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1. Introduction

In the past decades, integrable nonlinear evolution equations (NLEEs) have various applications in
nonlinear fields. It is well-known that the existence of multi-wave solutions is an important feature of
integrable NLEEs, which play the key role in sciences. Such solutions are used to demonstrate the elastic
and inelastic interactions among solitary traveling waves in the physical phenomena modeled by NLEEs
in the real world [1-9,11-29]. A variety of powerful methods used for seeking multi-wave solutions are
developed, including Hirota’s method [2,6,7,12,21-25,27], Backlund transformation [4], the Inverse Scattering
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transformation (IST) [1], Darboux transformation (DT) [8], the multiple exp-function method [3,18] and so
on [5,9-11,13-17,19,20,26,28,29].

However, after surveying the existing literature, it is clearly seen that resonant multi-soliton solutions are
rarely used to simulate studies on inelastic collisions of multi-wave solutions. In the last decade, the linear
superposition principle has been widely applied to resonant multi-soliton solutions. The linear superposition
principle developed in [17,20] paves a direct way of constructing multi-wave solutions with free phase shifts
to Hirota bilinear equations. A few detailed algorithms of the linear superposition principle can be found
in [9-11,13,17,20,28]. In the next section, we briefly explain the fundamental steps involved in the linear
superposition principle.

Recently, an NLEE presented by Hirota et al. [6,7], namely the (2 + 1)-dimensional Hirota—Satsuma
equation has attracted a lot of attention [14-16,19,26,29]. Under some certain logarithm transformation,
the (2 + 1)-dimensional Hirota—Satsuma equation is transformed and presented as

Ugzat T 3(ua:ut)w + Uyt + QUg, = Oa (11)

where « is a non-zero arbitrary constant. Eq. (1.1) is called the Hirota—Satsuma-Ito (HSI) equation [15,26].
It has been applied in the theory of the shallow water wave [7] and appears in the Jimbo-Miwa classifica-
tion [11,24].

Here, we briefly mention the latest studies related to Eq. (1.1). Liu et al. [14] generated the N-soliton
solutions, and Zhou et al. [29] presented lump solutions and lump-soliton solutions. Besides, the reference [19]
extended Eq. (1.1) by adding three terms

Uggrt + S(uxut)m + 6luyt + 62uxw + 53uzy + 64uwt + 65uyy = Oa (12)

where 01 _5 are variable coefficients, and named it as a generalized HSI equation.

After surveying related studies, it is clear to see that all related results merely show the elastic interactions
of solitary traveling waves. Hence, one of primary tasks in this study is to determine if there exist resonant
multi-soliton solutions to the HSI equation (1.1) and to the generalized HSI equation (1.2). The obtained
solutions will be used to exhibit inelastic interactions of solitary traveling waves. The linear superposition
principle is employed to help achieve our results.

In what follows, we firstly apply the linear superposition principle to the HSI equation (1.1) to generate
its resonant multi-soliton solutions. The obtained solutions and the used dispersion relations have distinct
physical structures, compared to the previous work [14]. Secondly, we reveal that there is no resonant multi-
soliton solution to the generalized HSI equation (1.2). This kind of special cases will be elaborated in detail
in Section 3. The results simultaneously show the power of the linear superposition principle. Furthermore,
to gain an explicit insight into resonant multi-soliton solutions to the HST equation (1.1), we briefly present
the results reported by Liu et al. [14]. The summary will be given on the results obtained via the linear
superposition principle.

2. The linear superposition principle

In the first step, one conjectures the transformation, such as u = (In f),, and transforms the equation
under consideration into a Hirota bilinear equation

P(D,y,Dy,....D)f- f=0, (2.1)

where P is a polynomial and satisfies
P(0,0,...,0)=0. (2.2)

It is notable that D, , ., are Hirota’s bilinear differential operators [6,22].
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Consider N wave variables as
i =kix+ly+---+ct, 1<i<N, (23)

where k;,l;, ¢; are constants determined later, and construct N exponential wave functions as

Then, the second step is to consider the N-wave testing function

f=eafitefo+ - +enfn, (2.5)

where €;, 1 < i < N are non-zero arbitrary constants.

It is notable the linear character will play the main key to the linear superposition principle for
constructing N exponential waves e, 1 < ¢ < N.

Now, upon using Egs. (2.2-5) and solving the Hirota bilinear equation (2.1) if the following condition is
satisfied

P(kl—kj,lz—lj,c,—cj):O, 1<i<j<N. (26)

Solving a system of nonlinear algebraic equations on the related wave numbers k;, l;, ¢; left from Eq. (2.6)
gives N exponential wave functions. Hence, resonant multi-soliton wave solutions could be obtained this
way.

Hereby, it is to be noted that solving Eq. (2.6) is much more complicated in cases of high-dimensional
and higher-order equations. Moreover, it is extremely difficult to find exact solutions to variable-coefficient
versions of Eq. (2.6).

Interestingly, we discover a shortcut to overcome the demerit, no matter to high-dimensional, high-order
and variable-coefficient versions. In [17,20] we can find that the wave related numbers satisfy Eq. (2.6) whose
powers also satisfy the corresponding dispersion relation. In other words, exact forms of wave related numbers
satisfying Eq. (2.6) can be directly conjectured from the corresponding dispersion relation. Thence, we can
say that the shortcut is to construct the furnished wave related numbers

ki = ki,
li = ak?, (2.7)
C; = bk‘zh,

where g, h are powers of k; and a, b are real constants to be determined later. It is to be noted that Eq. (2.7)
is admitted by the associated dispersion relation.

After substituting Eq. (2.7) into (2.6) and determining the values of a,b, the required resonant multi-
soliton wave solution can be accordingly constructed by

N
w=(nf), = (Y ee™))a, (2.8)
=1

where

ni = kix + akdy + - + bkt (2.9)

The algorithm of application will be demonstrated in detail in the following section.
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3. Resonant multi-soliton solutions
3.1. The (24 1)-dimensional H irota—S atsuma—Ito equation

In this section, in order to gain the explicit insight into resonant multi-soliton solutions, the results in [14]
are briefly presented as follows.
Via the logarithmic transformation

u=2(nf),, (3.1)

the HSI equation (1.1) is transformed into the Hirota bilinear form as
(D3D;+ D,D; + aD?)f - f = 0. (3.2)

The 2-wave function solution reads as

f=1+ ef1 4+ e% 4 CL12691+02, (33)
where
k2
91' = kJZiE + liy — %t,
Pl (3.4)

(]ﬁ — k2)3(01 — 02) + Oé(kil — k’2>2 + (ll — lg)(cl — 02)
(kl —+ k2)3(61 + 62) —+ Oé(k'l —+ k2)2 + (ll —+ lQ)(Cl —+ 62) ’
Moreover, the 3-wave function solution is given by

a12 = —

0 ) ) 0146 0146 0546 01+6940
F=1+e" e 4% £ a15e"1792 £ 136" 4 9372705 4 g p3e/1 102705 (3.5)

where a123 = aj2a03a13, and aq3, ass are similar functions of wave numbers k;, [;, and ¢; are omitted for

simplicity. The formula for a;; is constructed as

(ki — kj)*(ci — ¢j) + ok — kj)* + (L — ) (e — ¢j)

(ki + k;j)?(ci + ¢5) + alki + k;)? + (L + 1) (ci + ¢5)
Clearly, the phase shifts a;; are tedious. In the following, the resonant multi-soliton solution without phase

shifts will be determined via the linear superposition principle.

Q5 = — ,1§i<j§N. (36)

Firstly, applying the bilinear equation (3.2) and Eq. (2.6) gives the N-wave condition as
(ki —k;)3(ci —¢j) + (i = 1) (i — ¢;) +alk; — k) =0,1<i<j<N. (3.7)

An important step to handle Eq. (3.7) via the linear superposition principle is to introduce weights of
dependent variables, which will be demonstrated as follows.

By balancing the linear terms of Eq. (1.1), the dispersion relation is easily determined as ¢ = ;?‘fj . Thus,
based on the extracted formula the exact wave numbers can be conjectured as
ki = kiv
lz' = akf’, (38)
ci = bk; L.

Then, substituting Eq. (3.8) into (3.7) and solving the resulting nonlinear algebraic equations yields

0; = kix + Ly + cit,

l; = —k3, (3.9)
—a.
C; = ?kz 1,

where k; is a non-zero arbitrary constant.
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Fig. 1. The traveling 2-kink waves by (3.10) with k; = —1.2, ko =04, k3 =2, a =3, g; = 1.

It is noted that Eq. (3.9) makes the phase shift (3.6) vanish. However, Eq. (3.9) is not admitted by
—ak?
k3+1
Finally, upon using Egs. (2.5), (3.1) and (3.9), we obtain a general resonant multi-soliton solution to the

c= . This kind of special cases has also been pointed out in [17,20].

HSI equation (1.1), presented as follows:

3,1

fm vazl kf,‘&iekﬂ ESy ?’:ki t
u=2—"=2 N — QT (3.10)

f SN g ekieRiy—gk

It is clear to see that variable coefficient « of the dissipative term u,, influences the wave speed directly.
Moreover, the multi-soliton solution form (3.10) and the dispersion relation (3.9) are completely different
from the existing ones (3.3) and (3.4). Without loss of generality, we plot the 2-kink and 3-kink waves
via Eq. (3.10) in the case of @« = 3, ¢; = 1, as shown in Figs. 1-4. The inelastic mechanism is elaborated
graphically and theoretically in the following paragraph.

Figs. 1 and 2 present the propagation of the traveling 2-kink wave. In Fig. 1 with the specified values
k1 = —1.2, ko = 0.4, k3 = 2 we can see the propagation of wave fusion. As ¢ increases, the lower kink is
admitted by the higher one and then keeps the shape and speed without changing. Oppositely, by setting a
different sign to k; gives the propagation of wave fission as shown in Fig. 2. It presents the traveling kink
wave splits into two different kinks whose speeds, shapes and traveling directions are different. Fig. 3 with
k1 = —=0.5, ko = 0.9, k3 = 1.2, k4 = 1.8 shows the fusion of the traveling 3-kink wave. At ¢ = 10, the first
kink overtakes the second kink, and then is admitted by the second one. At ¢ = 30, the second kink also
overtakes the third kink and is admitted by the third one. Finally, we can clearly see three different waves
fuse into a single wave and then keeps the shape and speed without changing. Naturally, setting a different
sign to k1 changes the propagation of wave fusion to fission as shown in Fig. 4.

In summary, it can be found that with the wave numbers k; chosen as different conditions, k1koks < 0
and kiksksks < 0, the 2- and 3-kink waves behave the overtaking coalescence, as shown in Figs. 1 and 3,
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Fig. 2. The traveling 2-kink waves by (3.10) with k; = 1.2, k; = 0.4, k3 =2, a =3, g; = 1.

respectively. Oppositely, with the wave numbers k; chosen as k1 koks > 0 and kikoksky > 0, the 2- and 3-kink
waves behave fission, as shown in Figs. 2 and 4. The results indicate the number and traveling direction of
kink waves after inelastic interactions can be controlled. Compared to the previously reported literature, we
can say that they are attributed to the dispersion relation form. In Eq. (3.4), the wave numbers k;,[; are
independent and ¢; is a function of k;, [;. Therefore, Egs. (3.3) and (3.4) give an elastic interaction. However,
it is not the case in Eq. (3.9) where l;, ¢; are determined by k;, leading to an inelastic interaction.

So far, the resonant multi-soliton solution (3.10) has shown different versions of inelastic interactions
of multi-front waves by specifying the parameters k;,e;, «. The above results reveal that the propagation
of wave coalescence/fission can be performed by setting a different sign to k;. The resultant solution and
figures may provide significant supplements to the existing literature.

3.2. The generalized (2 + 1)-dimensional Hirota—Satsuma—Ito equation

Using the transformation (3.1), one transforms Eq. (1.2) into a Hirota bilinear form
(D3Dy + 61Dy Dy + 02D3 + 63D, Dy + 04D, Dy + 65D ) f - f = 0. (3.11)

Applying Eq. (2.6) gives the condition of existence of resonant N-wave solutions:

(ki — kj)*(ci — ¢5) + 01l — 1) (e — ¢5) + d2 (ki — k;)* + 03(ki — k) (I — 1)

(ci
+64(ki — k;)(ci — ¢;) +05(li — ;)2 =0,1 <4 < j < N. (3.12)

Clearly, compared with Eq. (3.7), it is much more difficult to generate exact wave numbers to Eq. (3.12)
involving arbitrary coefficients by using the linear superposition principle. So, Eq. (3.12) is a good example
to demonstrate the applicableness of the linear superposition principle.
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Fig. 3. The traveling 3-kink waves by (3.10) with k; = —0.5, k2 = 0.9, ks =1.2, ky, = 1.8, a =3, g; = 1.
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Fig. 4. The traveling 3-kink waves by (3.10) with k; = 0.5, ko = 0.9, k3 = 1.2, ky, = 1.8, a =3, g; = 1.
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By balancing the linear terms of Eq. (1.2) gives the dispersion relation

—89k? + 3kl + 8512
= . 1
¢ k3 + 010 + 04k (3.13)

Based on Eq. (3.13), one conjectures that wave numbers can be determined as the following two cases.

Case 1
ki = ki,
li = aki, (314)
ci = bk; L.

Case 2
ki = k'h
i — ak?, (3.15)
C; = bk‘l

Proceeding as before, substituting Eqgs. (3.14) and (3.15) into (3.12) shows that the resulting algebraic
equations are not solvable. This means that there does not exist resonant multi-soliton solutions to the
generalized HSI equation (1.2) under the two above relations of wave numbers. However, Eq. (1.2) had
passed the Painlevé test and the three-soliton test, along with its integrability been shown in the previous
literature [5,19]. Therefore, for Eq. (1.2), we hereby declare the phase shifts that come with the multi-soliton
solutions must equal to zero if and only if k; — k; = 0, such as the phase shifts to the KdV equation [6,22]

given by
k.o — k)2
a;j = % (3.16)
It is worth mentioning that no theory exists to guarantee the applicableness of the linear superposition
principle of exponential waves or the existence of resonant multi-soliton solutions to integrable equations.

4. Conclusions

We have studied the (2 + 1)-dimensional HSI equation (1.1) and the generalized HSI equation (1.2)
by using the linear superposition principle. The resonant multi-soliton solution without phase shifts was
precisely determined for Eq. (1.1), which is surviving only with satisfying Eq. (3.9). Furthermore, the
propagations of 2- and 3-kink waves were demonstrated in Figs. 1-4, which show cases of inelastic
interactions in the HSI equation (1.1). Comparing to the results reported by Liu et al. [14] reveals that
the dispersion relation (3.9) plays the key role in the inelastic interaction mechanism. Moreover, through a
direct computation, we failed to present any resonant multi-soliton solution to the generalized HSI equation
(1.2). The reason leading to failure was clearly illustrated.

Our examples show that the linear superposition principle is powerful and useful in making the reliable
judgment on the existence of resonant multi-soliton solutions. It is also well-known that many NLEEs
have resonant phenomena and the related results have been employed in maritime security and coastal
engineering. Thus, it is expected that our work would be helpful in making further applications in the
corresponding fields.
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