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ABSTRACT. In this paper, we dealt for the first time with a highly nonlinear
(2+1)-dimensional associated Hirota bilinear equation using the Lie symmetry
approach and symbolic computation with Mathematica. The primary objective
of this paper is to employ the Lie symmetry analysis for the purpose of finding
newly generated explicit exact solutions, as well as conservation laws and in-
vestigating modulation instability within the context of the (2+1)-dimensional
associated Hirota bilinear equation. Equivalence transformations, a commuta-
tor table, and an adjoint table are generated using Lie’s invariance infinitesimal
criterion. Applying the optimal algebra classification, the differential invariants
are generated. By utilizing the optimal system and capitalizing on infinitesimal
symmetries, we successfully obtain numerous symmetry reductions and invari-
ant solutions through the implementation of the Lie group method. The ob-
tained solutions include the time variable, space variables, arbitrary constants,
as well as arbitrary functions. By taking advantage of symbolic computation
work with Mathematica, the achieved outcomes are manifested with 3D, 2D,
and contour graphics to interpret the physical meaning of the acquired results,
which show traveling waves, solitary waves, and periodic wave structures. The
solutions exhibit different physical structures concerning the involved param-
eters. All the attained results are novel and are absolutely distinct from the
earlier findings. Moreover, we establish nonlinear self-adjointness and derive
conservation laws for the provided equation. Finally, the linear stability analy-
sis of the governing equation is presented to study the modulational instability.
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Abbrevation. ODE: Ordinary Differential Equation
PDE: Partial Differential Equation

NLEEs: Non-linear Evolution Equations

MI: Modulation Instability

1. Introduction. Non-linear evolution equations play an increasingly important
role due to their applications in physical phenomena, especially in quantum me-
chanics, plasma physics, population models, hydrodynamics, electron thermal en-
ergy, fluid dynamics, optical fibers, and other scientific fields as well [23, 22, 5, 11].
Hence, the exploration of precise solutions for these equations holds significant im-
portance in the examination of diverse nonlinear physical phenomena, making it a
thriving research area. For the last few decades, researchers have made significant
efforts to study the natural solutions of these equations. A variety of method-
ologies have been developed by researchers to find the exact analytical solutions of
NLEES, for example, the extended tanh method [26], Hirota’s bilinear technique [4],

Gl
the extended elliptic Jacobian function expansion approach [24], el -expansion

method [2, 9], Lie symmetry method [14, 13], generalized Kudryashov approach
[12, 20], improved auxiliary equation [10], inverse scattering technique [3], Darboux
transformation [1] approach, etc. Among these methodologies, the Lie symmetry
technique is an efficient approach introduced by Sophus Lie for finding the exact
solutions to all types of differential equations.

A new form of Hirota bilinear equation was proposed and studied by Yu and Lii
in [6], which reads as

(D:D, — D,*D, —3D,*> +3D.*)f.f =0, (1)
that is
2[(f foy — fefy) + froafy + 3faayfo = Bfacfoy — [ faaay (2)
= 3(f fow = fo") +3(f fo = L)) = 0. (3)
Through the selection of a transformation, as presented in [6],
v=2[nf(x,y,2t)], (4)

and equation (2) maps into
Uyt — Ugzay — 3(VaUy)z — 3Ugz + 3., = 0. (5)

The objective of this study is to achieve Lie symmetries, invariant solutions, conser-
vation laws, and explore the modulation instability of the (2+1)-dimensional NLEE
[25]

Uty — Uzzzy — SUazlly — SUglzy — 3QULg = 0, (6)
which is derived by the equation (5) through the transformation
v(z,y,t) = ay +u(z,y,t), z=u=, (7)

where « is an arbitrary constant. Utilizing the linear superposition principle [19],
two distinct sets of resonant N-wave solutions for equation (5) were derived. In [15],
Lii and Ma also investigated the associated bilinear equation (5) and obtained two
categories of lump solutions for the dimensionally reduced equations, primarily by
considering the cases where z = y and z = t. Necessary and sufficient conditions
are provided for the involved parameters in the solutions to ensure analyticity and
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rational localization. Additionally, the localized characteristics and energy distribu-
tions of the lump solutions are investigated. Wang [25] introduced lump solutions
for equation (6), obtained through the associated Hirota bilinear equation (5) by
employing the binary Bell polynomial [16] and Hirota bilinear approaches. More-
over, the equation (6) has demonstrated integrability through the Lax pair concept,
with the derivation of bilinear Bécklund transformations stemming from the binary
Bell polynomial theory.

This particular associated Hirota bilinear equation has been extensively discussed
in the literature, owing to its significance across various scientific disciplines. By
studying the literature cited above, we are prompted to solve the associated (241)-
dimensional Hirota bilinear equation (6) by applying the Lie symmetry analysis. In
many fields of natural science, symmetry is important, especially in integrable sys-
tems, where there can be infinitely many symmetry variations. Motivated by Galois
theory, Lie introduced the group properties admitted by the differential equations,
which resulted in the exact solutions. He ascertains that apparent techniques of
solving ODEs can be incorporated into a systematic theory built on unvarying dif-
ferential equations. This method focuses on finding a new coordinate system by
finding the infinitesimal generators, which makes solving the differential equation
easier. Through the identification of symmetries and their corresponding infinites-
imal generators, the method facilitates the reduction of non-linear PDEs into new
ones with fewer independent variables through the invariance condition. Conse-
quently, the attainment of multiple reductions results in the derivation of numerous
solutions. Here, we obtained some new invariant solutions of the associated Hirota
bilinear equation (6) by means of the Lie symmetry analysis method. We utilize Lie
vectors to construct an optimal system of one-dimensional subalgebras. Further-
more, through the application of the Lie symmetry method, we attain an exten-
sive array of exact solutions for nonlinear PDEs; encompassing similarity solutions,
traveling wave solutions, and soliton solutions. Notably, among these solutions,
traveling wave solutions, similarity solutions, and other exact solutions hold par-
ticular physical significance. Furthermore, we derive conservation laws by applying
the novel non-local conservation theorem introduced by Ibragimov in [8]. The lin-
ear stability analysis of the associated Hirota bilinear equation is also presented to
study the MI. In the past literature, lump-type solutions are constructed, and the
integrability of the dimensionally reduced equations are discussed in [6, 25, 15]. As
far as our knowledge extends, there have been no previous reports regarding Lie
symmetry, modulation instability, or conservation laws pertaining to the governing
equation (6).

The primary goals of this article includes:

e To construct novel exact analytical solutions for the governing model, facili-
tating a deeper comprehension of their nonlinear characteristics.

e Formation of conservation laws to understand the fundamental physical prin-
ciples of the equation.

e To achieve the modulation instability condition for finding the stability of
solutions.

e Analyzing the graphs of the generated solutions offers valuable insights into
the underlying dynamics of these solutions.

The structure of this article is as follows: In Section 2, we delve into the derivation
of Lie symmetries along with their corresponding Lie groups. Section 3 focuses on
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the computation of optimal system, achieved through the utilization of the adjoint
table presented in Table 2. Analytical invariant solutions for the governing model
are attained in Section 4 via a reduction procedure. Section 5 discusses the physical
interpretation of obtained results. A comprehensive explanation of conservation
laws is detailed in Section 6. Section 7 explores modulation instability through linear
stability analysis. Section 8 compares our derived solutions with the previously
established results. Finally, the paper is concluded in Section 9 with the summary
of findings and closing remarks.

2. Description of the proposed method. Lie point symmetry is an effective and
essential technique for discovering invariant solutions and symmetry characteristics
of NLEEs. Here, we employ this methodology to the (241)-dimensional associated
Hirota bilinear equation (6), from which we derive the corresponding generators
featuring four arbitrary functions. Consider a transformation for equation (6) as

ot = 24 + €a(Ta, up) + O(€2),
up = up + eny(2a, up) + O(e?). (8)

Here, &1, &2, &3, and 73 are infinitesimal generators and € << 1 is a small parameter.
Lie symmetry generators for equation (6) are expressed as

V= 516 +€28+§3 +77188 (9)
For equation (6) to remain invariant under a Lie group, the operator (9) must satisfy
the following infinitesimal invariance criterion:
Priv(A) a—o = 0. (10)
Here, Pr®V represents the fourth prolongations and is determined as [21]

0
8‘Lt

9 9 9 9 9
PrvV(8) Vi gl g 4 g 208 G gyt

TTTY 0
auxxxy

0 0 0
+ aumnl 8 + aumnl 8 + auyxnl ou, +
ygc

To obtain the determining system, we apply the Pr(YV to equation (6) and get

TTTY

ntY — 0" — 307wy — Bugan! — 3niuye — 3uLni” — 3an” = 0. (11)

By using the above condition, we get the determining equations as

(€1)u=0,(&)z = g(f:%)t, (1)y =0,
(52)1& =0, (52)1 =0, (52)11, =Y,
(53)u =0, (§3)w =0, (53)1/ =0,
(n)u = ~5(E)es (m)e = 560 (n)y = —a(@)y + @) (12)

Upon solving the aforementioned equations (12), we acquire

G=SHAO+ A0, &=hE), &=h),

2?2, (—6ay — 6u)

m=-gh®t+ 18 fit) = gfé(t) —afa(y) + falt). (13)
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The generators for equation (6) are

Here,

V=V, +Vy +V3 4 Vy. (14)
T 0 22, 0 1 PN
V1:§f1()a* f1()a*1*8 (t)%*g(ay+u)f1(t)%, (15)
Vo= fal) . — (o) g
0 0 0
Vi = falt)gs — g hign Va=fil)g

TABLE 1. Commutator table for the (2+1)-dimensional associated
Hirota bilinear equation (6)

Vi, V;] Wy Vy V3 v,

v, 0 0 Va(fufy— By va(ffy+ 2
Vo 0 0 0 0
o W(Afi-8) 0o 0
Vy —Vyu(frfs+ %) 0 0 0

TABLE 2. Adjoint table for the (2+1)-dimensional associated Hi-
rota bilinear equation (6)

Vi, V;] vy Vy Vs vy
A Vi Vo e Vg e “Vy
Vo Vi Vo V3 Vy
V3 Vi + €V3 Vo V3 Vy
V4 V1 + 6V4 V2 V3 V4

As a result of these infinitesimal generators V;(i = 1,2, 3,4), equation (6) accom-
modates four Lie groups G; of point transformation as follows:

G+ (e.ppto) > (4 Fesl 0t + et G

(u+ya)

SHORE=EHO)

Gy : (xayvtau) — (m,y +€f2(y>7t’u - a€f2(y))’

%:@wa»+(x+qam%uu—lmﬁ@Q,

3
Using the above group, different solutions u; of equation (6) can be achieved as
o] efl () T
w = Tt )+ Werit) + N gy (2 - Lefi 00t - ch(1)
uz = aefo(y) + g1z, y — efa(y), t),
Uz = gcfé(t) + 91 (fE - EfB(t)ay,t)a

Uy = —Ef4(t) + gl(x,y,t). (17)
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3. Optimal system. The subgroups (of same dimension) of a Lie group can be
infinite, and one can obtain group invariant solutions corresponding to any sub-
group. Hence, it is necessary to categorize these subgroups based on a specific
equivalence relation. Therefore, we proceed to compute the optimal system of one-
dimensional subalgebras. This involves an initial search for the invariant function,
followed by the determination of the adjoint matrix, and ultimately leading to the
categorization of the Lie algebra G, as outlined in [7].

3.1. Calculation of invariants. The invariant function ¥ is a real valued fuilction

which gives U(Ady(v)) = ¥(v) for all v € R* and g € G. Then, for V; = Zﬁiui

i=1
4
and for V; = Zaini, we have
i=1
Ad(e VD) (V) = e Vi e (18)
2
=V, — €[V1‘,Vj] + %[Vi, [Vi,Vj” — ...
= (101 + -+ + aav4) — €[Br101 + -+ + Babs, by + - - + aqv4] + 0(62)
= (06101 +---+OC4U4) —6(0101 +---+94D4). (19)
Using commutator Table 1, we receive the following values of 6s
6h =0, 62=0, 03 =018 —azp, 04 = —Proy + faa. (20)
To obtain the invariant function ¥ [7], it takes
4
9¢
0; = 0. 21
2 "2, .
Solving equation (21) for f.s, we get the following equations:
ov ov
t—az=— —ayu=— =0
61 ag 6043 Oy 80{4 )
ov
tap— =0
/83 aq 8&3 )
ov
tap— =0. 22
Bt on Do (22)

Upon solving system (22), we get the invariant function as U(aq,as,as,aq) =
H(al, 042).

3.2. Construction of adjoint matrix. Let ¢;,1 < ¢ < 4 be real constants and
g = eV, Then, the matrices Bf of V;,i = 1,2,3,4 are constructed with the help of
Table 2 as defined in [7]

10 0 0 1000

. o1 0o o . o100

Bi=1lo90ea o ["P2=[00 10
00 0 e= 000 1
1 0 e O 1 0 0 e

. o1 0 0 . o100

Bs=1loo0o 1 0| P (001 0
00 0 1 000 1



1060 SACHIN KUMAR, SETU RANI AND WEN-XIU MA

The general transformation matrix is obtained by multiplying the matrices B =
B{.B5.B5.Bj

1 0 €3 €4
0 1 0 0

B=119 0 e o (23)
00 0 e*=

3.3. One-dimensional optimal system for equation (6). The adjoint trans-
formation equation for (6) is

(p1,p2,p3,P4) = (01, 2, 3, 014) - B, (24)
where B is defined above. By solving equation (24), we get

p1 = aq,
b2 = Qa,
€1

p3 = €31 + age”

€1

D4 = €401 + g 7, (25)

which must have solutions for €;s 1 < i < 4. Consider the following cases.
Case 1: p; = 1, ps = p3 = py = 0. By choosing a representative element V = V;
and taking aq = 1,2 = 0 in equation (25), we get the solution as

€1 = 0, €3 = —(Q3, €4 = —OQ4.

Case 2: p; = 1,po = 0,p3 = 1,p4, = 1. By choosing a representative element
V =V, 4+ V3 + V4 and taking a; = 1, ap = 0 in equation (25), we get the solution as

61:0, 63:1—CV3, 64:1—CV4.

Similarly, by following the same procedure, we can determine the values of ¢; for
the remaining members.
Taking into account all combinations, we obtain the following representatives:

{Vi, V3, Vo4 V4, Vs+Vy, Vi+Vs+Vy, Vo+ V3 Vy} (26)

4. The essence of proposed algorithm. This section obtains the reductions for
equation (6) via optimal system (26) for which its auxiliary equations are
d d dt d
T=g=== (27)
& & & oom
where {&1,&2,&3,m1} are given explicitly in (13).

Case 1. Subalgebra V| = gf{ (t)a3 + f1(t) 0
x

2
Ty 91 2

The symmetry V;y yields the characteristic equation

de dy At du (28)
EE R N 2 ’
SH® 0 A (ORI CYREIHO

which provides similarity reduction

_X2AE) | UXY)

181, (t) A)s 29)

u(z,y,t) = —a
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with group invariants as X = x f1(¢) sand Y = y. Substituting equation (29) into

equation (6) gives rise to

3UxUxy +3UyUxx + Uxxxy =0. (30)
The reduced PDE (30) furnishes the following generators:
Ex =X+, &=hY), nw=-clU+ecs. (31)
Subcase 1. ¢; = 1,¢3 = 0,¢3 = 0. Then,
— f —1__ 4y
UX,Y)=H(Xy)e ' 07| (32)

where X; = Xe~/ vy 4V Substituting (32) into (30), we get

X, <6H’ (X1) H" (X)) + H® (Xl)) F6H' (X,)?

+3H (X,)H" (X,) +4H® (X;) = 0. (33)
On solving (33), we get some particular solutions as
by 2
H(X1)=—, HXi)=——, 34
(X)) =+ X =575 (34)

where b; and by are constants. Using back substitution, one can get the solutions
of equation (6) as

b ’fi
u(z,y,t) = —ay + ?1 B TSQEg’

(35)

2 _2Pfi(t)
bod/Fit)e! mw W g 18A()

’Uz(l‘, Y, t) = —ay +

(a) 3-D Plot aty=1

t . 2 (c) 3-D Plot at t=1
R —

(b) 3-D Plot at x=1

FIGURE 1. The three-dimensional plots depict the wave propaga-
tions of the solution given by equation (35).

Subcase 2. ¢; =0,c¢2 # 0,c3 # 0. Then,
cs
X, Y)=H(Xy)— | —=dY, 36
U( ) ) ( 1) / hl (Y) ’ ( )
where X; = X — / % dY. Using equation (36) in equation (30), we get
1

3 (03 + 262H/(X1)) H”(Xl) + CQHNH(Xl) =0, (37)
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which gives
2

H(X1) = by +0aXy,  H(X2) =bs = 570 X1+ 5 (38)
Thus, the solutions of (6) are
- izt o) ([t @) b 2p
u(x,y,t) =—ay + 3 fl(t) + fl(t)z/g - 18f1(t)’ (39)
9118 (es ( ) - 2bs) + 22RO g2
u(x, Y, t) = —Qay— 18f1 (t)
+ 2 (40)

o= a0 (f 7y )

(a) 3-D Plot at x=12

(b) Contour Plot at x-12

T

-20 -15 -10 -5 0 -20 -15 -10 -5 0

FIGURE 2. The three-dimensional, contour surface, and two-
dimensional plots illustrate the wave propagations of the solution
given by equation (40).

Furthermore, some additional solutions for equation (30) are discovered as
U(X,Y) = ha(Y) + Xhs(Y) + e ha(Y) + h5(X), (41)
o (e X+BY 4+1)° — g (e XY 4 1)

X,Y)= 42
vxY) (neaX+BY 1) (go (neeX+5Y 4-1) — qo) ’ 42)
aX+pY
poar (e — +1) + o (neeX+AY 4 1)2
U(X,Y) = (43)

(ne>XFBY +1) (go (ne®X T +1) +q1)

Hence, solutions of (6) are obtained as

A0 ahaly) e ﬁ”( )*h”

w(x,y,t) = —ay — + + ,
(@3,1) Y 18fi(t)  fu(t)?/3 Y fi(t)
(44)
o ne v ?f“) +By+1 2—o [ me Vn® f @ +By+1> > f1(t)
1
(ne Q/%W?JH) (qo (ne SIS +By ) ) T 18f1(1)2/3
U(Z‘,y,t) = —ay + (45)

v f1(t)
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P91 (ne i/ ?f(t) +By+1> AL — +By
0 +wo | ne W +1 )2 2 pr
__z f1 (t2) 5
(ﬂe %/WJ“MH) (QO (neﬁ-'—ﬂy—i-l) +¢11> 18A) !
u(x,y,t) = —ay + 46
(z,y,t) ) Aa0) (46)
Case 2. Subalgebra Vs = fg(t)(%: - %fé(t)agu
For the vector field V3, the similarity variable is
22 fi(t
) =GB U, (")

with invariants Y = y and T' = ¢. Substituting equation (47) into equation (6), we
have
f3(T)(a+Uy)

+ Uyr =0. 48
s (T) YT ( )
The reduced PDE (48) furnishes the following solution
1
U(Y,T) = hs(T) — aY + / ho(V)dY. (49)
f3(T)

Thus, we get the exact solution of (6) as

1‘2'
R AL (50

where hg(y) and hz(t) are arbitrary functions.

(a) 3D-plot aty=5 (b) 3D-plot at x=5 (c) 3D-plot at t=5

FIGURE 3. The three-dimensional plots depict the wave propaga-
tions of the solution given by equation (50).

Case 3. Subalgebra Vo +V, = f2(y)8% —afs (y)% + f4(t)%,

For the above vector field, the similarity reduction is
t
4((3,)) dy +U(X,T), (51)

u(:c,y,t) = 7Oéy+/f2

with similarity variables X = 2 and T = ¢. The obtained transformation (51)
reduces the equation (6) to the PDE

fa(T) = 3f4(T)Uxx =0, (52)
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which after solving, gives

_ X2 fi(T)
U(X,T) = hg(T) + Xho(T) + 6f4—?T) (53)

Hence, we obtain the solution of (6) as

u(x,y,t) =—ay+ hS(t) + th(t) + 1:6}2‘1((1:;) + f4(t) (/ @ dy) . (54)

(@ 3D-plotaty-12

(b) Contour Plot at y=12

(b) 2D-Plot
u

10000

T ol e
SMIME

{-10000
-20 -10 0 10 20 = 0 5 10

FicURE 4. The three-dimensional, contour surface, and two-
dimensional plots illustrate the wave propagations of the solution
given by equation (54).

Case 4. Subalgebra Vs + Vs = f3(t)2 — £ fi(t)-2 + fa(t) 2.

For the above vector field, we have
xfa(t) — 322 f3(1)
u(x,y,t) =
(=.9.%) 3f3(t)

with Y = y and T' = ¢. The obtained transformation (55) reduces equation (6) into
the PDE

+U(Y,T), (55)

f(T)(Uy + a) + f3(T)Uyr = 0. (56)
The reduced PDE (56) furnishes the solution
Y
UY,T)=—aY + g2(T) + 91 )dY. (57)
f3(T)

Thus, we get

[oity)dy  3xfalt) - 327 f3(t)
fs(t) 3f3(t)

Case 5. Subalgebra Vi + Vs + Vs = Lf{(t)2 + fi(t) 2 — %f{’(t)a% — (o +

WAz + 05 - $HO 5 + 07

u(z,y,t) = —ay + ga(t) +

(58)

The Lagrange system is
dx dy dt du

~ T (0 = 5y + WA ®) — S50 + ()

RO+ ) 0 i)
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() 3-D Plot atx=1
10

(b) 3-D Plot at x=1

(c) 2-D Plot
u
T

— y=10]

-5 0 5

FIGURE 5. The three-dimensional, contour surface, and two-
dimensional plots illustrate the wave propagations of the solution
given by equation (58).

2

By selecting f3(t) = g 1) and f4(t) = —Cll—g 1(t), the above system can be

solved accurately, where a is an arbitrary constant.

Therefore, for the above vector field, the invariant form is
X2fi(1) |, ULY)

U(IE, Y, t) = —ay— ) (60)
18Y/f1(t) /L)
with invariants X = Sx;—(i) and Y = y. Inserting equation (60) into (6), we get
1
3UxUxy +3UyUxx +Uxxxy =0, (61)

which can be solved further as equation (30).

Case 6. Subalgebra Vo + V3 4V, = fQ(y)a% — afz(y)% + fg(t)% — %fé(t)a% +
JAGES

The auxiliary equations are

de  dy  dt du (62)
() faly) 0 —afaly) — 5f5(t) + fat)
By choosing arbitrary functions f3(t) = not?, fi(t) = nit, and fo(y) = nay, the
above system can be solved accurately, where ng, ni, and ny are constants.
Therefore, for the above vector field, we have

n3t3log?(y)  2not(z — M) log(y)
uzyt) = oy = Tl - s (63)
L mtlosly) | yrix 7,
n2
with X = o — %Z%(y) and T = t. Substituting (63) into (6), we get
—3n1 + 20X + 3neT?Uxy + I TUx x — 6noXTUx x (64)

— 18n0T?UxUxx — 3noT*Uxxxx = 0.
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The infinitesimals of this are
|4
£y = (61T + p2)X
¥ =

2 LT+ 23

ny (6@1T5 + @2) 5
TR =T (T
T3 20 , &y (01T + ¢2),
2T X 5T*X? 5T*p1m1 X X
o=-2(pT + )y - =2 S A 2 ARS8
0

6Tt T hao(T).

(65)

Subcase 1. ¢; # 0 with the rest of the ¢.s =0, and hyo(T) =

3T . Then,
oY1
T2 T(2n0X —3n1)? + 15n2T

6no 12n2
UX,T)= o

g | H(Xy)
T2 —+

T2
. Substituting (66) into (64), we get

where X1 = 2noX — 3m

27’10T2

(66)

(61" (X2) H" (X1) + HW (X1)) = 0.
On solving (67), some particular solutions are obtained as

(67)

H(Xl) =n3 +nsXq,

H(Xl) = N5 +

X’
quent solutions

(68)
where n;, 3 <14 <5, are constants. Performing back substitution yields the subse-
n4x ni (
u(z,y,t) =

3 1
nar %7%)+g_non4log(y) ns ﬁ—x—z—ay. (69)
4 ng nat? 2 ngt 3t
ng ny MEAg ek o
U(Z‘, Y, t) = not? log(y) - tiz "
2ng (m — T) —3m

i
Subcase 2. 2 # 0, with the rest of the ¢/s = 0. Then,

H (X1)
U(X,T) = :
(X.T) = —=

where X, — 210X —3m X—?’”l
2n0\/T

. Substituting (71) into (64), we get the reduced ODE as
—4X, + 14X H(X1) + 4H'(X1) + 36H' (X1)H" (X1) + 6H" (X1)
which gives

=0, (72)
5+ 29
H(X1) = ng — ——X{. @)
Thus, we obtain
2not log(y) (not?log(y) — nox
(g, 1) = nol ) ()
2
T 48n2t
B n2t3 log?(y) . nitlog(y) L6 oy
3n3 n2 Vi .

(75)
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TaBLE 3. Exact solutions of the (241)-dimensional associated Hi-
rota bilinear equation (6) by taking various subalgebras

Vector fields  Similarity variable Exact solutions
25
\ X=afi(t)"3, Y =4 u(z,y,t) = —ay + 2 —z AWM
1 fi(t)7 3, Y (w,y,1) Y b Wé, e L, 1A
Vo X=zT=t No solution
¢ .
V3 Y=yT=t u(z,y,t) = he(t) — ay*i}fis((tQJrfs(z jh
Vo + Vg X=uT=t u(z,y,t) = —oy + hs(t) + xho(t) + S + f4 (f s dt/)
VsV, Y=y T=t u(w,y, 1) = —ay + go(t) + Lo 4 SR GTRD
_ 1y oy @EPHO | sa(ata) | <7m*W(f et )
Vi+V3+Vy Xf(l‘+(l,)f1(t) 3, Y*?/ (rvyf) oy lsf](f]) + IRORE + m
, 1 ;
Vot Vs Vy X—a— nmznlzg(w7 T=t uzyt)="4 m(, nz?r) B nnn41og(1,) by & B % oy
when ¢ # O and rest all s = 0.
2,2
() (mot? log(e)—mag)  (V2I=5) ( ZBEW o g ian, )2
Vot Uyt Vs X = omllea) oy (g y g = POl ) ( T )
13 log [€))] + nxtlég(J) + 7\14} —ay

when ¢y 76 0 dnd 1ebt all p}s =0.

5. Physical Interpretation of obtained solutions. This section holds signifi-
cance as it discusses the physical characteristics of the presented graphs depicting
the reflected wave equations. Graphs serve as visual representations of explicit solu-
tions and are commonly utilized for comparative analysis. Some selected solutions
obtained from equations (35), (40), (50), (54), and (58) are subjected to graphical
analysis via numerical simulation, yielding various shapes and patterns.

Figure 1 represents the solitary wave structure for solution (35). These profiles
are plotted for functions hi(y) = y, f1(t) = Sltﬂ and parameters o = 1, by = 5.
Plot 1 shows the curve-shaped multi soliton behavior at y = 1 within the interval
—20 < x <20, —2 <t < 2, while plot 2 represent the elastic multi solitons for x = 1
within the interval —2 <t <2, —4 <y < 4. Plot 3 demonstrates the curve-shaped
multi soliton plotted at ¢ = 1 within the interval —20 < z < 20, —12 < y < 12.
It was observed that the amplitude of the wave decrease with the decrease in the
value of y. The variation in wave amplitude with changing parameters highlights the
inherent connection between the solution’s free parameters and the wave’s profile.

Figure 2 shows the periodic wave structure for solution (40). These profiles are
plotted for the functions hi(y) = siny, fi(t) = t + 1 and parameters o = 0.2,
co = 30, c3 = 200.5i, b5 = 0.02. Plot 1 shows the absolute plot at x = 12 within
the interval —20 < y <1, —35 <t < 50, while plot 2 represents the corresponding
contour plot. The two-dimensional profile is plotted for ¢ = {10, 20, 40}.

Figure 3 shows the periodic wave structure for solution (50). Three different
profiles are plotted at the same values of space and time variables. These profiles
are plotted for the functions he(y) = v3, h7(t) = t, f3(t) = cost and parameter
a = 1. Plot 1 shows the parabolic wave structure at y = 5 within the interval
—100 < x <100, —1 <t < 1, while plot 2 represents the periodic wave structure for
x = 5 within the interval —2.5 <t < 2.5, —100 < y < 100. Plot 3 demonstrates the
parabolic wave structure and plotted at ¢ = 5 within the interval —100 < z < 100,
—1 <y < 1. These parabolic wave profiles have many applications in various fields
of sciences, such as in fluid dynamics, optics, acoustics, and radio wave propagation,
etc. In fluid dynamics, these are especially relevant in the study of open-channel
flow, such as rivers or canals.
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Figure 4 represents the periodic solitary wave structure for solution (54). These
profiles are plotted for the functions hg(t) = t+1, ho(t) = 2t+1, f4(t) = cost, fa(y) =
y> and parameter a = 1. Plot 1 demonstrates the periodic plot at y = 12 within
the interval —20 <t <1, —20 < x < 20, while plot 2 represents the corresponding
contour plot. Two dimensional profile is plotted for x = {—3,3,19}. Changing the
parameters of a wave will result in changes to its amplitude. This illustrates how
the wave profile and the free parameters are inextricably linked in the obtained
solutions.

Figure 5 demonstrates the periodic wave structure for solution (58). These pro-
files are plotted for the functions g;(y) = y,g2(t) = cost, f3(t) = €50t f4(t) = ¢
and parameter @ = 1. Plot 1 shows the periodic behavior at x = 1 within the
interval —10 < y,t < 10, while plot 2 represents the corresponding contour plot.
The two-dimensional profile is plotted at y = {6,8,10}. These periodic wave struc-
tures find diverse applications in various fields, including wireless communication,
crystallography, acoustics, and more.

6. Conservation laws. Conservation laws of an equation serve as mathematical
expressions for understanding the fundamental physical principles. They are very
useful for finding the stability and integrability of the systems governed by PDEs
[17]. Also, the conserved quantity in conservation laws can be used to construct
structure-preserving numerical schemes in the development of numerical methods.
Ibragimov [8] proposed the well-known direct and systematic algorithm for con-
structing the conservation laws of nonlinearly self-adjoint equations symmetries. In
this section, we will introduce certain symbols and theorems to get the conservation
laws using the adjoint equation of the associated Hirota bilinear equation (6).

Theorem 6.1. Any symmetry (Lie point, Lie-Backlund and non-local symmetry)
0 0]
V= i\&y Wy ) PREEET] a.. s Uy ) 3 eeeey a0
& (x U, U(1), U(2) U(p))axi +771(£C U,y U(1), U(2) U(p))au (76)
of pth order nonlinear PDE

P(x,u, w1y, Ug2), s Upy) = 0, (77)
having independent variable x = (x1, z3...x,) and dependent variable u
uy = u; = Di(u), ) =ui; = DiDj(u), ... ,u@p) = Uiiy..i, = Diy iy, (1),
where D; is defined as
D, = 81 +ui£+uija(zj+... (78)
then u has an adjoint equation
P (1, 1,0, u(1), V(1) U(2), V(2) s Up), V(p)) = 0, (79)
with the adjoint operator P* defined by
P (2,1, 0, U1y, V(1) U(2)s U(2)5 s U(p)s V(p)) = g—i, (80)
where L represents the formal Lagrangian provided by
L = v(x) P(x,u, uy, U(2), - U(p) ), (81)

and v is the adjoint symmetry [18] of equation (77).
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The conserved vector [8] is

. oL oL oL

+ D; Dy, (W) ( o _ ) ,

6uijk

with
W= —&uj, L =v(@)P(x,u,u), U@y, Up))-
A conserved vector follows the conservation equation
Di(V*) + D (VF) + Dy (V) = 0,
where V*,V*, V¥ are functions of x,y,t, and u.
Conservation laws for equation (6). The Lagrangian equation for (6) is
L =v(x,y,t) |ty — Vzzsay — SUzaly — SUglzy — 30ULy).

From (85), we get

oL OL OL
— =0 =-3 Y — =3 T
ou T Ouyg Vtlzy duy vt
OL OL oL OL
— 3003 = 3 2 S
Ope av T OV, gy Ol gy v OMggay v

For equation (6), the adjoint equation takes the form

oL
Pr=—=0,
ou
where
L L — oL
— =5 —-1)PD;, T U—
ou  Ou +p§1( V" Dissia. P OUG iy, ... iy

Using equations (87) and (88), we get the adjoint equation as follows:
oL

T u
= 3UpUgy + VUgey + 3VyUzy + 3VULgy

*

— 30y — 3Upzlly — 6V ULy — SVULgy
+ Viy — BVapylUy — FVglUgy — SVUgry — 3VylUzy — Vgzzy = 0.
By substituting v = u in equation (89), we get

Uty — 30Uz — OUzUzy — BUgUzy — SUyUzy — Uggzy = 0.
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(89)

(90)

Clearly, the given equation is not self-adjoint. The conserved vectors are obtained

as in equation (82):

OL OL OL OL
t _ - _ I -
VG (3Ut D (3Utr> Py (81@)) Dy (3Uty) 7

. JL OL OL OL
VGt <8uw b <3u”) Dy (auly) Dazy (6uuly ))

(91)
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00 (g =2 (7)) + 20 (i)
+D:cmy(w)( o > >

Mgy
W= gL+ (;;). (93)
Using the values of equation (86) in equations (91), (92), and (93), we get
= &3L — vyW + Wy, (94)
V= &L 4+ W (—3vugy — 3av, — 30Ugy — 3UpUy + Ugay) + Wa (—30 — 3vuy + vgy)
+ Wy (—3vug) + Wagy (—v), (95)
VW = &L — 30y, W, (96)
where
W=m — &ug — {auy — L3y (97)

Now, for the vector field Vi = Z f{(t )(% + fi(t )m 1; {’(t)a% — %(ay—l—u)fl( )8u7
we have
2

x 1 T
W= =T ) - S(oy + w0 — S A 0w — A, (98)
V' =0 f1(t) (Uty — Uzwazy — BUzzlly — SUglyy — 30UL) (99)
1-2 1! 1 ! X ! ]‘ !
oy (T 0 + 5y + ) fi0) + 5 FLOu+ i ) = zafi®e,
v =§1)f1/ () (Uty — Upzay — BUzzUy — 3UgzUzy — 3QULL) (100)

+ (Bvuzy + 3avz + BVUay + 3Vx Uy — Vaay) ( @+ zay+u)fi(0) + = f1 (tus + f1 (t)ut>

1
3
+ Bav+ 30wy, = va) (S0 + 51 Ous + 57 (Our ) + {0 (u) + Fas{ (Wueny (),

VW =0 fo(y) (Uty — Upgay — BlUazly — BUzUzy — 30ULy) (101)
2 1
+ 3Ullg (18 V() + 5oy + W) + S A, + fl(t)ut) :

Equations (99), (100), and (101) contain an arbitrary adjoint variable v(x,y,t),
and therefore produce an infinite number of conservation laws. Additionally, the
conservation laws for vector fields Vy, V3, and V4 can be derived in the same way.

7. Modulation instability. It is well known that modulational instability is a
fundamental and universal process. Various nonlinear phenomena display instabil-
ity, resulting in the research of steady-state modulation. This phenomenon arises
due to the interplay between nonlinear and dispersive effects in the time domain
or as a result of diffraction in the spatial domain. In this section of the article, we
delve into the modulation instability (MI) of equation (6) through the application
of standard linear stability analysis [27]. We begin by assuming the steady-state
solution of (6) as

u(w,y,t) = (¢ + po(z, y,t))e™". (102)
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Here, ¢ and 1 represent arbitrary constants. The evolution of the perturbation
o(z,y,t) is investigated by the concept of linear stability analysis. Inserting equa-
tion (102) into (6) and linearizing, we get

Uty — Hbssay — B0 + ity = 0. (103)
Assume the solution of (103) as
Bz, y,t) = ot krothay=hst) o 5 p=ilkiothay—kat) (104)

where k3 is the frequency of perturbation, k1, ko are the normalized wave numbers,
and 61 and Jo are the coefficients of the linear combination. Putting equation (104)
into (103), we obtain the following set of two homogeneous equations:

—61kothp + S1kaksp — S1pki ks + 3adypki = 0,
Sokotppt + dokoksp — Gopkiky + 3audak? = 0. (105)
By evaluating the determinant, we get the following relation:

902kip? — 6akokip? + 6akoksk? u® — k3 ? + k3kSp® — 2k3kskip® + k3k2p® = 0.
(106)

The dispersion relation determines how spatial oscillations e*1#, e*2¥ are linked to
time oscillations e*3! of a wave number. Therefore, on solving equation (106), we
acquire the following dispersive relation

 —3ak? F ko) + kok?
- N .

Equation (107) exhibits that the steady-state stability depends on the group
velocity, wave numbers and self-phase modulation. Since, for ko # 0, the frequency
of perturbation, i.e. ks, is real for all the values of k1, this illustrates the stability of
the steady state to minor disturbances. This steady state appears to exhibit stability
against small perturbations if the wavenumber k3 possesses a real component.

ks

(107)

8. Discussion and comparison with the previous results. This section in-
volves a concise comparison of our derived closed-form solutions with prior work by
Wang [25], leading to the following conclusions:

1. Wang ([25]) introduced lump solutions for equation (6) using the binary Bell
polynomial and Hirota bilinear approaches. Equation (6) has also shown in-
tegrability through the Lax pair concept, with bilinear Backlund transforma-
tions derived from the binary Bell polynomial theory.

2. In this study, we employed the Lie symmetry technique to acquire all solutions
of equation (6). However, we applied a systematic approach of Lie symmetry
analysis to derive closed-form exact solutions for equation (6), followed by the
optimality.

3. All the solutions obtained are completely novel and distinct, not previously
reported in existing literature. Furthermore, our exact explicit solutions offer
a more comprehensive analysis, incorporating arbitrary functional parameters
and other constant parameters.

4. Due to the inclusion of independent arbitrary functional parameters in cer-
tain solutions (which allow for the freedom to choose the function), they have
become notably valuable and relevant for elucidating nonlinear wave prop-
agation across various domains. This encompasses fields such as nonlinear



1072 SACHIN KUMAR, SETU RANI AND WEN-XIU MA

ks
200

k4

-100}

-200*-

FIGURE 6. The dispersion relation k3 = k3(ki, k2) between fre-
quency ks and wave number k1 and ks of perturbation.

optics and plasma physics, which are concerned with phenomena related to
electromagnetic waves.

5. Moreover, this study stands as the pioneering endeavor in applying conser-
vation laws on equation (6). Additionally, the modulation stability of the
selected model is evaluated and visually depicted in Figure 6.

9. Conclusion. In this study, we conducted a comprehensive analysis, combining
analytical techniques with numerical simulations, to uncover a range of solutions for
the associated Hirota bilinear equation (6) by utilizing the Lie symmetry analysis
method. The primary objective of this technique is to identify symmetries, re-
duce the dimensionality of the equation, and discover exact solutions for the given
NLEEs. To achieve this, we initiated our analysis by computing a one-dimensional
optimal system. Subsequently, we utilized the obtained subalgebras to perform
symmetry reductions on equation (6). As a result, we derived a set of reduced
ODEs whose solutions provide exact solutions for the governing equation.

The obtained results manifest in various mathematical forms, including polyno-
mials, trigonometric functions, and exponentials, incorporating arbitrary constants
and functions of the independent variables, denoted as z, y, and ¢t. It is worth
noting that all these solutions satisfy the principal equation and have not been re-
ported previously. To enhance our understanding of these solutions, we visualize
them through 3D, 2D, and contour plots (see Figures 1, 2, 3, 4, 5), providing in-
sights into the dynamic behavior of the equation. Our findings reveal diverse types
of wave propagation, encompassing traveling waves, solitary waves, and periodic
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waves. Additionally, we determined the modulation instability condition through
linear stability analysis.

Furthermore, we deduced conservation laws for equation (6), encompassing both
local and nonlocal conserved vectors. Notably, this work marks the first exploration
of invariant solutions using Lie symmetry, conservation laws, and modulation in-
stability for the associated Hirota bilinear equation. The results underscore the
precision of our approach in solving NLEEs and its potential utility in elucidating
various qualitative aspects of wave phenomena across the domains of mathematical
physics, applied mathematics, and engineering sciences.
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