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Abstract In this work, the method of the Lie group of invariance is used to explore a (2+1)-dimensional modified dispersive
water wave (mDWW) system of equations. This system is used to describe dispersive, nonlinear, long gravity waves traveling in
two horizontal directions on shallow water. Calculating infinitesimal generators through symbolic computation is accomplished.
Employing infinitesimal generators, the vector fields are obtained, and corresponding to the vector fields, the commutator table and
the adjoint table are constructed. Furthermore, based on the adjoint table, the one-dimensional optimal system of subalgebras is
obtained. With the aid of the optimal system, similarity reductions are performed for different cases. Through similarity reductions,
the considered system of nonlinear partial differential equations (PDEs) is converted to a system of ordinary differential equations
(ODEs) using Lie symmetry analysis, resulting in closed-form group-invariant solutions. The graphs consist of the periodic solitons.
Dromions and peakon excitations are revealed in the graphical representations of the solutions. Using these graphs, mathematicians
and physicists can follow complicated physical phenomena more efficiently. The mDWW system is fully integrated and has numerous
applications in tidal waves and ocean tsunamis.

1 Introduction

Since most physical phenomena are nonlinear in nature and can be modeled in the form of nonlinear PDEs, exact analytical
solutions, different forms of solitons, and traveling wave solutions of nonlinear PDEs may very well characterize a variety of
physical phenomena directly implicated in our surroundings. These nonlinear PDEs have various physical applications in a variety
of scientific fields, especially in ocean engineering, applied mathematics, quantum mechanics, natural sciences, nonlinear optics,
fluid dynamics, hydrodynamics, plasma physics, optical fibers, etc. [1–13]. With the help of the exact solutions, people may provide
a better insight about the physical aspects related to the problems. Therefore, finding the explicit form of solutions of nonlinear
PDEs is an important and crucial task in solving the nonlinear problems. So many techniques are developed by the researchers in
literature to find the exact solutions of these nonlinear PDEs such as extended transformed rational function method [14], Inverse
scattering method [15], Darboux transformations, [16], Backlund transformations [17], Jacobi elliptic function method [18, 19],
multiple exp-function method [20], generalized unified method [21], and Lie symmetry technique [22–28]. Symmetry is a powerful
and effective mathematical approach to conceptualize the nature’s laws. The method of Lie group of invariance [29, 30] is one of the
most significant and systematic techniques for obtaining the analytic group-invariant solutions of these nonlinear PDEs arising in the
different fields of mathematical physics. For more details of the Lie symmetry method, one can go through with the papers [31–39].
The primary objective of this Lie group approach is to find infinitesimal generators that leave the partial differential equation (PDE)
invariant. This procedure provides a dependable structure for solving nonlinear differential equations.

In this article, we investigate the enormous variety of invariant solutions to the following system of (2+1)-dimensional modified
dispersive water wave (mDWW) equations [40]:

uyt + uxxy − 2vxx − 2(uuy)x =0,
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vt − vxx − 2(uv)x =0. (1)

There are two variables involved here: u represents the horizontal velocity of waves and v represents the elevation above the
undisturbed surface of the water. (x, y) and t represent the propagation and time scales, respectively. Dispersive nonlinear long
gravity waves traveling horizontally on shallow water are described by this mDWW system (1).By using the symmetry constraint
[41], one can also obtain system (1) from the Kadomtsev–Petviashvili equation. The explicit form of the solutions of system (1) is
quite useful for the coastal and engineers to use the nonlinear dispersive water wave model in coastal and port designing [42, 43].
The system is completely integrable, and thus, it has many applications, while studying the propagation of ocean waves. Wen and
Xu [44] studied the (2+1)-dimensional mDWW system and obtained some multiple soliton solutions using Hirota bilinear method.
With the Painlevé–Bäcklund transformation and simplified Hirota’s method, Wazwaz [45] solved the dispersive long-water wave
system to find traveling wave-type solutions.

1.1 Motivation of the work

In the above paragraph, we have discussed much about the different types of the analytic solutions obtained for the mDWW system.
Though the mDWW system is studied by many researchers with respect to derive the various explicit form of solutions, a researcher
should always keen to analyze and explore the new types of closed-form solutions. Moreover, the closed-form solutions of the
mdWW system (1) are extremely useful, especially for civil engineers to apply the nonlinear water wave model for the coastal and
harbor designing. Motivated from the literature, the authors have obtained some more exact analytic solutions of the mDWW system
via Lie symmetry approach in this work which shows the practical importance of the mDWW system.

The main motivation for completing the task in this paper is to generalize the work of Singh et al. [40]. They used the Lie
group method on a (2+1)-dimensional mDWW system to seek very few solutions to the governing system of equations. By taking
advantage of the same Lie group for invariance analysis, in this paper, we encountered more generalized invariant solutions with
arbitrary functional parameters. The presence of these arbitrary functional parameters increases the importance and significance of
this research. The obtained solutions are more generalized than in the author’s work of Singh et al. [40]. It should be noted that
the generalized invariant solutions of the mDWW system were obtained by selecting some special forms of arbitrary functional
parameters such as trigonometric functions, hyperbolic functions, and rational functions.

1.2 Frame-work

The present article is made up into six sections as follows: Sect. 1 is introductory. It comprises the brief literature and the importance
of the mDWW system of equations. Section 2 is about the symmetry analysis of the mDWW system. The Lie group technique is
performed on system (1) to obtain the generators and the commutator table. Section 3 deals with the adjoint table and one-dimensional
optimal system of (1). In Sect. 4, the new closed-form solutions are obtained for the mDWW system. Graphs are also provided to
illustrate the obtained solutions in this section, which provided a better idea about the involved nonlinear phenomena. In Sect. 5,
the obtained results are discussed in detail. Periodic solitons along with the dromion and peakon profiles are captured in the figures
of the obtained solutions. In Sect. 6, a comparison is shown between the results obtained in this paper and the results reported in
the literature. Section 7 represents the conclusion of the overall work about this paper. The computational packages Maple 16 and
Wolfram Mathematica 13.0 are used for the computational simulation.

2 Lie group analysis

This section deals with the symmetry analysis of the mDWW equations. The Lie group of infinitesimal transformation about the
parameter (ε) [22] for the mDWW equations (1) is taken as follows:

u� = u + ε φ + O(ε2),

v� = v + ε ψ + O(ε2),

x� = x + ε ξ + O(ε2),

y� = y + ε η + O(ε2),

t� = t + ε τ + O(ε2), (2)

A variable u, v, x, y, and t each has an infinitesimal φ, ψ , ξ , η, and τ , respectively. Thus, the vector field, which is associated with
these generators, is taken as

P = ξ
∂

∂x
+ η

∂

∂y
+ τ

∂

∂t
+ φ

∂

∂u
+ ψ

∂

∂v
. (3)
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Table 1 Commutator table * P1( f1) P2( f2) P3( f3)

P1( f1) 0 0 0
P2( f2) 0 0 P3( f2 f ′

3 − 1
2 f ′

2 f3)

P3( f3) 0 −P3( f2 f ′
3 − 1

2 f ′
2 f3) 0

Table 2 Adjoint table * P1 P2 P3

P1 P1 P2 P3

P2 P1 P2 e−εP3

P3 P1 P2 + εP3 P3

The prolongations formulas for the mDWW equations are as follows:

Pr3P = P + φt ∂

∂ut
+ φx ∂

∂ux
+ ψ x ∂

∂vx
+ φxxy ∂

∂uxxy
+ ...

Pr1P = P + φy ∂

∂uy
+ ψ x ∂

∂vx
+ ... (4)

The above expressions are implemented into system (1), and we get

φyt + φxxy − 2ψ xx − 2φxuy − 2φyux − 2uφyx − 2φuyx = 0,

ψ t − ψ xx − 2φvx − 2uψ x − 2uxψ − 2φxv = 0. (5)

Substituting the values of φt , φx , φy ,φxxy , and ψ x from [30] into equations (5), the set of differential equations is obtained, and by
solving this set of differential equations, we obtain the infinitesimals as follows:

ξx = x

2
f ′
2(t) + f3(t), ξy = f1(y), ξt = f2(t),

ηu = −u

2
f ′
2(t) − x

4
f ′′
2 (t) − 1

2
f ′
3(t), ηv = −v

2
f ′
2(t) − v f ′

1(y), (6)

where f1(y) is an arbitrary function of y only and f2(t) and f3(t) are arbitrary functions of t only. Now, with the help of (6), we
obtain the following vector field for the mDWW equations (1), as in [9]

P1( f1) = f1(y)
∂

∂y
− v f ′

1(y)
∂

∂v
, P2( f2) = x

2
f ′
2(t)

∂

∂x
+ f2(t)

∂

∂t
− u

2
f ′
2(t)

∂

∂u
− x

4
f ′′
2 (t)

∂

∂u
− v

2
f ′
2(t)

∂

∂v
,

P3( f3) = f3(t)
∂

∂x
− 1

2
f ′
3(t)

∂

∂u
.

3 Derivation of the optimal system

In this sections, we have obtained the optimal system for the mDWW equations. For obtaining the optimal system of Lie algebra,
we determine the invariants for selecting the representative elements. To determine the invariants, we have obtained the following
matrix representations of ad(Pi ) by using Tables 1,2:

Ad(exp(εW))(P) = e−εWPeεW = P − ε[W,P] + 1

2!ε
2[W, [W,P]] − . . .

= (α1P1 + · · · + αnPn) − ε[β1P1 + · · · + βnPn, α1P1 + · · · + αnPn] + O(ε2)

= (α1P1 + · · · + αnPn) − ε(�1P1 + · · · + �nPn). (7)

Here, � = �(α1, ..., αn, β1, ..., βn) is determined using Table 1. The commutator relations are presented in Table 1. On substituting
P = ∑3

i=1 αiPi and W = ∑3
j=1 β jP j in equation (12) with

�1 = 0, �2 = 0, �3 = α3β2 − α2β3. (8)

It follows that for any β j , 1 ≤ j ≤ 3,

�1
∂φ

∂α1
+ �2

∂φ

∂α2
+ �3

∂φ

∂α3
= 0. (9)
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In the above equation, we get the following system of equations by equating all like powers of β j :

β2 : α3
∂φ

∂α3
= 0,

β3 : −α2
∂φ

∂α3
= 0. (10)

By solving the system of equations (10), we get φ(α1, α2, α3) = F(α1, α2), where F is an arbitrary invariant function of α1 and α2

for the Lie algebra R
3. Thus, the mDWW system (1) has only two invariants.

3.1 Formation of adjoint matrix

Fs
i : g → g defined as P → Ad(exp(εiPi )) is a linear map, for i = 1, 2, 3. The matrices Aε

i of Fε
i (i = 1, 2, 3) with respect to

basis {P1,P2,P3} are given as follows and defined [10] as

Aε
1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠, Aε
2 =

⎛

⎝
1 0 0
0 1 0
0 0 e−ε1

⎞

⎠, Aε
3 =

⎛

⎝
1 0 0
0 1 ε2

0 0 1

⎞

⎠.

Thus, the following adjoint matrix is obtained by using these three matrices as

A =
⎛

⎝
1 0 0
0 1 ε2

0 0 e−ε1

⎞

⎠. (11)

3.2 Optimal system for the mDWW equations

The adjoint transformation system to the RW (1) model is

(α1, α2, α3) · A = (γ1, γ2, γ3), (12)

where A is the matrix which is expressed and

γ1 = α1, γ2 = α2, γ3 = α2ε2 + α3e
−ε1 . (13)

Case 1 When α1 = 1 and α2 = c, where c �= {0, 1} is a real constant. Selecting a representative element P̃ = P1 + α2P2 + α3P3

and putting γ1 = 1, γ2 = c, γ3 = 0 in equation (13), we obtain the solution as

ε3 = −α3. (14)

Now, using the action of adjoint maps on P̃ , the coefficients of P3 from P̃ will be vanished. Thus, P̃ = P1 + a2P2 is equivalent to
P1 + cP2 + α3P3.

Case 2 When α1 = 1 and α2 = 0. Selecting a representative element P̃ = P1 + α2P2 + α3P3, and putting γ1 = 1, γ2 = 0, γ3 = 0
in equation (13), we obtain the solution as

ε2 = 0. (15)

Now, using the action of adjoint maps on P̃ , the coefficients of P2 from P̃ will be vanished. Thus, P̃ = P1 + a3P3 is equivalent to
P1 + α2P2 + α3P3.

Case 3 When α1 = 0 and α2 = 1. Selecting a representative element P̃ = P1 + α2P2 + α3P3, and putting γ1 = 1, γ2 = 0, γ3 = 0
in equation (13), we obtain the solution as

ε1 = 0 ε3 = −α2

α3
. (16)

Now, using the action of adjoint maps on P̃ , the coefficients of P1 and P3 from P̃ will be vanished. Thus, P̃ = α2P2 is equivalent
to P1 + α2P2 + α3P3.

Case 4 When α1 = 0 and α2 = 0. Selecting a representative element P̃ = P1 + α2P2 + α3P3, and putting γ1 = 0, γ2 = 0, γ3 = 0
in equation (13), we obtain the solution as

ε1 = ε2 = 0. (17)

Now, using the action of adjoint maps on P̃ , the coefficients of P1 and P2 from P̃ will be vanished. Thus, P̃ = cP3, (c �= 0) is
equivalent to P1 + α2P2 + α3P3.
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Thus, the mDWW system has the following optimal system:

(i) S1 = P1 + α2P2

(i i) S2 = P1 + α3P3

(i i i) S3 = α2P2

(iv) S4 = cP3 (18)

4 Generalized invariant solutions

The associated characteristic equation is

dx

ξ
= dy

η
= dt

τ
= du

φ
= dv

ψ
. (19)

4.1 Vector field S1 = P1 + α2P2

The vector field P1 + α2P2 gives the solution of (19) as follows:

u(x, y, t) = U (X, Y )√
f2(t)

− X f ′
2(t)

4
√

f2(t)
,

v(x, y, t) = V (X, Y )√
f2(t)

, (20)

with X = x√
f2(t)

and Y = y − ∫ k1
α2 f2(t) dt , which represents the similarity invariants, and U and V are the arbitrary functions of X

and Y . Inserting (20) into (1), we obtain

2α2UYUX + 2α2UUXY − α2UXXY + 2α2VXX + k1UYY = 0

2α2UXV + 2α2UVX + α2VXX + k1VY = 0. (21)

Now, again using the STM on equation (21), the infinitesimals are determined as:

ξX = b1X + b2, ξY = 2Yb1 + b3,

ηU = −b1U, ηV = −3b1V, (22)

where b1, b2, and b3 are the arbitrary constants. Taking b2 = 0 and b3 = 0, (22) gives the following values of U and V :

U (X, Y ) = L(θ)√
Y

,

V (X, Y ) = M(θ)

Y 3/2 , (23)

where θ = X√
Y

. Using the values of U and V in (21), we obtain

L(θ)
(
3k1 − 4α2

(
θL ′′(θ) + 3L ′(θ)

)) + 2α2
(
3L ′′(θ) + 4M ′′(θ)

) + 2α2θ
(
L(3)(θ) − 2L ′(θ)2

)

+ θk1
(
θL ′′(θ) + 5L ′(θ)

) = 0,

M(θ)
(
3k1 − 4α2L

′(θ)
) − 2α2

(
2L(θ)M ′(θ) + M ′′(θ)

) + θk1M
′(θ) = 0. (24)

Now, (24) gives the following solution:

M(θ) = θ(−2B1k1 − 3k1)

16a2
− θ3k2

1

64a2
2

,

L(θ) = θ(3k1)

8a2
+ B1

θ
, (25)

M(θ) = 1

6
θ(−2B2B1 − 3B2) − B2

2θ3

9
,

L(θ) = B2θ + B1

θ
, (26)

M(θ) = B3θ,

L(θ) = B1

θ
, (27)

123
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M(θ) = B3θ,

L(θ) = B2θ + B1

θ
(28)

where B ′
i s, (i = 1, 2, 3) are the arbitrary constants. Therefore, the solutions of mDWW equations (1) are obtained as follows:

u1 = x

8 f2(t)

⎛

⎝ 3k1

a2y − k1

(∫ 1
f2(t) dt

) − 2 f ′
2(t)

⎞

⎠ + B1

x
,

v1 =
a2k1x

(
k1

(−x2
) − 4(2B1 + 3) f2(t)

(
a2y − k1

(∫ 1
f2(t) dt

)))

64 f2(t)2
(
a2y − k1

(∫ 1
f2(t) dt

))3 , (29)

u2 = 1

f2(t)

(
3B2x

3y − 8B2
∫ 1

f2(t) dt
− 1

4
x f ′

2(t)

)

+ B1

x
,

v2 =
3B2x

(
(2B1 + 3) f2(t)

(
3y − 8B1

∫ 1
f2(t) dt

)
+ 2B2x2

)

2 f2(t)2
(

3y − 8B2
∫ 1

f2(t) dt
)3 , (30)

u3 = B1

x
− x f ′

2(t)

4 f2(t)
,

v3 = B3x

y2 f2(t)
, (31)

u4 = 1

f2(t)

(
B2x

y − 2B2
∫ 1

f2(t) dt
− 1

4
x f ′

2(t)

)

+ B1

x
,

v4 = B3x

f2(t)
(
y − 2B2

∫ 1
f2(t) dt

)2 . (32)

4.1.1 Take α2 = 0, Vector field S1 = P1

The vector field P1 provides the solution:

u(x, y, t) = U (X, T ),

v(x, y, t) = V (X, T )

f1(y)
. (33)

Here, X = x and T = t represents the symmetry invariants, and U and V are the arbitrary functional parameters of X and T .
Inserting (33) into (1), we get

VXX = 0,

− 2UXV − 2UVX + VT − VXX = 0. (34)

Now, integrating Eq. (34) twice, we obtain

U (X, T ) = H1(T )

H3(T ) + XH4(T )
+

1
2 X

2H ′
4(T ) + XH ′

3(T )

2(H3(T ) + XH4(T ))
,

V (X, T ) = XH2(T ) + H1(T ), (35)

where H1(T ), H2(T ), H3(T ), and H4(T ) are arbitrary functional parameters of T only. Using Eqs. (33) and (35), we obtain the
following form of the solution of (2+1)-dimensional mDWW system (1):

u5 = 4H1(t) + x2H ′
4(t) + 2xH ′

3(t)

4xH4(t) + 4H3(t)
,

v5 = xH4(t) + H3(t)

f1(y)
. (36)

123



Eur. Phys. J. Plus         (2023) 138:434 Page 7 of 13   434 

4.2 Vector field S3 = α2P2

The vector field α2P2 provides the solution as follows:

u(x, y, t) = U (X, Y )√
f2(t)

− X f ′
2(t)

4
√

f2(t)
,

v(x, y, t) = V (X, Y )√
f2(t)

, (37)

with X = x√
f2(t)

and Y = y represents similarity invariants, and U and V are the arbitrary functional parameters of X and Y .
Substituting (37) into (1), we obtain

2(UYUX +UUXY + VXX ) −UXXY = 0,

2UXV + 2UVX + VXX = 0. (38)

Now, again using the STM on equation (38), the infinitesimals are determined as:

ξX = b1X + b2, ξY = G1(Y ),

ηU = −b1U, ηV = −V (G ′
1(Y ) + b1), (39)

where b1 and b2 are the arbitrary constants and G1(Y ) is arbitrary function. Taking b2 = 0 and G1(Y ) = Y , (39) gives the following
values of U and V :

U (X, Y ) = Y−b1L(θ),

V (X, Y ) = Y−b1−1M(θ), (40)

where θ = X
Yb1

. Using the values of U and V in (38), we obtain

− b1θL
(3)(θ) + 2b1θL(θ)L ′′(θ) − 3b1L

′′(θ) + 2b1θL
′(θ)2 + 6b1L(θ)L ′(θ) − 2M ′′(θ) = 0,

2M(θ)L ′(θ) + 2L(θ)M ′(θ) + M ′′(θ) = 0. (41)

Now, (41) gives the following solution:

M(θ) = B5θ,

L(θ) = B6

θ
, (42)

M(θ) = B4 + B5θ,

L(θ) = 0, (43)

where B ′
i s, (i = 4, 5, 6) are arbitrary constants. Thus, the solution of mDWW system (1) is obtained as follows:

u6 = B6

x
− x f ′

2(t)

4 f2(t)
,

v6 = B5xy−2b1−1

f2(t)
, (44)

u7 = − x f ′
2(t)

4 f2(t)
,

v7 = y−2b1−1
(
B4yb1

√
f2(t) + B5x

)

f2(t)
. (45)

4.3 Vector field S4 = cP3

The vector field P3 provides the solution:

u(x, y, t) = U (Y, T ) − x f ′
3(t)

2 f3(t)
,

v(x, y, t) = V (Y, T ), (46)

where Y = y and T = t represents the symmetry invariants, and U and V are the arbitrary functional parameters of Y and T .
Inserting (46) into (1), we get

f ′
3(T )UY

f3(T )
+UYT = 0,

123
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f ′
3(T )V

f3(T )
+ VT = 0. (47)

Equation (47) on integration twice gives

U (Y, T ) =
∫

H5(Y )

f3(T )
dY + H6(T ),

V (Y, T ) = H5(Y )

f3(T )
, (48)

where H5 is the arbitrary functional parameter of Y only and H6 is the arbitrary function of T only. Using Eqs. (46) and (48), we
obtain the solution of mDWW system (1) as follows:

u8 = 2
∫
H5(y) dy − x f ′

3(t)

2 f3(t)
+ H6(t),

v8 = H5(y)

f3(t)
. (49)

5 Analysis and discussion of results

In this section, we present the graphic analysis of the obtained closed-form solutions to the (2+1)-dimensional mDWW equations.
The graphical analysis presents a broader view of the physical phenomena involved in the mDWW equations. By choosing the
appropriate values for the arbitrary parameters, the computational software Wolfram Mathematica constructs several types of two-
dimensional (2D) and three-dimensional (3D) profiles that illustrate the mDWW equations’ mechanism of physics. The obtained
results are presented graphically as follows:

Figure 1 shows the solution obtained in (31) in various forms with additional parameters values B1 = 500, B3 = 1, and
f2(t) = esin(t). Here, figure (a) shows multi-dromions in intervals (−10, 10) and (10, 20) for u. Figure (b) represents its contour
plot in intervals (−10, 10) and (10, 20). Figure (c) represents its absolute profile for x = {10, 12.5, 14, 18} in (−10, 10). Figure
(d) represents three-dromions for x = 4 in intervals (−10, 20) and (−10, 10) for v. Figure (e) represents its contour plot for x = 4
in intervals (−10, 20) and (−10, 10). Figure (f) represents its absolute profile for x = {10, 12.5, 14, 18}, y = 1 in (−10, 20).

Fig. 1 3D, contour, and absolute plots of the solution listed in (31)
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Fig. 2 3D, contour, and absolute plots of the solution listed in (32)

Figure 2 shows the solution obtained in (32) with additional parameters values B1 = 1, B2 = 0, and f2(t) = ecos(t), for x = 2
in (−12, 12) and (−10, 10). Here, figure (a) represents the periodic waves for u and v. Figure (b) represents its contour plot in
intervals (−10, 10) and (−1, 1). Figure (c) represents its absolute profile for x = {20, 40, 60}, y = 1 in (−12, 12). Figure (d) shows
periodic solitons with additional parameters value B2 = 0.01, B3 = 1, and f2(t) = 1

sin(t)+cos(t) for x = 4 in intervals (10, 47) and
(−10, 10). Figure (e) represents its contour plot for x = 4 in intervals (10, 47) and (−10, 10). Figure (f ) represents its absolute
profile for x = 4, y = 10 in (10, 50).

Figure 3 shows the solution obtained in (36) with arbitrary functions H1(t) = esin(t), H3(t) = t2 + 200, and H4(t) = sin(t)
in intervals (−15, 15) and (−50, 50). Here, figure (a) represents the periodic waves for u and v. Figure (b) represents its contour
plot in intervals (−15, 15) and (−50, 50). Figure (c) represents its absolute profile for x = {−50, 50} in (−15, 15). Figure (d)
shows periodic solitons with arbitrary functions f1(y) = e− sin(y), H3(t) = 1

cosh(t) , and H4(t) = 1 for x = 0.5 in intervals (−6, 6)

and (−14, 10). And figure (e) represents its contour plot for x = 0.5 in intervals (−6, 6) and (−14, 10). Figure (f) represents its
absolute profile for x = 0.5, y = {−6,−3, 3, 6} in (−6, 6).

Figure 4 shows the solution obtained in (45) with arbitrary function f2(t) = esin(t) in intervals (−4π, 4π) and (−15, 15).
Here, figure (a) represents the periodic waves profile for u and v. Figure (b) represents its contour plot in intervals (−4π, 4π) and
(−15, 15). Figure (c) represents its absolute profile for x = {5, 7.5, 10} in (−4π, 4π). Figure (d) shows periodic solitons with

b1 = 1, B4 = 1, B5 = 1, and arbitrary functions f2(t) = esin(t)

t for y = 1 in intervals (π, 10π) and (40, 60). Figure (e) represents
its contour plot for y = 1 in intervals (π, 10π) and (40, 60). Figure (f) represents its absolute profile for x = {10, 20}, y = 1 in
interval (π, 10π).

Figure 5 shows the solution obtained in (49) with arbitrary functions H5(y) = cos(y), H6(t) = sin(t), and f3(t) = ecos(t) for
x = 0.1 in intervals (−4π, 4π) and (−4π, 4π). Here, figure (a) shows the periodic waves for u and v. Figure (b) represents its contour
plot in intervals (−4π, 4π) and (−4π, 4π). Figure (c) represents its absolute profile for x = {0.1, 0.5} and y = {−4π, 4π} in
(−4π, 4π). Figure (d) shows periodic solitons with arbitrary functions H5(y) = sin(y), and f3(t) = cosh(t) in intervals (−2π, 2π)

and (−3π, 3π). And figure (e) represents its contour plot in intervals (− 3
2π, 3

2π) and (−3π, 3π). Figure (f) represents its absolute
profile for t = {3, 4, 5} in interval (−3π, 3π).

Thus, we can say that the closed-form solutions and their graphical representations presented in this work may be useful to
further understand the propagation phenomena of nonlinear and dispersive gravity waves on the surface of the shallow water of
uniform depth. It is beneficial to explore more about these periodic soliton solutions, which is of dromion-type structures, and related
evolutional properties. These solutions might be useful in future studies to intricate the nature world. Additionally, it should be noted
that this work uses Lie group method in a direct, powerful, and computer-literate manner, avoiding complex algebraic calculations.
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Fig. 3 3D, contour, and absolute plots of the solution listed in (36)

Fig. 4 3D, contour, and absolute plots of the solution listed in(45)
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Fig. 5 3D, contour, and absolute plots of the solution listed in (49)

6 Comparison of the results

In this section, a comparison is shown between the obtained results and the results reported by the other researchers in literature.
The comparison is as follows:

• Singh et al. [40] obtained only the commutator table and adjoint table for system (1) by selecting a few constant values of the
arbitrary independent functional parameters, whereas in this research, the vector fields and optimal system are generated in the
form of independent arbitrary functional parameters, making this study more significant and effective. It implies that we have the
option of taking functional parameters in rational, trigonometric, hyperbolic, polynominal, or other forms.

• Singh et al. obtained only a few solutions in [40], by taking some constants into account in place of arbitrary functions appearing
in the set of infinitesimal generators. In our article, we obtained a variety of generalized invariant solutions in the form of arbitrary
functional parameters, making this research extends richer than previous findings.

• Finally, it is evident that our invariant solutions are more generalized because they are obtained in terms of different functional
parameters. Because of the arbitrary functions, the majority of the solutions obtained from this research are generalized in
comparison with previous findings.

7 Conclusion

In summary, a (2+1)-dimensional mDWW system of equations was investigated using the Lie group method of invariance. A
one-parameter Lie group of transformations is obtained through symmetry analysis, which preserves the invariant nature of system
(1). The infinitesimal generators are obtained using this one-parameter Lie group of transformations. The commutator and the
adjoint tables are constructed, which are represented in Tables 1 and 2, respectively. Furthermore, an optimal system of subalgebras
is established using infinitesimals. This optimal system is spanned by the vector fields P1, P2 and P3. System (1) of PDEs is
transformed into the system of ODEs using similarity reductions. Then, the exact group-invariant solutions are obtained for these
ODEs. The obtained solutions are reported in Eqs. (29), (30), (31), (32), (36), (44), (45), and (49). These solutions are completely
new and have never been reported in the literature. These solutions are depicted graphically to analyze the nature of the solutions
via 2D, 3D, and contour plots by allocating different parametric preferences. The dromion and peakon excitations are captured in
the graphical representation of the obtained solutions. Also, it is found that the solutions are periodic in nature and have periodic
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solitons. Solitons are caused by the balancing of nonlinear and dispersion terms that appears in the mathematical formulation of the
governing system of equations.

The obtained solutions are also plotted to show how the specific varieties of solutions form as the space and time coordinates
change. Consequently, we have formed the dynamics of various types of obtained exact solutions, which are suitable, demonstrative,
and proficient in comparison with the results, which are presented in the literature and interpret the physical phenomenon. These
obtained closed-form solutions may provide a benchmark to compare the numerical results and for the accuracy testing of newly
developed numerical techniques. Moreover, the obtained closed-form solutions are extremely valuable and efficient in the fields of
nonlinear science and ocean engineering for describing the realistic physical phenomena modeled in the form of a (2+1)-dimensional
mDWW system of PDEs, which represents the formation, interaction, and breaking of waves as a result of external effects on the
surface of the ocean. Furthermore, we can say that the Lie symmetry approach is a powerful and time-consuming tool for solving
many nonlinear systems of partial differential equations.
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