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Abstract. In this paper, we dealt for the first time with a highly nonlinear

(2+1)-dimensional associated Hirota bilinear equation using the Lie symmetry
approach and symbolic computation with Mathematica. The primary objective

of this paper is to employ the Lie symmetry analysis for the purpose of finding

newly generated explicit exact solutions, as well as conservation laws and in-
vestigating modulation instability within the context of the (2+1)-dimensional

associated Hirota bilinear equation. Equivalence transformations, a commuta-
tor table, and an adjoint table are generated using Lie’s invariance infinitesimal

criterion. Applying the optimal algebra classification, the differential invariants

are generated. By utilizing the optimal system and capitalizing on infinitesimal
symmetries, we successfully obtain numerous symmetry reductions and invari-

ant solutions through the implementation of the Lie group method. The ob-

tained solutions include the time variable, space variables, arbitrary constants,
as well as arbitrary functions. By taking advantage of symbolic computation

work with Mathematica, the achieved outcomes are manifested with 3D, 2D,

and contour graphics to interpret the physical meaning of the acquired results,
which show traveling waves, solitary waves, and periodic wave structures. The

solutions exhibit different physical structures concerning the involved param-

eters. All the attained results are novel and are absolutely distinct from the
earlier findings. Moreover, we establish nonlinear self-adjointness and derive

conservation laws for the provided equation. Finally, the linear stability analy-
sis of the governing equation is presented to study the modulational instability.
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Abbrevation. ODE: Ordinary Differential Equation
PDE: Partial Differential Equation
NLEEs: Non-linear Evolution Equations
MI: Modulation Instability

1. Introduction. Non-linear evolution equations play an increasingly important
role due to their applications in physical phenomena, especially in quantum me-
chanics, plasma physics, population models, hydrodynamics, electron thermal en-
ergy, fluid dynamics, optical fibers, and other scientific fields as well [23, 22, 5, 11].
Hence, the exploration of precise solutions for these equations holds significant im-
portance in the examination of diverse nonlinear physical phenomena, making it a
thriving research area. For the last few decades, researchers have made significant
efforts to study the natural solutions of these equations. A variety of method-
ologies have been developed by researchers to find the exact analytical solutions of
NLEEs, for example, the extended tanh method [26], Hirota’s bilinear technique [4],

the extended elliptic Jacobian function expansion approach [24],

(
G′

G

)
-expansion

method [2, 9], Lie symmetry method [14, 13], generalized Kudryashov approach
[12, 20], improved auxiliary equation [10], inverse scattering technique [3], Darboux
transformation [1] approach, etc. Among these methodologies, the Lie symmetry
technique is an efficient approach introduced by Sophus Lie for finding the exact
solutions to all types of differential equations.

A new form of Hirota bilinear equation was proposed and studied by Yu and Lü
in [6], which reads as

(DtDy −Dx
3Dy − 3Dx

2 + 3Dz
2)f.f = 0, (1)

that is

2[(ffty − ftfy) + fxxxfy + 3fxxyfx − 3fxxfxy − ffxxxy (2)

− 3(ffxx − fx
2) + 3(ffzz − fz

2)] = 0. (3)

Through the selection of a transformation, as presented in [6],

v = 2[lnf(x, y, z, t)]x, (4)

and equation (2) maps into

vyt − vxxxy − 3(vxvy)x − 3vxx + 3vzz = 0. (5)

The objective of this study is to achieve Lie symmetries, invariant solutions, conser-
vation laws, and explore the modulation instability of the (2+1)-dimensional NLEE
[25]

uty − uxxxy − 3uxxuy − 3uxuxy − 3αuxx = 0, (6)

which is derived by the equation (5) through the transformation

v(x, y, t) = αy + u(x, y, t), z = x, (7)

where α is an arbitrary constant. Utilizing the linear superposition principle [19],
two distinct sets of resonant N-wave solutions for equation (5) were derived. In [15],
Lü and Ma also investigated the associated bilinear equation (5) and obtained two
categories of lump solutions for the dimensionally reduced equations, primarily by
considering the cases where z = y and z = t. Necessary and sufficient conditions
are provided for the involved parameters in the solutions to ensure analyticity and
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rational localization. Additionally, the localized characteristics and energy distribu-
tions of the lump solutions are investigated. Wang [25] introduced lump solutions
for equation (6), obtained through the associated Hirota bilinear equation (5) by
employing the binary Bell polynomial [16] and Hirota bilinear approaches. More-
over, the equation (6) has demonstrated integrability through the Lax pair concept,
with the derivation of bilinear Bäcklund transformations stemming from the binary
Bell polynomial theory.

This particular associated Hirota bilinear equation has been extensively discussed
in the literature, owing to its significance across various scientific disciplines. By
studying the literature cited above, we are prompted to solve the associated (2+1)-
dimensional Hirota bilinear equation (6) by applying the Lie symmetry analysis. In
many fields of natural science, symmetry is important, especially in integrable sys-
tems, where there can be infinitely many symmetry variations. Motivated by Galois
theory, Lie introduced the group properties admitted by the differential equations,
which resulted in the exact solutions. He ascertains that apparent techniques of
solving ODEs can be incorporated into a systematic theory built on unvarying dif-
ferential equations. This method focuses on finding a new coordinate system by
finding the infinitesimal generators, which makes solving the differential equation
easier. Through the identification of symmetries and their corresponding infinites-
imal generators, the method facilitates the reduction of non-linear PDEs into new
ones with fewer independent variables through the invariance condition. Conse-
quently, the attainment of multiple reductions results in the derivation of numerous
solutions. Here, we obtained some new invariant solutions of the associated Hirota
bilinear equation (6) by means of the Lie symmetry analysis method. We utilize Lie
vectors to construct an optimal system of one-dimensional subalgebras. Further-
more, through the application of the Lie symmetry method, we attain an exten-
sive array of exact solutions for nonlinear PDEs, encompassing similarity solutions,
traveling wave solutions, and soliton solutions. Notably, among these solutions,
traveling wave solutions, similarity solutions, and other exact solutions hold par-
ticular physical significance. Furthermore, we derive conservation laws by applying
the novel non-local conservation theorem introduced by Ibragimov in [8]. The lin-
ear stability analysis of the associated Hirota bilinear equation is also presented to
study the MI. In the past literature, lump-type solutions are constructed, and the
integrability of the dimensionally reduced equations are discussed in [6, 25, 15]. As
far as our knowledge extends, there have been no previous reports regarding Lie
symmetry, modulation instability, or conservation laws pertaining to the governing
equation (6).

The primary goals of this article includes:

• To construct novel exact analytical solutions for the governing model, facili-
tating a deeper comprehension of their nonlinear characteristics.

• Formation of conservation laws to understand the fundamental physical prin-
ciples of the equation.

• To achieve the modulation instability condition for finding the stability of
solutions.

• Analyzing the graphs of the generated solutions offers valuable insights into
the underlying dynamics of these solutions.

The structure of this article is as follows: In Section 2, we delve into the derivation
of Lie symmetries along with their corresponding Lie groups. Section 3 focuses on
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the computation of optimal system, achieved through the utilization of the adjoint
table presented in Table 2. Analytical invariant solutions for the governing model
are attained in Section 4 via a reduction procedure. Section 5 discusses the physical
interpretation of obtained results. A comprehensive explanation of conservation
laws is detailed in Section 6. Section 7 explores modulation instability through linear
stability analysis. Section 8 compares our derived solutions with the previously
established results. Finally, the paper is concluded in Section 9 with the summary
of findings and closing remarks.

2. Description of the proposed method. Lie point symmetry is an effective and
essential technique for discovering invariant solutions and symmetry characteristics
of NLEEs. Here, we employ this methodology to the (2+1)-dimensional associated
Hirota bilinear equation (6), from which we derive the corresponding generators
featuring four arbitrary functions. Consider a transformation for equation (6) as

x∗a = xa + ϵξa(xa, ub) +O(ϵ2),

u∗b = ub + ϵηb(xa, ub) +O(ϵ2). (8)

Here, ξ1, ξ2, ξ3, and η1 are infinitesimal generators and ϵ << 1 is a small parameter.
Lie symmetry generators for equation (6) are expressed as

V = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ η1

∂

∂u
. (9)

For equation (6) to remain invariant under a Lie group, the operator (9) must satisfy
the following infinitesimal invariance criterion:

Pr(4)V(△)|△=0 = 0. (10)

Here, Pr(4)V represents the fourth prolongations and is determined as [21]

Pr(4)V(△) =V+ ηx1
∂

∂ux
+ ηy1

∂

∂uy
+ ηt1

∂

∂ut
+ 2ηxt1

∂

∂uxt
+ ηyt1

∂

∂uyt
+ αuyη

xx
1

∂

∂uxx

+ αuxxη
y
1

∂

∂uy
+ αuxη

yx
1

∂

∂uyx
+ αuyxη

x
1

∂

∂ux
+ ηxxxy1

∂

∂uxxxy
...

To obtain the determining system, we apply the Pr(4)V to equation (6) and get

ηty1 − ηxxxy1 − 3ηxx1 uy − 3uxxη
y
1 − 3ηx1uyx − 3uxη

yx
1 − 3αηxx1 = 0. (11)

By using the above condition, we get the determining equations as

(ξ1)u = 0, (ξ1)x =
1

3
(ξ3)t, (ξ1)y = 0,

(ξ2)t = 0, (ξ2)x = 0, (ξ2)u = 0,

(ξ3)u = 0, (ξ3)x = 0, (ξ3)y = 0,

(η1)u = −1

3
(ξ3)t, (η1)x = −1

3
(ξ1)t, (η1)y = −α(ξ2)y + (ξ3)t. (12)

Upon solving the aforementioned equations (12), we acquire

ξ1 =
x

3
f ′1(t) + f3(t), ξ2 = f2(y), ξ3 = f1(t),

η1 = −x
2

18
f ′′1 (t) +

(−6αy − 6u)

18
f ′1(t)−

x

3
f ′3(t)− αf2(y) + f4(t). (13)
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The generators for equation (6) are

V = V1 + V2 + V3 + V4. (14)

Here,

V1 =
x

3
f ′1(t)

∂

∂x
+ f1(t)

∂

∂t
− x2

18
f ′′1 (t)

∂

∂u
− 1

3
(αy + u)f ′1(t)

∂

∂u
, (15)

V2 = f2(y)
∂

∂y
− αf2(y)

∂

∂u
,

V3 = f3(t)
∂

∂x
− x

3
f ′3(t)

∂

∂u
, V4 = f4(t)

∂

∂u
.

Table 1. Commutator table for the (2+1)-dimensional associated
Hirota bilinear equation (6)

[Vi, Vj ] V1 V2 V3 V4

V1 0 0 V3(f1f
′
3 −

f3f
′
1

3 ) V4(f1f
′
4 +

f4f
′
1

3 )
V2 0 0 0 0

V3 −V3(f1f ′3 −
f3f

′
1

3 ) 0 0 0

V4 −V4(f1f ′4 +
f4f

′
1

3 ) 0 0 0

Table 2. Adjoint table for the (2+1)-dimensional associated Hi-
rota bilinear equation (6)

[Vi, Vj ] V1 V2 V3 V4

V1 V1 V2 e−ϵV3 e−ϵV4
V2 V1 V2 V3 V4
V3 V1 + ϵV3 V2 V3 V4
V4 V1 + ϵV4 V2 V3 V4

As a result of these infinitesimal generators Vi(i = 1, 2, 3, 4), equation (6) accom-
modates four Lie groups Gi of point transformation as follows:

G1 : (x, y, t, u) →
(
x+

x

3
ϵf ′1(t), y, t+ ϵf1(t), u− (u+ yα)

3
ϵf ′1(t)−

x2

18
ϵf ′′1 (t)

)
,

G2 : (x, y, t, u) → (x, y + ϵf2(y), t, u− αϵf2(y)),

G3 : (x, y, t, u) →
(
x+ ϵf3(t), y, t, u− 1

3
xϵf ′3(t)

)
,

G4 : (x, y, t, u) → (x, y, t, u+ ϵf4(t)) . (16)

Using the above group, different solutions ui of equation (6) can be achieved as

u1 =
x2

18
ϵf ′′1 (t) +

yα

3
ϵf ′1(t) + e

ϵf′
1(t)

3 g1

(
x− x

3
ϵf ′1(t), y, t− ϵf1(t)

)
,

u2 = αϵf2(y) + g1(x, y − ϵf2(y), t),

u3 =
x

3
ϵf ′3(t) + g1 (x− ϵf3(t), y, t) ,

u4 = −ϵf4(t) + g1(x, y, t). (17)
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3. Optimal system. The subgroups (of same dimension) of a Lie group can be
infinite, and one can obtain group invariant solutions corresponding to any sub-
group. Hence, it is necessary to categorize these subgroups based on a specific
equivalence relation. Therefore, we proceed to compute the optimal system of one-
dimensional subalgebras. This involves an initial search for the invariant function,
followed by the determination of the adjoint matrix, and ultimately leading to the
categorization of the Lie algebra G, as outlined in [7].

3.1. Calculation of invariants. The invariant function Ψ is a real valued function

which gives Ψ(Adg(v)) = Ψ(v) for all v ∈ R4 and g ∈ G. Then, for Vi =

4∑
i=1

βivi

and for Vj =

4∑
i=1

αivi, we have

Ad(e(ϵVi))(Vj) = e−ϵViVje
ϵVi (18)

= Vj − ϵ[Vi, Vj ] +
ϵ2

2!
[Vi, [Vi, Vj ]]− . . .

= (α1v1 + · · ·+ α4v4)− ϵ[β1v1 + · · ·+ β4v4, α1v1 + · · ·+ α4v4] +O(ϵ2)

= (α1v1 + · · ·+ α4v4)− ϵ(θ1v1 + · · ·+ θ4v4). (19)

Using commutator Table 1, we receive the following values of θ′is

θ1 = 0, θ2 = 0, θ3 = α1β3 − α3β1, θ4 = −β1α4 + β4α1. (20)

To obtain the invariant function Ψ [7], it takes

4∑
i=1

θi
∂ϕ

∂αi
= 0. (21)

Solving equation (21) for β′
is, we get the following equations:

β1 : −α3
∂Ψ

∂α3
− α4

∂Ψ

∂α4
= 0,

β3 : α1
∂Ψ

∂α3
= 0,

β4 : α1
∂Ψ

∂α4
= 0. (22)

Upon solving system (22), we get the invariant function as Ψ(α1, α2, α3, α4) =
H(α1, α2).

3.2. Construction of adjoint matrix. Let ϵi, 1 ≤ i ≤ 4 be real constants and
g = eϵiVi . Then, the matrices Bϵi of Vi, i = 1, 2, 3, 4 are constructed with the help of
Table 2 as defined in [7]

Bϵ1 =


1 0 0 0
0 1 0 0
0 0 e−ϵ1 0
0 0 0 e−ϵ1

 , Bϵ2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

Bϵ3 =


1 0 ϵ3 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Bϵ4 =


1 0 0 ϵ4
0 1 0 0
0 0 1 0
0 0 0 1

 .
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The general transformation matrix is obtained by multiplying the matrices B =
Bϵ1.B

ϵ
2.B

ϵ
3.B

ϵ
4

B =


1 0 ϵ3 ϵ4
0 1 0 0
0 0 e−ϵ1 0
0 0 0 e−ϵ1

 . (23)

3.3. One-dimensional optimal system for equation (6). The adjoint trans-
formation equation for (6) is

(p1, p2, p3, p4) = (α1, α2, α3, α4) ·B, (24)

where B is defined above. By solving equation (24), we get

p1 = α1,

p2 = α2,

p3 = ϵ3α1 + α3e
−ϵ1 ,

p4 = ϵ4α1 + α4e
−ϵ1 , (25)

which must have solutions for ϵ′is 1 ≤ i ≤ 4. Consider the following cases.
Case 1: p1 = 1, p2 = p3 = p4 = 0. By choosing a representative element Ṽ = V1
and taking α1 = 1, α2 = 0 in equation (25), we get the solution as

ϵ1 = 0, ϵ3 = −α3, ϵ4 = −α4.

Case 2: p1 = 1, p2 = 0, p3 = 1, p4 = 1. By choosing a representative element
Ṽ = V1 + V3 + V4 and taking α1 = 1, α2 = 0 in equation (25), we get the solution as

ϵ1 = 0, ϵ3 = 1− α3, ϵ4 = 1− α4.

Similarly, by following the same procedure, we can determine the values of ϵi for
the remaining members.

Taking into account all combinations, we obtain the following representatives:

{V1, V3, V2 + V4, V3 + V4, V1 + V3 + V4, V2 + V3 + V4}. (26)

4. The essence of proposed algorithm. This section obtains the reductions for
equation (6) via optimal system (26) for which its auxiliary equations are

dx

ξ1
=
dy

ξ2
=
dt

ξ3
=
du

η1
, (27)

where {ξ1, ξ2, ξ3, η1} are given explicitly in (13).

Case 1. Subalgebra V1 =
x

3
f ′1(t)

∂

∂x
+ f1(t)

∂

∂t
− x2

18
f ′′1 (t)

∂

∂u
− 1

3
(αy+u)f ′1(t)

∂

∂u
.

The symmetry V1 yields the characteristic equation

dx
x
3 f

′
1(t)

=
dy

0
=

dt

f1(t)
=

du

−x
2

18
f ′′1 (t)−

1

3
(αy + u)f ′1(t)

, (28)

which provides similarity reduction

u(x, y, t) = −αY − X2f ′1(t)

18f1(t)
1
3

+
U(X,Y )

f1(t)
1
3

, (29)
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with group invariants as X = xf1(t)
− 1

3 and Y = y. Substituting equation (29) into
equation (6) gives rise to

3UXUXY + 3UY UXX + UXXXY = 0. (30)

The reduced PDE (30) furnishes the following generators:

ξX = c1X + c2, ξY = h1(Y ), ηU = −c1U + c3. (31)

Subcase 1. c1 = 1, c2 = 0, c3 = 0. Then,

U(X,Y ) = H(X1)e
−
∫

1
h1(Y )

dY
, (32)

where X1 = Xe
−
∫

1
h1(Y )

dY
. Substituting (32) into (30), we get

X1

(
6H ′ (X1)H

′′ (X1) +H(4) (X1)
)
+ 6H ′ (X1)

2 + 3H (X1)H
′′ (X1) + 4H(3) (X1) = 0.

(33)

On solving (33), we get some particular solutions as

H(X1) =
b1
X1

, H(X1) =
2

X1 + b2
, (34)

where b1 and b2 are constants. Using back substitution, one can get the solutions
of equation (6) as

u(x, y, t) = −αy + b1
x

− x2f ′1(t)

18f1(t)
, (35)

u(x, y, t) = −αy + 2

b2
3
√
f1(t)e

∫
1

h1(y)
dy

+ x
− x2f ′1(t)

18f1(t)
.

Figure 1. The three-dimensional plots depict the wave propaga-
tions of the solution given by equation (35).

Subcase 2. c1 = 0, c2 ̸= 0, c3 ̸= 0. Then,

U(X,Y ) = H(X1)−
∫

c3
h1(Y )

dY, (36)

where X1 = X −
∫

c2
h1(Y )

dY. Using equation (36) in equation (30), we get

3 (c3 + 2c2H
′(X1))H

′′(X1) + c2H
′′′′(X1) = 0, (37)
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which gives

H(X1) = b3 + b4X1, H(X1) = b5 −
c3
2c2

X1 +
2

X1
. (38)

Thus, the solutions of (6) are

u(x, y, t) = −αy +
b3 − (b4c2 + c3)

(∫
1

h1(y)
dy

)
3
√
f1(t)

+
b4x

f1(t)2/3
− x2f ′1(t)

18f1(t)
, (39)

u(x, y, t) = −αy−
9f1(t)

2/3
(
c3

(∫
1

h1(y)
dy

)
− 2b5

)
+

9c3x
3
√
f1(t)

c2
+ x2f ′1(t)

18f1(t)

+
2

x− c2
3
√
f1(t)

(∫
1

h1(y)
dy

) . (40)
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-20
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(b) Contour Plot at x=12
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y=20

y=40

-20 -15 -10 -5 0

0
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20

30

40

50

(c) 2-D Plot

Figure 2. The three-dimensional, contour surface, and two-
dimensional plots illustrate the wave propagations of the solution
given by equation (40).

Furthermore, some additional solutions for equation (30) are discovered as

U(X,Y ) = h2(Y ) +Xh3(Y ) + e−6Xh4(Y ) + h5(X), (41)

U(X,Y ) =
φ0

(
ηeαX+βY + 1

)2 − φ0

(
ηeαX+βY + 1

)
(ηeαX+βY + 1) (q0 (ηeαX+βY + 1)− q0)

, (42)

U(X,Y ) =

φ0q1(ηeαX+βY +1)
q0

+ φ0

(
ηeαX+βY + 1

)2
(ηeαX+βY + 1) (q0 (ηeαX+βY + 1) + q1)

. (43)

Hence, solutions of (6) are obtained as

u(x, y, t) = −αy − x2f ′1(t)

18f1(t)
+

xh3(y)

f1(t)2/3
+

h4(y)e
− 6x

3
√

f1(t) + h5

(
x

3
√
f1(t)

)
+ h2(y)

3
√
f1(t)

,

(44)

u(x, y, t) = −αy +

φ0

(
ηe

αx
3
√

f1(t)
+βy

+1

)
2−φ0

(
ηe

αx
3
√

f1(t)
+βy

+1

)
(
ηe

αx
3
√

f1(t)
+βy

+1

)(
q0

(
ηe

αx
3
√

f1(t)
+βy

+1

)
−q0

) − x2f ′
1(t)

18f1(t)2/3

3
√
f1(t)

, (45)
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u(x, y, t) = −αy +

φ0q1

ηe

αx
3
√

f1(t)
+βy

+1


q0

+φ0

(
ηe

αx
3
√

f1(t)
+βy

+1

)
2

(
ηe

αx
3
√

f1(t)
+βy

+1

)(
q0

(
ηe

αx
3
√

f1(t)
+βy

+1

)
+q1

) − x2f ′
1(t)

18f1(t)2/3

3
√
f1(t)

. (46)

Case 2. Subalgebra V3 = f3(t)
∂

∂x
− x

3
f ′3(t)

∂

∂u
.

For the vector field V3, the similarity variable is

u(x, y, t) = −x
2f ′3(t)

6f3(t)
+ U(Y, T ), (47)

with invariants Y = y and T = t. Substituting equation (47) into equation (6), we
have

f ′3(T )(α+ UY )

f3(T )
+ UY T = 0. (48)

The reduced PDE (48) furnishes the following solution

U(Y, T ) = h7(T )− αY +
1

f3(T )

∫
h6(Y )dY. (49)

Thus, we get the exact solution of (6) as

u(x, y, t) = h7(t)− αy − x2f ′3(t)

6f3(t)
+

1

f3(t)

∫
h6(y)dy, (50)

where h6(y) and h7(t) are arbitrary functions.

Figure 3. The three-dimensional plots depict the wave propaga-
tions of the solution given by equation (50).

Case 3. Subalgebra V2 + V4 = f2(y)
∂
∂y − αf2(y)

∂
∂u + f4(t)

∂
∂u .

For the above vector field, the similarity reduction is

u(x, y, t) = −αy +
∫

f4(t)

f2(y)
dy + U(X,T ), (51)

with similarity variables X = x and T = t. The obtained transformation (51)
reduces the equation (6) to the PDE

f ′4(T )− 3f4(T )UXX = 0, (52)
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which after solving, gives

U(X,T ) = h8(T ) +Xh9(T ) +
X2f ′4(T )

6f4(T )
. (53)

Hence, we obtain the solution of (6) as

u(x, y, t) = −αy + h8(t) + xh9(t) +
x2f ′4(t)

6f4(t)
+ f4(t)

(∫
1

f2(y)
dy

)
. (54)
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-20
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20

(b) Contour Plot at y=12
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x=19
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-10000

-5000
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10000

t

u

(b) 2D-Plot

Figure 4. The three-dimensional, contour surface, and two-
dimensional plots illustrate the wave propagations of the solution
given by equation (54).

Case 4. Subalgebra V3 + V4 = f3(t)
∂
∂x − x

3 f
′
3(t)

∂
∂u + f4(t)

∂
∂u .

For the above vector field, we have

u(x, y, t) =
3xf4(t)− 1

2x
2f ′3(t)

3f3(t)
+ U(Y, T ), (55)

with Y = y and T = t. The obtained transformation (55) reduces equation (6) into
the PDE

f ′3(T )(UY + α) + f3(T )UY T = 0. (56)

The reduced PDE (56) furnishes the solution

U(Y, T ) = −αY + g2(T ) +

∫
g1(Y )

f3(T )
dY. (57)

Thus, we get

u(x, y, t) = −αy + g2(t) +

∫
g1(y) dy

f3(t)
+

3xf4(t)− 1
2x

2f ′3(t)

3f3(t)
. (58)

Case 5. Subalgebra V1 + V3 + V4 = x
3 f

′
1(t)

∂
∂x + f1(t)

∂
∂t −

x2

18f
′′
1 (t)

∂
∂u − 1

3 (αy +

u)f ′1(t)
∂
∂u + f3(t)

∂
∂x − x

3 f
′
3(t)

∂
∂u + f4(t)

∂
∂u .

The Lagrange system is

dx
x
3 f

′
1(t) + f3(t)

=
dy

0
=

dt

f1(t)
=

du

−x
2

18
f ′′1 (t)−

1

3
(αy + u)f ′1(t)−

x

3
f ′3(t) + f4(t)

.

(59)
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Figure 5. The three-dimensional, contour surface, and two-
dimensional plots illustrate the wave propagations of the solution
given by equation (58).

By selecting f3(t) =
a

3
f ′1(t) and f4(t) = −a

2

18
f ′′1 (t), the above system can be

solved accurately, where a is an arbitrary constant.

Therefore, for the above vector field, the invariant form is

u(x, y, t) = −αy − X2f ′1(t)

18 3
√
f1(t)

+
U(X,Y )

3
√
f1(t)

, (60)

with invariants X =
x+ a
3
√
f1(t)

and Y = y. Inserting equation (60) into (6), we get

3UXUXY + 3UY UXX + UXXXY = 0, (61)

which can be solved further as equation (30).

Case 6. Subalgebra V2 + V3 + V4 = f2(y)
∂
∂y − αf2(y)

∂
∂u + f3(t)

∂
∂x − x

3 f
′
3(t)

∂
∂u +

f4(t)
∂
∂u .

The auxiliary equations are

dx

f3(t)
=

dy

f2(y)
=
dt

0
=

du

−αf2(y)− x
3 f

′
3(t) + f4(t)

. (62)

By choosing arbitrary functions f3(t) = n0t
2, f4(t) = n1t, and f2(y) = n2y, the

above system can be solved accurately, where n0, n1, and n2 are constants.
Therefore, for the above vector field, we have

u(x, y, t) = −αy − n20t
3 log2(y)

3n22
−

2n0t(x− n0t
2 log(y)
n2

) log(y)

3n2
(63)

+
n1t log(y)

n2
+ U(X,T ),

with X = x− n0t
2 log(y)

n2
and T = t. Substituting (63) into (6), we get

− 3n1 + 2n0X + 3n0T
2UXT + 9n1TUXX − 6n0XTUXX (64)

− 18n0T
2UXUXX − 3n0T

2UXXXX = 0.
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The infinitesimals of this are

ξX =
(6φ1T

5 + φ2)X

3
+ T 2φ4 +

φ3

T 3
− n1(6φ1T

5 + φ2)

2n0
, ξY = T (φ1T

5 + φ2),

ηU = −2
(
φ1T

5 +
φ2

6

)
U − 2Tφ4X

3
− 5T 4X2φ1

3
+

5T 4φ1n1X

n0
+
φ3X

6T 4
+ h10(T ).

(65)

Subcase 1. φ1 ̸= 0 with the rest of the φ′
is = 0, and h10(T ) =

T 5

3n0φ1
. Then,

U(X,T ) =

T 2

6n0
− T (2n0X−3n1)

2

12n2
0

+
15n2

1T

4n2
0

T 2
+
H (X1)

T 2
, (66)

where X1 =
2n0X − 3n1

2n0T 2
. Substituting (66) into (64), we get(

6H ′ (X1)H
′′ (X1) +H(4) (X1)

)
= 0. (67)

On solving (67), some particular solutions are obtained as

H(X1) = n3 + n4X1,

H(X1) = n5 +
2

X1
, (68)

where ni, 3 ≤ i ≤ 5, are constants. Performing back substitution yields the subse-
quent solutions

u(x, y, t) =
n4x

t4
+
n1

(
x
t −

3n4

2t4

)
+ 1

6

n0
− n0n4 log(y)

n2t2
+
n3
t2

+
3n21
n20t

− x2

3t
− αy. (69)

u(x, y, t) =
4n0

2n0

(
x− n0t2 log(y)

n2

)
− 3n1

+
n5
t2

+
n1x
t + 1

6

n0
+

3n21
n20t

− x2

3t
− αy. (70)

Subcase 2. φ2 ̸= 0, with the rest of the φ′
is = 0. Then,

U(X,T ) =
H (X1)

3
√
T

, (71)

where X1 =
2n0X − 3n1

2n0
3
√
T

. Substituting (71) into (64), we get the reduced ODE as

−4X1 + 14X1H
′′(X1) + 4H ′(X1) + 36H ′(X1)H

′′(X1) + 6H ′′′′(X1) = 0, (72)

which gives

H(X1) = n6 −
5 +

√
29

12
X2

1 . (73)

Thus, we obtain

u(x, y, t) =
2n0t log(y)

(
n0t

2 log(y)− n2x
)

3n22
(74)

+

(√
29− 5

) ( 2n2
0t

2 log(y)
n2

− 2n0x+ 3n1

)
2

48n20t

− n20t
3 log2(y)

3n22
+
n1t log(y)

n2
+
n6
3
√
t
− αy. (75)
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Table 3. Exact solutions of the (2+1)-dimensional associated Hi-
rota bilinear equation (6) by taking various subalgebras

Vector fields Similarity variable Exact solutions

V1 X = xf1(t)
− 1

3 , Y = y u(x, y, t) = −αy + 2

b2
3
√
f1(t)e

∫ 1
h1(y)

dy
+x

− x2f ′
1(t)

18f1(t)
.

V2 X = x, T = t No solution

V3 Y = y, T = t u(x, y, t) = h6(t)− αy − x2f ′
3(t)

6f3(t)
+ 1

f3(t)

∫
h5(y)dy.

V2 + V4 X = x, T = t u(x, y, t) = −αy + h8(t) + xh9(t) +
x2f ′

4(t)
6f4(t)

+ f4(t)
(∫

1
f2(y)

dy
)
.

V3 + V4 Y = y, T = t u(x, y, t) = −αy + g2(t) +
∫
g1(y) dy
f3(t)

+
3xf4(t)− 1

2x
2f ′

3(t)

3f3(t)
.

V1 + V3 + V4 X = (x+ a)f1(t)
− 1

3 , Y = y u(x, y, t) = −αy − (a+x)2f ′
1(t)

18f1(t)
+ γ2(a+x)

f1(t)2/3
+

γ1−(γ2γ3+γ4)
(∫

1
h6(y)

dy
)

3
√
f1(t)

.

V2 + V3 + V4 X = x− n0t
2 log(y)
n2

, T = t u(x, y, t) = n4x
t4 +

n1( x
t −

3n4
2t4

)+ 1
6

n0
− n0n4 log(y)

n2t2
+ n3

t2 +
3n2

1

n2
0t

− x2

3t − αy

when φ1 ̸= 0 and rest all φ′
is = 0.

V2 + V3 + V4 X = x− n0t
2 log(y)
n2

, T = t u(x, y, t) =
2n0t log(y)(n0t

2 log(y)−n2x)
3n2

2
+

(
√
29−5)

(
2n2

0t2 log(y)

n2
−2n0x+3n1

)
2

48n2
0t

−n2
0t

3 log2(y)

3n2
2

+ n1t log(y)
n2

+ n6
3√t − αy

when φ2 ̸= 0 and rest all φ′
is = 0.

5. Physical Interpretation of obtained solutions. This section holds signifi-
cance as it discusses the physical characteristics of the presented graphs depicting
the reflected wave equations. Graphs serve as visual representations of explicit solu-
tions and are commonly utilized for comparative analysis. Some selected solutions
obtained from equations (35), (40), (50), (54), and (58) are subjected to graphical
analysis via numerical simulation, yielding various shapes and patterns.

Figure 1 represents the solitary wave structure for solution (35). These profiles
are plotted for functions h1(y) = y, f1(t) = sin t

t and parameters α = 1, b2 = 5.
Plot 1 shows the curve-shaped multi soliton behavior at y = 1 within the interval
−20 ≤ x ≤ 20, −2 ≤ t ≤ 2, while plot 2 represent the elastic multi solitons for x = 1
within the interval −2 ≤ t ≤ 2, −4 ≤ y ≤ 4. Plot 3 demonstrates the curve-shaped
multi soliton plotted at t = 1 within the interval −20 ≤ x ≤ 20, −12 ≤ y ≤ 12.
It was observed that the amplitude of the wave decrease with the decrease in the
value of y. The variation in wave amplitude with changing parameters highlights the
inherent connection between the solution’s free parameters and the wave’s profile.

Figure 2 shows the periodic wave structure for solution (40). These profiles are
plotted for the functions h1(y) = sin y, f1(t) = t + 1 and parameters α = 0.2,
c2 = 30, c3 = 200.5ι̇, b5 = 0.02. Plot 1 shows the absolute plot at x = 12 within
the interval −20 ≤ y ≤ 1, −35 ≤ t ≤ 50, while plot 2 represents the corresponding
contour plot. The two-dimensional profile is plotted for t = {10, 20, 40}.

Figure 3 shows the periodic wave structure for solution (50). Three different
profiles are plotted at the same values of space and time variables. These profiles
are plotted for the functions h6(y) = y3, h7(t) = t, f3(t) = cos t and parameter
α = 1. Plot 1 shows the parabolic wave structure at y = 5 within the interval
−100 ≤ x ≤ 100, −1 ≤ t ≤ 1, while plot 2 represents the periodic wave structure for
x = 5 within the interval −2.5 ≤ t ≤ 2.5, −100 ≤ y ≤ 100. Plot 3 demonstrates the
parabolic wave structure and plotted at t = 5 within the interval −100 ≤ x ≤ 100,
−1 ≤ y ≤ 1. These parabolic wave profiles have many applications in various fields
of sciences, such as in fluid dynamics, optics, acoustics, and radio wave propagation,
etc. In fluid dynamics, these are especially relevant in the study of open-channel
flow, such as rivers or canals.
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Figure 4 represents the periodic solitary wave structure for solution (54). These
profiles are plotted for the functions h8(t) = t+1, h9(t) = 2t+1, f4(t) = cos t, f2(y) =
y3 and parameter α = 1. Plot 1 demonstrates the periodic plot at y = 12 within
the interval −20 ≤ t ≤ 1, −20 ≤ x ≤ 20, while plot 2 represents the corresponding
contour plot. Two dimensional profile is plotted for x = {−3, 3, 19}. Changing the
parameters of a wave will result in changes to its amplitude. This illustrates how
the wave profile and the free parameters are inextricably linked in the obtained
solutions.

Figure 5 demonstrates the periodic wave structure for solution (58). These pro-
files are plotted for the functions g1(y) = y, g2(t) = cos t, f3(t) = esin t, f4(t) = t
and parameter α = 1. Plot 1 shows the periodic behavior at x = 1 within the
interval −10 ≤ y, t ≤ 10, while plot 2 represents the corresponding contour plot.
The two-dimensional profile is plotted at y = {6, 8, 10}. These periodic wave struc-
tures find diverse applications in various fields, including wireless communication,
crystallography, acoustics, and more.

6. Conservation laws. Conservation laws of an equation serve as mathematical
expressions for understanding the fundamental physical principles. They are very
useful for finding the stability and integrability of the systems governed by PDEs
[17]. Also, the conserved quantity in conservation laws can be used to construct
structure-preserving numerical schemes in the development of numerical methods.
Ibragimov [8] proposed the well-known direct and systematic algorithm for con-
structing the conservation laws of nonlinearly self-adjoint equations symmetries. In
this section, we will introduce certain symbols and theorems to get the conservation
laws using the adjoint equation of the associated Hirota bilinear equation (6).

Theorem 6.1. Any symmetry (Lie point, Lie-Backlund and non-local symmetry )

V = ξi(x, u, u(1), u(2), ...., u(p))
∂

∂xi
+ η1(x, u, u(1), u(2), ...., u(p))

∂

∂u
, (76)

of pth order nonlinear PDE

P (x, u, u(1), u(2), ...., u(p)) = 0, (77)

having independent variable x = (x1, x2...xn) and dependent variable u

u(1) = ui = Di(u), u(2) = uij = DiDj(u), ... , u(p) = ui1i2...ip = Di1,i2...ip(u),

where Di is defined as

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ ... (78)

then u has an adjoint equation

P ∗(x, u, v, u(1), v(1), u(2), v(2), ...., u(p), v(p)) = 0, (79)

with the adjoint operator P ∗ defined by

P ∗(x, u, v, u(1), v(1), u(2), v(2), ...., u(p), v(p)) =
δL

δu
, (80)

where L represents the formal Lagrangian provided by

L = v(x)P (x, u, u(1), u(2), ...., u(p)), (81)

and v is the adjoint symmetry [18] of equation (77).
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The conserved vector [8] is

Vi = ξiL+ W

(
∂L

∂ui
−Dj

(
∂L

∂uij

)
+DjDk

(
∂L

∂uijk

)
− ...

)
+Dj(W)

(
∂L

∂uij
−Dk

(
∂L

∂uijk

)
+ ...

)
+DjDk(W)

(
∂L

∂uijk
− ...

)
, (82)

with

W = η1 − ξiuj , L = v(x)P (x, u, u(1), u(2), ...., u(p)). (83)

A conserved vector follows the conservation equation

Dt(V
t) +Dx(V

x) +Dy(V
y) = 0, (84)

where Vt, Vx, Vy are functions of x, y, t, and u.

Conservation laws for equation (6). The Lagrangian equation for (6) is

L = v(x, y, t)[uty − uxxxy − 3uxxuy − 3uxuxy − 3αuxx]. (85)

From (85), we get

∂L

∂u
= 0,

∂L

∂ux
= −3vuxy,

∂L

∂uy
= −3vuxx,

∂L

∂uxx
= −3αv − 3vuy,

∂L

∂uxy
= −3vux,

∂L

∂uty
= v,

∂L

∂uxxxy
= −v. (86)

For equation (6), the adjoint equation takes the form

P ∗ =
δL

δu
= 0, (87)

where

δL

δu
=
∂L

∂u
+

∞∑
p=1

(−1)pDi1,i2,....,ip

∂L

∂ui1,i2,....,ip
. (88)

Using equations (87) and (88), we get the adjoint equation as follows:

P ∗ =
δL

δu
= 3vxuxy + 3vuxxy + 3vyuxx + 3vuxxy

− 3αvxx − 3vxxuy − 6vxuxy − 3vuxxy

+ vty − 3vxyux − 3vxuxy − 3vuxxy − 3vyuxx − vxxxy = 0. (89)

By substituting v = u in equation (89), we get

uty − 3αuxx − 6uxuxy − 3uxuxy − 3uyuxx − uxxxy = 0. (90)

Clearly, the given equation is not self-adjoint. The conserved vectors are obtained
as in equation (82):

Vt = ξtL+ W

(
∂L

∂ut
−Dx

(
∂L

∂utx

)
−Dy

(
∂L

∂uty

))
+Dy(W)

(
∂L

∂uty

)
, (91)

Vx = ξxL+ W

(
∂L

∂ux
−Dx

(
∂L

∂uxx

)
−Dy

(
∂L

∂uxy

)
−Dxxy

(
∂L

∂uxxxy

))
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+Dx(W)

(
∂L

∂uxx
−Dxy

(
∂L

∂uxxxy

))
+Dy(W)

(
∂L

∂uxy

)
+Dxxy(W)

(
∂L

∂uxxxy

)
, (92)

Vy = ξyL+ W

(
∂L

∂uy

)
. (93)

Using the values of equation (86) in equations (91), (92), and (93), we get

Vt = ξ3L− vyW+ Wyv, (94)

Vx = ξ1L+ W (−3vuxy − 3αvx − 3vuxy − 3vxuy + vxxy) + Wx (−3αv − 3vuy + vxy)

+ Wy (−3vux) + Wxxy (−v) , (95)

Vy = ξ2L− 3vuxxW, (96)

where

W = η1 − ξ1ux − ξ2uy − ξ3ut. (97)

Now, for the vector field V1 = x
3 f

′
1(t)

∂
∂x + f1(t)

∂
∂t −

x2

18f
′′
1 (t)

∂
∂u − 1

3 (αy+ u)f ′1(t)
∂
∂u ,

we have

W = −x
2

18
f ′′1 (t)−

1

3
(αy + u)f ′1(t)−

x

3
f ′1(t)ux − f1(t)ut, (98)

Vt =vf1(t)(uty − uxxxy − 3uxxuy − 3uxuxy − 3αuxx) (99)

+ vy

(
x2

18
f ′′1 (t) +

1

3
(αy + u)f ′1(t) +

x

3
f ′1(t)ux + f1(t)ut

)
− 1

3
αf ′1(t)v,

V
x
=
x

3
vf

′
1(t)(uty − uxxxy − 3uxxuy − 3uxuxy − 3αuxx) (100)

+ (3vuxy + 3αvx + 3vuxy + 3vxuy − vxxy)

(
x2

18
f
′′
1 (t) +

1

3
(αy + u)f

′
1(t) +

x

3
f
′
1(t)ux + f1(t)ut

)

+ (3αv + 3vuy − vxy)

(
x

9
f
′′
1 (t) +

1

3
f
′
1(t)ux +

x

3
f
′
1(t)uxx

)
+ αf

′
1(t) (vux) +

x

3
αf

′
1(t)uxxy (v) ,

Vy =vf2(y)(uty − uxxxy − 3uxxuy − 3uxuxy − 3αuxx) (101)

+ 3vuxx

(
x2

18
f ′′1 (t) +

1

3
(αy + u)f ′1(t) +

x

3
f ′1(t)ux + f1(t)ut

)
.

Equations (99), (100), and (101) contain an arbitrary adjoint variable v(x, y, t),
and therefore produce an infinite number of conservation laws. Additionally, the
conservation laws for vector fields V2, V3, and V4 can be derived in the same way.

7. Modulation instability. It is well known that modulational instability is a
fundamental and universal process. Various nonlinear phenomena display instabil-
ity, resulting in the research of steady-state modulation. This phenomenon arises
due to the interplay between nonlinear and dispersive effects in the time domain
or as a result of diffraction in the spatial domain. In this section of the article, we
delve into the modulation instability (MI) of equation (6) through the application
of standard linear stability analysis [27]. We begin by assuming the steady-state
solution of (6) as

u(x, y, t) = (q + µϕ(x, y, t))eiψt. (102)
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Here, q and ψ represent arbitrary constants. The evolution of the perturbation
ϕ(x, y, t) is investigated by the concept of linear stability analysis. Inserting equa-
tion (102) into (6) and linearizing, we get

µϕty − µϕxxxy − 3αµϕxx + iµψϕy = 0. (103)

Assume the solution of (103) as

ϕ(x, y, t) = δ1e
i(k1x+k2y−k3t) + δ2e

−i(k1x+k2y−k3t), (104)

where k3 is the frequency of perturbation, k1, k2 are the normalized wave numbers,
and δ1 and δ2 are the coefficients of the linear combination. Putting equation (104)
into (103), we obtain the following set of two homogeneous equations:

−δ1k2ψµ+ δ1k2k3µ− δ1µk
3
1k2 + 3αδ1µk

2
1 = 0,

δ2k2ψµ+ δ2k2k3µ− δ2µk
3
1k2 + 3αµδ2k

2
1 = 0. (105)

By evaluating the determinant, we get the following relation:

9α2k41µ
2 − 6αk2k

5
1µ

2 + 6αk2k3k
2
1µ

2 − k22µ
2ψ2 + k22k

6
1µ

2 − 2k22k3k
3
1µ

2 + k22k
2
3µ

2 = 0.
(106)

The dispersion relation determines how spatial oscillations ek1x, ek2y are linked to
time oscillations ek3t of a wave number. Therefore, on solving equation (106), we
acquire the following dispersive relation

k3 =
−3αk21 ∓ k2ψ + k2k

3
1

k2
. (107)

Equation (107) exhibits that the steady-state stability depends on the group
velocity, wave numbers and self-phase modulation. Since, for k2 ̸= 0, the frequency
of perturbation, i.e. k3, is real for all the values of k1, this illustrates the stability of
the steady state to minor disturbances. This steady state appears to exhibit stability
against small perturbations if the wavenumber k3 possesses a real component.

8. Discussion and comparison with the previous results. This section in-
volves a concise comparison of our derived closed-form solutions with prior work by
Wang [25], leading to the following conclusions:

1. Wang ([25]) introduced lump solutions for equation (6) using the binary Bell
polynomial and Hirota bilinear approaches. Equation (6) has also shown in-
tegrability through the Lax pair concept, with bilinear Bäcklund transforma-
tions derived from the binary Bell polynomial theory.

2. In this study, we employed the Lie symmetry technique to acquire all solutions
of equation (6). However, we applied a systematic approach of Lie symmetry
analysis to derive closed-form exact solutions for equation (6), followed by the
optimality.

3. All the solutions obtained are completely novel and distinct, not previously
reported in existing literature. Furthermore, our exact explicit solutions offer
a more comprehensive analysis, incorporating arbitrary functional parameters
and other constant parameters.

4. Due to the inclusion of independent arbitrary functional parameters in cer-
tain solutions (which allow for the freedom to choose the function), they have
become notably valuable and relevant for elucidating nonlinear wave prop-
agation across various domains. This encompasses fields such as nonlinear
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Figure 6. The dispersion relation k3 = k3(k1, k2) between fre-
quency k3 and wave number k1 and k2 of perturbation.

optics and plasma physics, which are concerned with phenomena related to
electromagnetic waves.

5. Moreover, this study stands as the pioneering endeavor in applying conser-
vation laws on equation (6). Additionally, the modulation stability of the
selected model is evaluated and visually depicted in Figure 6.

9. Conclusion. In this study, we conducted a comprehensive analysis, combining
analytical techniques with numerical simulations, to uncover a range of solutions for
the associated Hirota bilinear equation (6) by utilizing the Lie symmetry analysis
method. The primary objective of this technique is to identify symmetries, re-
duce the dimensionality of the equation, and discover exact solutions for the given
NLEEs. To achieve this, we initiated our analysis by computing a one-dimensional
optimal system. Subsequently, we utilized the obtained subalgebras to perform
symmetry reductions on equation (6). As a result, we derived a set of reduced
ODEs whose solutions provide exact solutions for the governing equation.

The obtained results manifest in various mathematical forms, including polyno-
mials, trigonometric functions, and exponentials, incorporating arbitrary constants
and functions of the independent variables, denoted as x, y, and t. It is worth
noting that all these solutions satisfy the principal equation and have not been re-
ported previously. To enhance our understanding of these solutions, we visualize
them through 3D, 2D, and contour plots (see Figures 1, 2, 3, 4, 5), providing in-
sights into the dynamic behavior of the equation. Our findings reveal diverse types
of wave propagation, encompassing traveling waves, solitary waves, and periodic
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waves. Additionally, we determined the modulation instability condition through
linear stability analysis.

Furthermore, we deduced conservation laws for equation (6), encompassing both
local and nonlocal conserved vectors. Notably, this work marks the first exploration
of invariant solutions using Lie symmetry, conservation laws, and modulation in-
stability for the associated Hirota bilinear equation. The results underscore the
precision of our approach in solving NLEEs and its potential utility in elucidating
various qualitative aspects of wave phenomena across the domains of mathematical
physics, applied mathematics, and engineering sciences.
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to a Hirota bilinear equation, Computers and Mathematics with Applications, 72 (2016), 1225-

1229.

[7] X. Hu, Y. Li and Y. Chen, A direct algorithm of one dimensional optimal system for the group

invariant solutions, J. Math. Phys., 56 (2015), 053504.

[8] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333 (2007), 311-328.

[9] M. T. Islam, M. A. Akter, J. F. Gomez-Aguilar, M. A. Akbar and E. Perez-Careta, Innovative

and diverse soliton solutions of the dual core optical fiber nonlinear models via two competent

techniques, J. Nonlinear Opt. Phys. Mater., 32 (2023), 2350037.
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