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ABSTRACT
In this paper, an effective algorithm for constructing nonlinear
evolution equations (NLEEs) has been proposed. Particularly, the
existence of resonant multi-soliton solutions in the newly gener-
ated NLEEs is verified and demonstrated, and the accuracy of the
extracted resonant multi-soliton solutions has been proved at the
same time. Firstly, via the linear superposition principle along with
reverse engineering two newNLEEs arising from the B-type Kadomt-
sev–Petviashvili (BKP) equation are established and investigated as
well. The first new NLEE is constructed with three time derivative
terms, and the second one is constructed with three space dissipa-
tive terms, respectively. Besides, the infinite resonant multi-soliton
solutions are extracted which enjoy a variety of inelastic interactions
due to the fact that they are constructed with variable parameters.
Then, the reliable judgments to themulti-soliton solutions are carried
out. Finally, the Painlevé test is applied to examine thenewequations
and none of them passed the test. It is important to highlight that
the presentedmethod and NLEEs could be extended to diversify the
problem of physical nature.
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1. Introduction

In the past decades, the field of nonlinear evolution equations (NLEEs) has been one of the
most active multidisciplinary areas of research due to the fact that related integrable equa-
tions describe the real properties and reveal the mysterious nature of the nonlinearity in
various sciences [1–10]. It is well known that the main property of integrable equations is
the existence of multi-soliton solutions, which always comes with resonant multi-soliton
solutions. In other words, once the resonant multi-soliton solutions are extracted con-
firming the existence of the multi-soliton solutions and the integrability of investigated
equations this way [11]. Moreover, if the exact N-wave solitary solutions are variable they
facilitate the numerical solvers in comparison and assist in the stability analysis. There-
fore, a variety of powerful methods used to search multi-soliton solutions have attracted
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intensive interest researchers’ attention, such as the Hirota method [7,11–14], the multiple
exp-functionmethod [15,16] and so on [17–39]. In the related studies, the famous one is the
Kadomtsev–Petviashvili (KP) hierarchy, which is used to describe certain interesting (2+ 1)
and (3+ 1)-dimensionalwaves in nonlinear science [20–25]. It isworth to point out that one
extension to KP hierarchy, called B-type KP (BKP) hierarchy, is obtained by replacing uxxxx
with uxxxy . Naturally, the BKP hierarchy also possesses the integrable structures and various
versions of the BKP equation have been proposed in the literature [23–44].

In the last decade, a standard (3+ 1)-dimensional BKP equation [26,32] was widely
investigated and read

uzt − uxxxy − 3(uxuy)x + 3uxx = 0. (1)

As already known using the transformation u = 2(ln f )x transforms Equation (1) into the
Hirota bilinear form

(DzDt − D3
xDy + 3D2

x)f · f = 0. (2)

Moreover, various versions of the extended form to Equation (2) had been presented and
investigated [35,36,43,44] such as

(D3
xDy + DxDt + DyDt + DzDt − D2

x − D2
y − D2

z )f · f = 0, (3)

(DyDt − D3
xDz + 3D2

y)f · f = 0, (4)

(DxDt − D3
xDy + 3D2

z )f · f = 0, (5)

(DtDy − D3
xDy − 3D2

x + 3D2
z )f · f = 0. (6)

The associated works of the above equations have profoundly attracted our attention.
For example, Lan et al. [23] applied the Bäcklund transformation and Hirota method to
obtain the multi-soliton solutions. Wazwaz [25,26] established the multi-soliton solutions
by using the simplified form of the Hirota method. Darvishi et al. [27] extracted the multi-
soliton solutions by invoking the multiple exp-function method. Lin et al. [31] and [32]
derived the resonant multi-soliton solutions by using the linear superposition principle.
In addition, Wazwaz [39] generated a new integrable equation by combining the recur-
sion operator of the modified KdV equation and the sense of the negative-order recursion
operator, which enjoys a variety of solutions including multi-soliton solutions; Sun et al.
[40] derived a BKP-like equation by combining the bilinear forms of KP and Boussinesq
equations, respectively. Gao et al. [43] presented the resonant behavior of multiple wave
solutions to Equation (6). Mabrouk and Rashed [44] generated versions of wave solutions
to Equation (6) by three distinct methods.

The major motivation of this study is to establish new NLEEs arising from Equation (2).
New equations are examined by the simplified linear superposition principle [38,45,46],
which gives the reliable judgments to the existence of the new NLEEs by the gener-
ated resonant multi-soliton solutions. The objectives of this work are twofold. First, two
extensions of Equation (2) are constructed and simultaneously examined by the simplified
linear superposition principle. The conditions for the determination of the resonant multi-
soliton solutions are revealed. Second, the relevant physical features are shown where the
obtained solutions anddispersion relations are constructedwithdistinct physical structures
for each equation. And the propagations of inelastic interactions to traveling solitary waves
are investigated both theoretically and graphically.
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2. The simplified linear superposition principle

The linear superposition principle [32,33,37] is powerful to seek the resonant multi-soliton
solutions. In our latest works [38,45,46], in order to improve efficiency and reduce the com-
plexity of calculations the simplified version has been presented. Hereby, the fundamental
steps involved in the simplified linear superposition principle are carefully illustrated as
follows.

In the first step, the transformation is conjectured, such as u = (ln f )x , and used to
transform the considered equation into a Hirota bilinear equation

P(Dx ,Dy , . . . ,Dt)f · f = 0, (7)

where P is a polynomial and satisfies

P(0, 0, . . . , 0) = 0. (8)

It is notable that Dx,y,...t are Hirota’s bilinear differential operators [7,12].
Then, consider Nwave variables as

ηi = kix + liy + · · · + ωit, 1 ≤ i ≤ N, (9)

where ki, li,ωi are constants which are going to be determined later.
The second step is to construct N exponential wave functions as

fi = eηi , 1 ≤ i ≤ N, (10)

and consider the N-wave testing function

f = ε1f1 + ε2f2 + · · · + εNfN, (11)

where εi, 1 ≤ i ≤ N are non-zero arbitrary constants.
It is notable the linear character will play themain key to the linear superposition princi-

ple for constructing N exponential waves eηi , 1 ≤ i ≤ N. Now, upon using Equations (8–11)
and solving the Hirota bilinear Equation (7) if the following condition is satisfied

P(ki − kj, li − lj . . . ,ωi − ωj) = 0, 1 ≤ i < j ≤ N. (12)

Solving a family of nonlinear algebraic equations on the related wave numbers ki, li,ωi left
from Equation (12) gives N exponential wave functions. Hence, the exact resonant multi-
soliton wave solutions could be obtained this way. Herein, it is worth to mention that
solving Equation (12) is much more complicated in cases of high-dimensional and high-
order equations. Inspiring, a shortcut to overcome the demerit is discovered, no matter
to high-dimensional or high-order. In [32,33] one can find that the wave-related numbers
can be directly constructed via the form of the dispersion relation. Thence, the tedious
wave-related numbers can be directly furnished as

ki = ki,
li = akgi ,
ωi = bkhi ,

(13)

where g, h are powers of ki and a, b are real constants to be determined later.
Re-emphasizing that Equation (13) is conjectured based on the form of the dispersion
relation.
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After substituting Equation (13) into (12) and determining the values of a, b, the required
resonant multi-soliton wave solution is naturally constructed as

u = (ln f )x = (ln (

N∑

i=1

εie
ηi)x , (14)

ηi = kix + akgi y + · · · + bkhi t. (15)

The algorithms of applications will be demonstrated in detail in the following section.

3. Two new (3+ 1)-dimensional NLEEs

It iswell known that variableNLEEs canprovidemuchmore information than their constant-
coefficient counterparts in all physical fields. Thus, in order to search versions of resonant
phenomena as much as we can, Equation (2) is reconsidered as

(αDzDt − βD3
xDy + γD2

x)f · f = 0, (16)

where α,β , γ are variable parameters. Based on Equation (16) two different equations will
be given as follows.

3.1. The new equationwith three time derivative terms

Adding two extra terms DxDt ,DyDt to Equation (16) reads

(δDxDt + μDyDt + αDzDt − βD3
xDy + γD2

x)f · f = 0, (17)

where δ,μ are arbitrary parameters. It is easy to see that using the transformation u =
2(ln f )x reverses Equation (17) to

(δuxt + μuyt + αuzt) − βuxxxy − 3(uxuy)x + γ uxx = 0. (18)

ComparingEquation (3), it is clear to find that Equations (3) and (17) are establishedwithdis-
tinct physical structures.Most of all, Equation (18)will be reliable andmeaningful if andonly
if (17) gives themultivariate polynomials which satisfy the property (12) and guarantee the
implement of the simplified linear superposition principle for exponential wave solutions.

So, substituting Equation (9) into (17) gives

δ(ki − kj)(ωi − ωj) + μ(li − lj)(ωi − ωj) + α(mi − mj)(ωi − ωj) − β(ki − kj)
3(li − lj)

+ γ (ki − kj)
2 = 0. (19)

Now, based on the dispersion relation given by Equation (18) and via Equation (13) the
required exact wave-related numbers are constructed as

li = ak−1
i ,

mi = −δ

α
ki,

ωi = bk3i . (20)
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Then, substituting Equation (20) into (19) and solving yields

a = γ

3β
,

b = β

μ

li = γ

3β
k−1
i ,

mi = −δ

α
ki,

ωi = β

μ
k3i , (21)

where ki is an arbitrary constant. It is to be noted that ωi = (β/μ)k3i is not admitted by
the dispersion relation ω = (βk3l − γ k2/δk + μl + αm) given by Equation (18). This kind
of special cases has been mentioned in [32,33,45].

Upon using Equations (11), (15), (21) and u = 2(ln f )x , the generalized resonant multi-
soliton solution is constructed as

u = 2

N∑
i=1

kiεiekix+(γ /3β)k−1
i y−(δ/α)kiz+(β/μ)k3i t

N∑
i=1

εiekix+(γ /3β)k−1
i y−(δ/α)kiz+(β/μ)k3i t

. (22)

The existence of Equation (22) not only gives resonant N-soliton solutions but also simul-
taneously indicates the justifiability of Equations (17) and (18). Furthermore, by specifying
values to free parameters α,β , γ , δ,μ the solution (22) enjoys a lot of versions of inelastic
interactions. Without loss of generality, the propagations of traveling 2-wave and 3-wave
by the solution (22) with α = β = δ = μ = 1, γ = 3 are presented in Figures 1 and 2.

3.2. The new equationwith three space dissipative terms

Adding DyDx ,DzDx to Equation (16) and proceeding as before gives the extension

(αDzDt − βD3
xDy + γ (D2

x + DxDy + DxDz))f · f = 0. (23)

Comparing Equations (4) and (5), it is clear to find that DxDt ,DyDt ,DyDy ,DzDz are replaced
by DzDt ,DyDx ,DzDx in Equation (23), respectively. Then, using Equations (12) and (13) to
handle (23) yields

α(mi − mj)(ωi − ωj) − β(ki − kj)
3(li − lj) + γ (ki − kj)

2 + γ (li − lj)(ki − kj)

+ γ (mi − mj)(ki − kj) = 0, (24)

and

li = ak−1
i ,

mi = −ak−1
i

ωi = bk3i . (25)
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Figure 1. The fission of traveling 2-kink waves by Equation (22) with k1 = −0.5, k2 = −1.2, k3 = 1.5,
z = εi = 1.

Via Equation (25), Equation (24) is easily solved and the exact wave-related number is
obtained as

a = γ

3β
,

b = −β

α
,

li = γ

3β
k−1
i ,

mi = − γ

3β
k−1
i

ωi = −β

α
k3i , (26)

where ki is an arbitrary constant. It is to be noted that ωi = (−β/α)k3i is not admitted by
the dispersion relationω = (βk3l − γ (k2 + kl + km)/αm) given by Equation (23). This kind
of special cases has been mentioned in [32,33,45]. Via Equations (11), (15) and (26), the
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Figure 2. The interaction of traveling 3-kink waves by Equation (22) with k1 = −0.5, k2 = −1.2, k3 =
1.5, k4 = 1.8, z = εi = 1.

generalized resonant multi-soliton solution is established as

u = 2

N∑
i=1

kiεiekix+(γ /3β)k−1
i y−(γ /3β)k−1

i z−(β/α)k3i t

N∑
i=1

εiekix+(γ /3β)k−1
i y−(γ /3β)k−1

i z−(β/α)k3i t

. (27)

By specifying values to free parameters the solution (27) enjoys a lot of versions of inelas-
tic interactions. Without loss of generality, the traveling 3-wave by the solution (27) with
α = β = 1, γ = 3 is presented in Figures 3. Naturally, using the transformation u = 2(ln f )x
reverses Equation (23) to

αuzt − βuxxxy − 3(uxuy)x + γ (uxx + uyx + uzx) = 0. (28)

So far, the explicit resonantmulti-soliton solutions (22) and (27) are successfully generated.
Meanwhile, the existence of solutions (22) and (27) indicates the justifiability of the NLEEs
(18) and (28), which retains the order and the dimension of the standard BKP Equation (1)
without changing. The dynamics of resonant 2-kink and 3-kink waves are demonstrated in
Figures 1–3.

To the author’s best knowledge, the NLEEs (18) and (28) and the generalized solutions
(22) and (27) are not reported in the previous literature, which are remarkably new results.
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Figure 3. The interaction of traveling 3-kink waves by Equation (27) with k1 = −0.5, k2 = −1.2, k3 =
1.5, k4 = 1.8, z = εi = 1.

Naturally, they are helpful to describe new physical phenomena of nonlinear science to the
real world.

3.3. Discussions

All obtained solutions are checked via Maple 13. The graphics of 2-kink and 3-kink waves
are shown with the aid of MATLAB (R2018b) and elaborated as follows.

(i) The dispersion relations and solution forms of Equations (18) and (28) are not only
different to each other but also completely different from the ones reported in
[23–32,35,36,40–44].

(ii) Asmentioned above thewave number of frequency term is not admitted by the dis-
persion relation for each newly derived equation. This kind of special cases is worth
studied further.

(iii) The resonant phenomena are performed as shown in Figures 1–3. As shown in
Figure1, the amplitude of both traveling kink waves does not change as interacting,
and then the small kink is dispersed from the tall one and keeps the speed with-
out changing. Figures 2 and 3 with α = β = δ = μ = 1, γ = 3 show the inelastic
interactions of the traveling 3-kink waves for the solutions (22) and (27) which gives
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different types of propagations, respectively. In Figure 2, all kink waves move to the
right and keep the shape and speed without changing. Meanwhile, the top kink is
the fastest wave. In Figure 3, the top kink is also the fastest wave and moves to the
left whose direction is opposite to others. To sum up, the solutions (22) and (27) can
perform various versions of inelastic interactions because the wave numbers ki, kj
are independent which plays a key role in the inelastic mechanism [37,45].

(iv) After carefully examining it is found that both Equations (18) and (28) donotpass the
Painlevé test. The result is similar to the Zakharov–Kuznetsov equation which does
not pass the inverse scattering transform test [47,48] and the Jimbo-Miwa equation
which does not pass any of the normal integrability tests [34], but both enjoy the
abundant multi-soliton solutions.

(v) Some important physical characters of Equations (18) and (28) are summarized: 1.
Based on Equations (21) and (26) the key constraint to the existence of resonant
solutions is all of variable parameters α,β , γ , δ,μ cannot be equal to zero. It means
uxt and uyt are interdependent at Equation (18). And uxy and uxz influence the dis-
persion relation to Equation (28). 2. Before inelastic interactions the speed of each
travelling wave fi can be specified by ωi = β

μ
k3i to Equation (18) and ωi = −β

α
k3i

to Equation (28), respectively. 3. The value of wave number ki not only affects the
wave speed and amplitude but also influences the angle of oblique collision to res-
onantmulti-solitonwaves [46]. 4. By specifying values to free parametersα,β , γ , δ,μ
various versions of KP-like equations and the corresponding resonant multi-soliton
solutions are easily generated.

4. Conclusions

To summarize, new KP-like Equations (18) and (28) are formally presented via reverse engi-
neering and successfully examined via the simplified linear superposition principle. The
results show that the resonant multi-kink solutions enjoy a variety of inelastic interactions.
The solutions assume the form of 2-kink and 3-kink and the shape-changing nature of the
solutions is explored, as shown in Figures 1–3. To the best of our knowledge, the generated
Equations (18) and (28), solutions and simulating figures have not been reported before.
The results confirm that the simplified linear superposition principle suggests a promis-
ing and robust mathematical tool to seek resonant multi-soliton solutions by utilizing the
Hirota bilinear equations. It is hoped that the examined systems (18) and (28) could be
considered as wider ramifications in KP hierarchy and useful in practical situations in
physical and engineering sciences.

Acknowledgement

This work was supported by the Ministry of National Defense and the Ministry of Science and Tech-
nology, R. O. C., under grant number MOST 108-2221-E-013-002 and 109-2221-E-013-001. Finally and
most importantly, the authors would like to express thanks to Professor Wazwaz (wazwaz@sxu.edu),
who applied the Painlevé test to the NLEEs (18) and (28) and gave the useful references.

Disclosure statement

No potential conflict of interest was reported by the author(s).



638 C.-K. KUO ANDW.-X. MA

Funding

This work was supported by the Ministry of National Defense and the Ministry of Science and
Technology, R. O. C., under grant number MOST 108-2221-E-013-002 and 109-2221-E-013-001.

References

[1] Durur H. Different types analytic solutions of the (1+ 1)-dimensional resonant nonlinear
Schrödinger’s equation using (G′/G)-expansion method. Mod Phys Lett B. 2020;34(03):2050036.

[2] YokusA,DururH, AhmadH, et al. Constructionof different types analytic solutions for theZhiber-
Shabat equation. Mathematics. 2020;8(6):908.

[3] Yokus A, Durur H, Ahmad H. Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli
system. Facta Univ Ser: Math Inform. 2020;35(2):523–531.

[4] IsmaelHF, BulutH, BaskonusHM.Optical soliton solutions to theFokas–Lenells equationvia sine-
Gordon expansion method and (m+ ({G′}/{G}))-expansion method. Pramana. 2020;94(1):35.

[5] Gao W, Ismael HF, Bulut H, et al. Instability modulation for the (2+ 1)-dimension paraxial wave
equation and its new optical soliton solutions in Kerr media. Phys Scr. 2020;95(3):035207.

[6] Sulaiman TA, Bulut H, Baskonus HM. Optical solitons to the fractional perturbed NLSE in nano-
fibers. Discrete Contin Dyn Syst-S. 2020;13(3):925–936.

[7] Wazwaz AM. Partial differential equations and solitary waves theory. Berlin: Springer and HEP;
2009.

[8] Dai CQ, Wang YY, Fan Y, et al. Interactions between exotic multi-valued solitons of the (2+ 1)-
dimensional Korteweg-de Vries equation describing shallow water wave. Appl Math Model.
2020;80:506–515.

[9] Lan ZZ, Hu WQ, Guo BL. General propagation lattice Boltzmann model for a variable-coefficient
compound KdV-Burgers equation. Appl Math Model. 2019;73:695–714.

[10] Nguyen QM, Huynh TT. Frequency shifting for solitons based on transformations in the Fourier
domain and applications. Appl Math Model. 2019;72:306–323.

[11] Wazwaz AM. A new (2+ 1)-dimensional Korteweg–de Vries equation and its extension to a new
(3+ 1)-dimensional Kadomtsev–Petviashvili equation. Phys Scr. 2011;84(3):035010.

[12] Hirota R. The direct method in soliton theory. Cambridge: Cambridge University Press; 2004.
[13] Wazwaz AM. Multiple kink solutions for two coupled integrable (2+ 1)-dimensional systems.

Appl Math Lett. 2016;58:1–6.
[14] Wazwaz AM. New (3+ 1)-dimensional nonlinear evolution equations with Burgers and Sharma-

Tasso-Oliver equations constituting the main parts. Proc Rom Acad Ser A. 2015;16(1):32–40.
[15] Liu JG, Zhou L, He Y. Multiple soliton solutions for the new (2+ 1)-dimensional Korteweg–de

Vries equation by multiple exp-function method. Appl Math Lett. 2018;80:71–78.
[16] Ma WX, Huang T, Zhang Y. A multiple exp-function method for nonlinear differential equations

and its application. Phys Scr. 2010;82(6):065003.
[17] Shen S. Lie symmetry analysis and Painlevé analysis of the new (2+ 1)-dimensional KdV

equation. Appl Math-A J Chin Univs. 2007;22(2):207–212.
[18] Ablowitz MJ, Clarkson PA. Solitons; nonlinear evolution equations and inverse scattering. Cam-

bridge: Cambridge University Press; 1991.
[19] Ji JL, Zhu ZN. On a nonlocal modified Korteweg-de Vries equation: integrability, Darboux trans-

formation and soliton solutions. Commun Nonlinear Sci Numer Simul. 2017;42:699–708.
[20] Wang XB, Tian SF, Qin CY, et al. Characteristics of the solitary waves and rogue waves with inter-

action phenomena in a generalized (3+ 1)-dimensional Kadomtsev–Petviashvili equation. Appl
Math Lett. 2017;72:58–64.

[21] Li ZB. Newmulti-soliton solutions for the (2+ 1)-dimensional Kadomtsev–Petviashvili equation.
Commun Theor Phys. 2008;49(3):585–589.

[22] SeadawyAR, El-RashidyK.Dispersive solitarywave solutionsof Kadomtsev-Petviashvili andmod-
ified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma. Results Phys.
2018;8:1216–1222.



WAVES IN RANDOM AND COMPLEX MEDIA 639

[23] Lan ZZ, Gao YT, Yang JW, et al. Solitons and Bäcklund transformation for a generalized (3+ 1)-
dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics.
Appl Math Lett. 2016;60:96–100.

[24] Gao XY. Bäcklund transformation and shock-wave-type solutions for a generalized (3+ 1)-
dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics.
Ocean Eng. 2015;96:245–247.

[25] Wazwaz AM, El-Tantawy SA. A new (3+ 1)-dimensional generalized Kadomtsev–Petviashvili
equation. Nonlinear Dyn. 2016;84(2):1107–1112.

[26] Wazwaz AM. Multiple-soliton solutions for a (3+ 1)-dimensional generalized KP equation. Com-
mun Nonlinear Sci Numer Simul. 2012;17(2):491–495.

[27] Darvishi M, Najafi M, Arbabi S, et al. Exact propagating multi-anti-kink soliton solu-
tions of a (3+ 1)-dimensional B-type Kadomtsev–Petviashvili equation. Nonlinear Dyn.
2016;83(3):1453–1462.

[28] Wang XB, Tian SF, Yan H, et al. On the solitary waves, breather waves and rogue waves
to a generalized (3+ 1)-dimensional Kadomtsev–Petviashvili equation. Comput Math Appl.
2017;74(3):556–563.

[29] Yu JP, Sun YL. Study of lump solutions to dimensionally reduced generalized KP equations.
Nonlinear Dyn. 2017;87(4):2755–2763.

[30] Lin FH, Wang JP, Zhou XW, et al. Observation of interaction phenomena for two dimensionally
reduced nonlinear models. Nonlinear Dyn. 2018;94(4):2643–2654.

[31] Lin FH, Chen ST, Qu QX, et al. Resonant multiple wave solutions to a new (3+ 1)-dimensional
generalized Kadomtsev–Petviashvili equation: linear superposition principle. Appl Math Lett.
2018;78:112–117.

[32] MaWX, Fan E. Linear superposition principle applying toHirota bilinear equations. ComputMath
Appl. 2011;61(4):950–959.

[33] MaWX, Zhang Y, Tang Y, et al. Hirota bilinear equations with linear subspaces of solutions. Appl
Math Comput. 2012;218(13):7174–7183.

[34] Wazwaz AM. Multiple-soliton solutions for extended (3+ 1)-dimensional Jimbo–Miwa equa-
tions. Appl Math Lett. 2017;64:21–26.

[35] Kaur L, Wazwaz AM. Lump, breather and solitary wave solutions to new reduced form of the
generalized BKP equation. Int J Numer Methods Heat Fluid Flow. 2019;29(2):569–579.

[36] Wazwaz AM. Variants of a (3+ 1)-dimensional generalized BKP equation: multiple-front waves
solutions. Comput Fluids. 2014;97:164–167.

[37] Kuo CK, Ghanbari B. Resonant multi-soliton solutions to new (3+ 1)-dimensional Jimbo-Miwa
equations by applying the linear superposition principle. Nonlinear Dyn. 2019;96:459–464.

[38] Kuo CK. Resonant multi-soliton solutions to the (2+ 1)-dimensional Sawada-Kotera equations
via the simplified form of the linear superposition principle. Phys Scr. 2019;94(8):085218.

[39] Wazwaz AM. A new integrable equation combining the modified KdV equation with the
negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic
solutions. Waves Random Complex Media. 2018;28(3):533–543.

[40] Sun YL, Ma WX, Yu JP, et al. Dynamics of lump solitary wave of Kadomtsev–Petviashvili–
Boussinesq-like equation. Comput Math Appl. 2019;78(3):840–847.

[41] Mao JJ, Tian SF, Zou L, et al. Bilinear formalism, lump solution, lumpoff and instanton/rogue
wave solution of a (3+ 1)-dimensional B-type Kadomtsev–Petviashvili equation. Nonlinear Dyn.
2019;95(4):3005–3017.

[42] Wazwaz AM. Two forms of (3+ 1)-dimensional B-type Kadomtsev–Petviashvili equation: multi-
ple soliton solutions. Phys Scr. 2012;86(3):035007.

[43] Gao LN, Zhao XY, Zi YY, et al. Resonant behavior of multiple wave solutions to a Hirota bilinear
equation. Comput Math Appl. 2016;72(5):1225–1229.

[44] Mabrouk SM, Rashed AS. N-Solitons, kink and periodic wave solutions for (3+ 1)-dimensional
Hirota bilinear equation using three distinct techniques. Chin J Phys. 2019;60:48–60.

[45] Kuo CK, Ma WX. A study on resonant multi-soliton solutions to the (2+ 1)-dimensional
Hirota–satsuma–Ito equations via the linear superposition principle. Nonlinear Anal. 2020;190:
111592.



640 C.-K. KUO ANDW.-X. MA

[46] Kuo CK. Resonant multi-soliton solutions to two fifth-order KdV equations via the simplified
linear superposition principle. Mod Phys Lett B. 2019;33(25):1950299.

[47] Shivamoggi BK. The Painlevé analysis of the Zakharov-Kuznetsov equation. Phys Scr.
1990;42(6):641–642.

[48] Qu QX, Tian B, Liu WJ, et al. Soliton solutions and interactions of the Zakharov-Kuznetsov
equation in the electron-positron-ion plasmas. Eur Phys J D. 2011;61(3):709–715.


	1. Introduction
	2. The simplified linear superposition principle
	3. Two new (3+1)-dimensional NLEEs
	3.1. The new equation with three time derivative terms
	3.2. The new equation with three space dissipative terms
	3.3. Discussions

	4. Conclusions
	Acknowledgement
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


