neither operators of a bicycle-sharing system nor any riders manage to block a
sidewalk intentionally. With the preceding assumption, the phenomenon of a clogging sidewalk may be a result of
stigmergic or collective behaviors [17] of riders within a bicycle-sharing system. Stigmergy is a system characterized
by interacting components, whose simple and basic actions lead to an unexpected collective behavior that in general
is not readily predictable from actions of components. We refer to [19] for an interesting discussion and an example
of stigmergic behaviors.

In this paper, we establish a stochastic system modeling the operation of a dockless bicycle-sharing system
along a long road. The system is characterized by the density of parked share bicycles along the road, and many
independent riders who appear randomly on the road, walk following a diffusion process, pick up a share bicycle,
ride to a random destination along the road, park the bicycle at the destination, and leave the system permanently.
We assume a rider’s origin and destination are randomly at the road, hence from the system we cannot infer any
exogenous clogging sidewalks which sometimes appears near population centers, major commercial malls and
subway stations. Till a rider picks up a share bicycle, the movement of the walking rider is a diffusion process
with a constant diffusion coefficient and a drift coefficient determined by the density of parked share bicycles
nearby. That is, the expectation of movement in a small time interval of a walking rider is in relation with the
density of bicycles. Moreover, we assume that the chance of picking up a share bicycle at a place is in relation
with the density of bicycles at the place too. From those assumptions, to describe a rider’s behaviors, we can use a
stochastic differential equation with coefficients determined by the density of parked share bicycles along the road.
On the other hand, a rider’s actions of picking up and parking a share bicycle can affect randomly the density. We
assume that there are a lot of independent riders, and then from the law of large number, the effect of all riders on
the density is not randomly. Therefore, we establish a nonlinear evolutionary equation to the density. The nonlinear
evolutionary equation has a nontrivial lump solution, which is a rationally decaying solution in all space directions.
We refer to [21,23] for lump-kink interaction solutions and [1,15,25] for lump-soliton interaction solutions and
the methodology to other similar models. The lump solution of the density of parked share bicycles has a peak,
where parked bicycles are assembled and we think that it illustrates a clogging phenomenon. The peak moves with
human’s walking speed, and its width varies when all people search bicycles anxiously.

A list of notations is provided in the following:

- u(t, y): the density of share bicycles parked along a road. u(¢, y)dy denotes the amount of bicycles parked from
position y on the road to y + dy at time 7.

- (&, ny): the diffusion process describes the walking of a rider. Given a rider starts from position x on the road at
time s, & denotes the rider’s position at time z. 1, is an auxiliary process, which is only used in the full model,
describes the chance of the rider’s picking up a share bicycle.

- o: the diffusion coefficient of &;, which is set to 1 in the basic model and is a positive constant in the full model.
- bo: the constant part of the drift coefficient b of & and denotes a rider’s movement intention when the density of
parked bicycles is constant.

- A(u): the rate of a walking rider’s picking up a share bicycle at a position where the density is u. It is constant in
the basic model and A(u#) = Ay + Bu in the full model.

- m(s, x) and n(z, y): denote respectively the rate of riders’ appearing at a position x and time s, and the rate of
riders’ reaching her or his destination y at time . We assume that those two functions are equal and are constants,
that is, the model does not try to describe phenomena of clogging sidewalk due to any exogenous reasons.

The rest of the paper is organized as follows. In Section 2, we present a basic model which only includes key
concepts of the full model, show the idea to construct an evolutionary equation for the basic model, and illustrate
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how to obtain a lump solution to such equations. Section 3 contains a full model which includes details of riders and
the dockless bicycle-sharing system, establishes the evolutionary equation for the full model, and presents equations
to describe expectations of walking time and displacement of a rider. Features of those equations are discussed in
Section 4. Section 5 concludes the paper.

2. Basic model of dockless bicycle-sharing system
2.1. Features of share bicycles and riders
We study the operation of dockless share bicycles along a long line R, and u(z, y) denotes the density of share

bicycles parked at y € R and time ¢. Given that a rider starting from x € R at time s, till picking up a share bicycle,
she or he walks in the following form of diffusion process.

t 1
S;‘,:x+/ odB,—i—/ bdr. (D)
N s

Here &; denotes the position of the rider at time ¢, B, is a Wiener process. o is the rider’s diffusion coefficient
which is set to 1 in this basic model. b is the rider’s drift coefficient, which denotes the rider’s movement intention,
and we assume it is determined by the density of parked bicycles nearby. Concretely, suppose that & = y, that is,
the position of a walking rider is y at time ¢, where the density of share bicycles is u = u(¢, y) and let u, = a“;’);y )
which represents the rate of change of the density nearby. We assume that

b(u, uy) = bo + by(wuy + b3, + bsu) + - - 2)

Here by denotes the rider’s movement intention when the density is constant, and we assume by = 1 in this basic
model. The form of (2) ensures that b(u, —uy) — by = —(b(u, uy) — bp), that is, the remaining part b — by of a
rider’s movement intention is different according to whether there are increasing or decreasing bicycles at front
of the rider. Then the transition density p(s, 7, x, y) of &, the position of a walking rider, satisfies Fokker—Planck
equation [18].
L,
Pt = 5(0 p)yy - (b p)y- (3)
There are many independent riders and start points of riders are independently and randomly at the road. We
assume that there appear m(s, x) dx ds riders in (x, x + dx) on the road during a time interval (s, s + ds). If none
of riders pick up a share bicycle forever, the amount of riders finding bicycle around (y, y + dy) on the road at
time ¢ is

p(s,t,x,y)ym(s,x)dxdsdy.

However, a rider picks up a share bicycle sooner or later. In this basic model, it costs a walking rider an exponential
random time with mean 1/A¢ to pick up a share bicycle, Ay > 0. That is, given that a rider starting from x € R
at time s, the probability of that she or he still walks on the road till ¢ is e *0“=)| where ¢ > s. The memoryless
property of an exponential distribution implies that the hazard rate function is the constant Ay. Hence the probability
of her or his picking up a share bicycle during (¢, t + dt) is Age *0~9d¢t. Therefore, due to riders’ picking, the
density of share bicycles parked at position y and time ¢ decreases with a rate Log(¢, y) and

oo pt
q(t,y) = / / e MU= p(s, £, x, y)ym(s, x)dx ds. 4)
—00 J—o0

On the other hand, every rider parks a bicycle at her or his destination and the density of share bicycles increases
because of the actions. Hence, the density of share bicycles satisfies

u, =n(t,y) — rogq(t, y). &)

Here n(t, y)dt dy is the amount of rider who parks a bicycle around (y, y + dy) on the road during a time interval
(t,t + dt). Notice that a rider’s origin and destination are randomly at the road for eliminating some predictable
exogenous phenomena, that is, we assume that both n(z, y) and m(s, x) are constants. Furthermore, every rider finds
a share bicycle sooner or later and the rider parks the bicycle when she or he reaches the destination. So we have

n(t,y) = m(s, x).
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It follows from (3), (5) and p(¢, ¢, x, y) = §(x — y) that

1
q: =m(t,y) — rogq + quy — (b(u, uy)q),. (6)
Then it follows from (5) and n(¢, y) = m(s, x) that the density u(z, y) satisfies the following nonlinear evolutionary
equation.

1
5 Uayy — i = (b(u, uy)uy)y — rou; = 0. @)

2.2. Exact solution of density

The solution of (7) is not unique. u = constant, a trivial solution to (7), represents an ideal case. For a specific
drift coefficient, a nontrivial lump solution to (7) is presented in the following theorem.

Theorem 1. For the following drift coefficient

w3

301 3
b(l/t I/t))—l—i— 42+ u'y+8)\,—0u6’

the density function u(t,y) = e is a solution to nonlinear evolutionary equation (7).

1
1+xo(y—
The proof of Theorem 1 is straightforward by substituting the expression of the density function u(¢, y) into (7).
Here we present the proceed of solving (7), to exhibit a method to solve similar equations.
We reduce the drift coefficient through a rational transformation u = % as

1\ vy 1\ v}
R ICERNOER
v/ v v/ v
= by — by (V) vy — b3 (V) v} + -+ ®)
We manage to solve (7) f01r~ a drift coefﬁciept b with simple forms of 151, 153, .... In fact, the drift coefficient b in
Theorem 1 corresponds to b; = % + % and b, = ﬁ

Substitution of the dependent variable transformation u = % with v = v(¢, y) into (7) yields a partial differential
equation about v as

6 6 6
ZZC,,(av) @) + 33 ciju 3v) (9,0) Brv) + - - = 0. ©)

i=0 j=0 i=0 j=0 k=0

Here ¢; ; and ¢; jx are constants, and dypv = v, 91V = v, DV = Vy, 03V = Vyy, 04V = Vyy, 05V = Vyy, OV = Uyyy.
We guess that the summation of the first part and few other terms in (9) equals 0. Concretely, we guess that

1
—2v,vy + 20y, — Evv,yy + Aovv; + 20, + Aoy, — 2vvt2 =0.

The preceding equation has a bilinear representation.

1
(D,2 + DyD; — =D}y 3 D13y —(D Ln.s+ Day Y)) v-v=0. (10)

4

Here D;, Dy, Dy 3y, D13y, Dg1y, and Dy yy,, are bilinear derivative operators [7]. We refer to [11,12] for an
introduction to bilinear representations and bilinear equations. Many nontrivial solutions to (10) are obtained by
following the technique established in [10,13,14,16]. Substitution of those solutions into (9), we can eliminate some

extraneous solutions of (10), and finally obtain the solution u(z, y) = m to (9).
3. Full model of dockless bicycle-sharing system
3.1. Evolutionary equation for system
In this practical model, two unreasonable assumptions 0> = and by = 1 in the basic model are canceled.

Moreover, we assume that walking time of a rider has a nonconstant hazard rate function A = A(u(z, y)), that is,
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the probability for a rider picking up a share bicycle is determined by the density of bicycles parked nearby. It is
obvious that A(#) > 0 and we assume that inf, A(u) > O to avoid the case that a rider never picks up any share
bicycle.

In this model, given that a rider starting from x € R at time s, the probability of that she or he still walks on
the road and searches a bicycle till # > s

E |:exp <— /t Au(r, E,))dr)

Here &,, s < r <t is a diffusion process defined by (1), and &, satisfies the following stochastic differential equation.

& =xi| . an

d& = odB; + b(u(t, &), uy(t, &))dr. (12)

To establish formula corresponding to (4) and (3) for this practical model, we introduce a stochastic process {n;}
such that

dn, = AMu(t, &))dr. 13)
For example, we can then rewrite the probability of (11) as

E [exp (=m0l & = x,n, = 0]. (14)
{(&, ny)} is a 2-dimensional Markov process whose transition density p(s, f, x, y, z), defined by

p(s.t,x,y, 2)dydz = P& € (y,y +dy), m; € (z, 2+ d2)|§s = x, 1, = 0), 5)

satisfies the following partial differential equation.

1
pe=5(2p),, = bp) =y = Gp):, (16)

with initial conditions p(s, s, x, ¥, z7) = §,_8,. Moreover, it follows from the fact inf, A(x) > O that p(s, ¢, x, y, 0)
=0 for any ¢ > s.

Now we turn to compute the decreasing rate of the density u(z, y) due to riders’ picking up bicycles. Similar
in the basic model, we assume that there appear m(s, x)dx ds riders in (x, x + dx) on the road during a time
interval (s, s + ds), and n(¢, y)dt dy is the amount of rider who parks a bicycle around (y, y + dy) on the road
during a time interval (z,t + dt), where n(t, y) = m(s,x) = constant. And we assume that the constant is so
large that, due to the law of large number, the effect of all riders on the density is not randomly. Furthermore, we
use ¢(t, y, z)dydz to denote the amount of share bicycles parked at (y, y 4+ dy) at time ¢ and the rider parking the
bicycle has n; € (z, z + dz). It follows from (14) and (15) that

“+o0 t
é(t,y,z)=/ f e “m(s,x) p(s,t,x,y,z)dxds. (17

Then we can obtain derivatives of g (¢, y, z)dydz from (17). Concretely,

+00 t +00
qr =/ / e “m(s,x) pi(s,t,x,y,2)dx ds+/ e “m(t,x)p(t, t,x,y,z)dx.
—00 —00 —

o0

It follows from p(z,t, x,y,z) = 8,_,0, that the second term of the right hand side of the preceding equation is
e “m(t, y)§,. Hence the preceding equation and (16) imply that

- _ o1 - - -

Gi = m(t, y)e 7?8 =24 + 5@y = (bd)y = (- (18)

From the definition of ¢(¢, y, z) and n(t, y), we have that
+00
up =n(t, y) — Mu(t, y))/ q(t,y,2)dz.
—0o0

Hence, it follows from (18) and the facts fj;o fioo p(s,t,x,y,0)dsdx =0 and lim,_, o, p(s,t,x,y,z) =0 that

o2

Sty = it = (B, )y = (), =0, (19)
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Notice that the preceding evolutionary equation of the density u(t, y) reduces to (7) of the basic model when o = 1
and A(u) = Ao.

3.2. Density, walking time, and displacement

The solution of (19) is not unique. Following the same method, we obtain a nontrivial lump solution to (7) is
presented in the following theorem.

Theorem 2. For M(u) = Ao + Bu, B > 0, and the following drift coefficient

uy Bb? u bt o2 B ul
b(u,uy) =b 224+ 2420 2+ 2 14+ 5+ &) ——, 20
(e, uy) 0+Uu+(o+k0+0 P +b(2)+/\0 TG (20)
the nonlinear evolutionary equation (19) has a nontrivial solution
bZ
u(t,y) = 0 1)

b} + ho(y — bot)*

Notice that the preceding density u(¢, y) reduces to the solution to (7) given in Theorem | when o = 1, by = 1
and 8 = 0.

In the basic model, the time t it takes for a rider to pick up a shared bicycle has a constant expectation 1/Aq.
However, in the full model, it is not straightforward to compute E[t|&; = x, n; = 0] and the displacement between
x and & ., the position where the rider picks up a bicycle. From the following Theorem, we can obtain those
expectations.

Theorem 3. Let f(s,x,t,y) be the conditional probability density function of (s + 7, &), given & = x and
ns = 0. For a function h(y) € Cg(R), we write

+00
w(s, t,x) = / h(Y) f(s,x,t, y)dy.

[o¢]

Then w(s, s, x) = Au(s, x))h(x) and for t > s,

i = 307w bl ), w1, X — At D (22)

The preceding Theorem 3 is based on Feymann—Kac formulas and we place its proof in Appendix.

For h(y) = 1, fj:oo h(y)f(s, x,t, y)dy is the density of s + 7 of a rider’s walking time given that the rider starts
from position x at time s, and ﬂ +oo tw(s, t, x)dt — s is the expectation of the rider’s walking time. For h(y) =y,
fx T w(s, 1, x)dt — x the expectation of the rider’s displacement from her or his starting point to the position where
the rider picks up a share bicycle, given that he rider starts from position x at time s. Although 1,y ¢ C3(R), we
can use a sequence of h,, € Cg(R) to tend to 1 or y, and obtain corresponding expectations with solutions to (22).

4. Clogging phenomena in dockless bicycle-sharing system

4.1. General features of density

Fig. 1 shows a lump density function u(¢, y) defined by (21) at time + = 1 and time ¢ = #,. u(t, y) is the density
of share bicycles parked at position y and time 7, it has a peak and gets its maximum at byt. It is obvious from
Fig. | that u(¢, y) is a traveling wave with respect to time ¢t. Form t = 1 to ¢t = #,, the displacement of the density
is bo(t, — 1), and hence the density function u(z, -) travels with speed by. by denotes a rider’s movement intention
in an environment where bicycles are parked at a constant density, that is, by is a human’s typical walking speed,
about 4.0-5.0 km/h.

The width of the peak, defined by the distance between two positions where the density is half of its maximum,
is 2by/+/Ao. Ao is the minimum chance of a rider’s picking up a share bicycle. Hence, if by is constant, the width
decreases when many people search bicycles anxiously. However, a rider’s walking speed maybe increase in the
case and by is increase too. Hence, the width may vary complex when everyone searches bicycles anxiously.
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density u(t,y)

Il Il
-0.5 -0.5,
0 by(1-A,"7) by by (1+4,77) N 270
position y

Fig. 1. The density functions u(1, y) and u(fy, y) of share bicycles parked along the road at time t =1 and ¢ = 1.

4.2. Walking time and displacement of riders

We set 0 = by = A9 = B = 1, and from Theorem 3, we compute numerically the probability density
function f;(t|x) of a rider’s walking time 7, given that the rider starts from x at time 0. It seems that f;(¢|x) =
exp(—g(t, x) — 1.2¢) and Fig. 2 shows the contour and surface maps of g(z, x). Notice that the peak of the density
u(t, x) appears at x = t, and we draw the peak’s curve x = ¢ on the contour map. Fig. 2 shows that the maximum
and minimum of g(¢, x) do not touch the peak’s curve, although a rider faces the greatest concentrations of share
bicycles at the peak.

In another numerical experiment, with ¢ = by = Xy = 1, and for different 8 = 0, 1, 2, 3, we obtain expectations
of walking time and displacement of a rider starting from position x and time 0. Here 8 = 0 is a benchmark for those
expectations. With 8 = 0, the walking time is uncorrelated with the density u(¢, y) of parked bicycles. Therefore
expectation of walking time Et = 1/) is constant for § = 0, and the fluctuations in displacement are tiny. When
B > 0, because A(u) = Ao + Bu > Ao, the expectation of walking time decreases. Fig. 3 illustrates the fact and
another intricate fact that Et reaches its maximum near x = 0, where the density u is large. Moreover, Et < 1
for all B > 0, and the peak of the density never reaches 1 before Et. However, the expectation of displacement
between a rider’s start pointing and destination gets its minimum at a position at right side of 1.

5. Conclusion

We study a stochastic system which describes many riders and dockless shared bicycles along a long road. The
model is reasonable when the amount of independent riders is large and their influence on the density of parked
bicycles is not random. The nonlinear evolutionary equation of the density has a nontrivial lump solution. The
solution has a peak which illustrates a clogging phenomenon, and the peak moves at human’s walking speed. The
model illustrates that the phenomenon of clogging sidewalks may be an endogenous processes within some dockless
bicycle-sharing system, as it does not include any exogenous factors which imply predictable clogging phenomena.
An open problem is whether other kinds of bicycle-sharing systems and autonomous-cars systems have a similar
issue. Another open problem is how to change and control the phenomena of clogging sidewalks by some new rules
for a dockless bicycle-sharing system. Although bicycle-sharing systems and other functions of smart cities will
completely overturn old ideas of a town, it seems that we must firstly deal with many difficult issues like clogging
sidewalks.
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time t
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g(t.x)

position x

Fig. 2. The contour and surface maps of g(z, x).

AN I AN
B0 0.9 B0

walking time
displacement
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Fig. 3. Expectations of walking time and displacement of a rider starting from position x and time 0.

Appendix. Proof of Theorem 3

Consider a complete probability space ({2, F,P), where P is the real-world probability. We suppose that
(£2, F,P) is rich enough to model the randomness of the investigated processes. Consider the right-continuous,
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complete versions of the following filtrations.

F=1{F] Fr =o{&ls € [0, t]}.

Notice n, € F; for s < t. Without loss of generality, we assume that s = 0, &y = x, 9 = 0.

Lemma 1. For any r, v > 0, we have that
E(h(E)12) = E (h(Br)eXP (—/ Au(p, é‘p))dp)> .
0

Proof. It follows from h(B,) € F,., and
E (12| Four) = exp <— /Ov Mu(p, Sp))dp>
that
E (h(B)1:sy| Fovr) = h(B,) exp (— /Ov Au(p, Sp))dp> :
And the result follows by taking expectation to the preceding equity.

Lemma 2. For S < T, we have that

T 2 v
Eh(E)ls<i<r) = E (/S <b b+ %h”> eXp(—/O Mu(p, Sp))dp)dv)

r T
— E<h(Br)exp (—/ Adv))
0

r=S

where A, b, h', h" denote the values of corresponding functions at time v and position &,.

Proof. We assume &, = x hereafter, write « = (T — S)/n and

n—1
I" = Z (h(%-S‘Hi‘H)a) - h(%‘S-‘ria)) ITZS-H'oz
i=0
1

s ~
Il

h(Esti+Da) L sti+Dasr=S4ic — BE)ess +h(Er) 17
0

i

As h(y) is continuous and & has a continuous orbit, we have that almost surely

lim 1, = hE) szoar — h(E) L ezs + h(ED =1

Due to the dominated convergence theorem, lim,,—,» EI, = E lim,_, I, follows from the fact that A(-) is bounded.

Hence,
E(hE) s<ear) = i El + ER(E) =5 — EhED a7
It follows from Lemma 1 that

Eh(§)le>s — ER(Er) Lo

=—E (h(sv)exp (— [0 Mu(p, Sp))dp>>

T

v=>S

(23)

(24)
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On the other hand, Lemma 1 follows that
n—1

El, = Y E ((hEsyiria) — hEstia))lr=stia)

i=0
n—1 S+(@{+1)a S+ia
~Ye(me| ew(- [ a) (5)
i—0 v=S+ia 0
As we have that
S+Gi+a Stia
exp <— / )\dU)
v=S+ia 0
S+ia .
=E (exp <—/ Adv> E (h(gv)ﬁ:g:iga
0

E (h(év)
'Fs+ia)) 5
it follows from

. S+@I+1Da 2
hE G = / (h’@p)dsp + %h/’(&)dp)

S+ia
and d§, = 0d B, + bdv that

S+ia .
E (exp (—/ Adv) E (h(é‘u)ﬁ:giiz“ ]:S+ia))
0

S+(Gi+1a S+tia
= E/ (bh &) + h”(&)) exp (—/0 Mu(p, ép))dp> dv

=S+ia
Therefore, it follows from (25) that

S+ia
EI” = F (/ (bh/ ”) Zl exp( / )L(M(,O Ep )dp dl))
N

S+ia

where 1; = lgiiq<p<Sti+Da- As 0 < Z,’-:ol I; €XP< AMu(p, ép))dp)
lim, oo Y120 1 exp( St ulp, Ep))dp> = exp (— Jo Mu(p, €,))dp), and bh' + ”—;h” is bounded, we have

that
T 0_2 v
lim EI, = E (/ (b h+ —h”) exp <—/ Au(p, sp))dp> dv) .
n— 00 s 2 0

Then we can prove Lemma 2 from (23), (24) and the preceding equity.

Proof of Theorem 3. As f(0, x, t, y) denotes the conditional probability density function of (s + t, &), we have
that

t +00
EGhE) - = fo / ) FO, x. u, y)dy du.

+00 . . .
f_oo h(y)f(0, x,t,y)dy is continuous with respect to ¢, and hence

d +00
GEBEN = [ h0)FOx 1) dy.
t —00
As the variable ¢ does not appear in E(h(&,.)), the preceding equation implies
d +00
d—E(h(Er)lrzt) = —/ h(y) £, x,t, y)dy.
t —c0

Therefore Lemma 2 follows that

d t
EE(h(Ef)lfzz) =—E <h($z))\(u(t, £1)) exp (—/0 Mu(p, Ep))dp))
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That is,

w(,1,x)=E (h(&)l(u(t, €)) exp (—/0 Mu(p, Sp))dp)) :

And the result follows from Feymann-Kac formulas.
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