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Abstract In this article, we study Lie point symmetries, closed-form invariant solutions, and
dynamics of exact solitons to an extended (3+1)-dimensional Jimbo–Miwa (JM) equation
by employing the Lie symmetry method. Under the resulting symmetries, the extended JM
equation is reduced to lower-dimensional equations. We exploit the travelling wave ansatz
to determine closed-form invariant solutions of the reduced equations. The physical inter-
pretations of the obtained solutions are exhibited in the forms of single solitons, multi-wave
solitons, multiple solitons with parabolic waves, oscillating lump solitons, triply solitons, and
double solitons via numerical simulation for adequate choices of the involved arbitrary con-
stants through the mathematical softwareWolframMathematica. These constructed solutions
can help us better understand interesting nonlinear complex phenomena and mechanisms.

1 Introduction

Nonlinear partial differential equations (NPDEs) are extensively used to describe complex
phenomena in many fields of science, particularly in mathematical physics and fluid mechan-
ics. Travelling waves, solitons, compactons, peakons, shock waves, etc., are important wave
solutions of nonlinear evolution equations. Those solutions have be applied successfully
in various research areas of applied mathematics, solid-state physics, plasma physics, fluid
dynamics, mathematical biology, and chemical kinetics. Closed-form solutions can help us
understand mechanics of convoluted physical phenomena and dynamical processes modeled
by nonlinear equations better. Moreover, those solutions allow researchers to design and run
experiments, by creating appropriate natural conditions, to determine appropriate parameters
in model equations.

There are numerous significant methods [1–6] for obtaining exact solutions of NPDEs. A
few direct ansätz have been introduced for the nonlinear Schrödinger equation, particularly for
solitons and rogue waves, and a five-dimensional symmetry algebra has also been presented,
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which consists of Lie point symmetries [7]. The Hirota bilinear method has been applied
to construction of lump solutions to generalized integrable equations of fourth order, and
both nonlinearity and dispersion play important roles in formulating such localized solutions
[8–10].

Over the past few years, the classical Lie symmetry technique is the most efficient, robust,
and faithful mathematical tool to obtain closed-form invariant solutions to NPDEs. This
technique allows us to reduce the number of independent variables in higher dimensions
NPDEs by employing the similarity reductions. Moreover, this state-of-the-art methodology
is based on invariance possessions under one-parameter Lie group transformations. For this
reason, the classical Lie group theoretic technique is a widely used analytical mathematical
approach for obtaining closed-form solutions to NPDEs with many applications in various
contexts [11–19].

In the recent years, multidimensional integrable systems are one of the major subjects
of research in integrable systems. The interesting and integrable (3+1)-dimensional Jimbo–
Miwa (JM) equation is given by

uxxxy + 3uxuxy + 3uyuxx + 2uyt − 3uxz = 0, (1)

which is a second member in the Kadomtsev–Petviashvili (KP) hierarchy [20–22], describ-
ing certain interesting (3+1)-dimensional waves in mathematical physics. The JM equation
behaves differently from typical (2+1)-dimensional integrable equations, for example, the
KP equation, particularly since it does not pass the Painlevé test [23]. Various forms of
solutions of the KP equation have been investigated over a period of time with a variety of
helpful techniques, and interaction phenomena of rational, semirational, and abundant lump-
type solutions of the (3+1)-dimensional JM equation are obtained in [24]. Specific soliton
solutions to the (3+1)-dimensional JM equation are presented by the transformed rational
function approach and collectively a Bäcklund transformation [25], whereas specific soliton
solutions are acquired for the (3+1)-dimensional generalized KP, BKP, and JM equations,
in terms of Wronskian determinants [26]. Zhang and Chen [27] discussed a combination of
stripe solitons and lump solitons, which produces two different localized excitation phenom-
ena of fusion and fission for a reduced (3+1)-dimensional JM equation, including interaction
solutions between kink stripe solitons and rogue waves. Wazwaz [28] used the simplified
Hirota’s method to derive multiple soliton solutions of distinct physical structures for two
extended (3+1)-dimensional JM equations.

In the present article, we would like to investigate the following extended (3+1)-
dimensional JM equation:

� := uxxxy + 3uyuxx + 3uxuxy + 2uyt − 3(uxz + uyz + uzz) = 0, (2)

which includes two additional linear terms uyz and uzz . Here u(x, y, z, t) is the wave ampli-
tude function with three scaled spatial variables x, y, z and the temporal variable t . The
extended form could describe more general dispersive waves than standard (3+1)-dimensional
JM equation (1). Some novel significant contributions in the discipline of investigating soli-
tary wave solutions, exact rational solutions, and multiple soliton solutions to several extended
(3+1)-dimensional JM equations have been discussed in the previous studies [29–32].

In this work, we derive infinitesimal generators, geometric vector fields, commutation
relations, and an adjoint table of the considered vectors to above-extended JM equation (2).
Besides, we will construct exact invariant solutions and solitonic structures of exact solutions
using the Lie group theoretic method via three stages of symmetry reductions in a way that the
application-oriented reader can immediately get a practical implementation of the method.
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The rest of the paper is organized as follows. In Sect. 2, we outline the method based on
the construction of generators of infinitesimal transformations. In Sect. 3, we apply the Lie
group theoretic technique to prolonged extended JM equation (2). We mention the Lie point
symmetries and interesting symmetry reductions by forming the similarity solutions from
the set of Lie algebras. Additionally, we construct vector fields which help us reduce the
above-extended (3+1)-dimensional JM equation into some reduced lower-order PDEs and
then ODEs. Finally, we derive abundant analytical exact solutions of Eq. (2). In the remaining
two sections, we are devoted to the physical/graphical interpretation of the resulting solutions
and the conclusion of our results for of the extended JM equation, respectively.

2 Lie symmetry analysis

Initially, we apply Lie symmetry reductions to extended JM equation (2) utilizing the Lie
group method of symmetry transformations. We consider a one-parameter Lie group of
infinitesimal transformations on (x1 = x, x2 = y, x3 = z, x4 = t, u1 = u), defined as

x̃ = x + ϑξ1(x, y, z, t, u) + O(ϑ2),

ỹ = y + ϑξ2(x, y, z, t, u) + O(ϑ2),

z̃ = z + ϑξ3(x, y, z, t, u) + O(ϑ2),

t̃ = t + ϑτ(x, y, z, t, u) + O(ϑ2),

ũ = u + ϑη(x, y, z, t, u) + O(ϑ2),

(3)

where ϑ is the continuous group parameter. The general vector field on R
3 × R takes the

form
V = ξ1∂x + ξ2∂y + ξ3∂z + τ∂t + η∂u .

To obtain the Lie point symmetries to extended JM equation (2), associated vector fields
must satisfy the invariant criteria Pr (4)

V(�) = 0 whenever � = 0, where Pr (4) represents
the fourth prolongation of V which can be written as [3,5]

Pr (4)
V =V + ηx ∂

∂ux
+ ηy ∂

∂uy
+ ηz

∂

∂uz
+ ηt

∂

∂ut
+ ηxxxy ∂

∂uxxxy
+ ηxx ∂

∂uxx

+ ηxy ∂

∂uxy
+ ηyt ∂

∂uyt
+ ηxz ∂

∂uxz
+ ηyz ∂

∂uyz
+ ηzz

∂

∂uzz
.

Employing the invariance condition Pr (4)
V to extended JM equation (2), we get

ηxxxy + 3ηyuxx + 3ηxxuy + 3ηxuxy + 3ηxyux + 2ηyt − 3(ηxz + ηyz + ηzz) = 0. (4)
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Putting the value of expressions ηxxxy, ηxx , ηxy, ηxz, ηyz, ηzz, ηy , etc., [3,5] into (4) provides
the following system of determining equations

ξ1
u = ξ1

y = 0, ξ1
x = τt

3
, ξ1

z = τt

12
+ ξ2

y

4
,

ξ2
u = ξ2

x = ξ2
yy = ξ2

yz = ξ2
zz = 0, ξ2

t = 3ξ2
z

2
= 0,

ξ3
t = −3

4
τt + 3

4
ξ2
y + 3ξ2

z ,

τx = τy = τz = τu = τt t = 0,

ηu = −τt

3
, ηx = −τt

12
− ξ2

y

3
− ξ2

z

3
+ 2ξ1

t

3
, ηy = −τt

2
− ξ2

y

4
.

(5)

On solving these determining equations (5), we get the most general infinitesimals to
extended Jimbo–Miwa equation (2) as follows

ξ1 = α1(t) + c1

6
(2x − z) + c4

2
z,

ξ2 = c1

12
(9t − 12y + 6z) + c4

12
(−9t + 24y − 6z) + c3

2
t + c3

3
z + c6,

ξ3 = c3t + c4z + c5,

τ = c1t + c2,

η = 2

3
α′

1(t)x + α2(t)z + α3(t) + c1

6
(−2x + y − 2u) − c3

3
x − c4

2
y,

(6)

where ci , i = 1, . . . , 6 are arbitrary parameter constants and α1, α2, and α3 are functions of
t . The prime (′) denotes the differentiation with respect to its indicated variable throughout
the paper. The choices of α1, α2, and α3 need to provide new physically meaningful solutions
of Eq. (2). Therefore, we consider α1(t) = c7

6 t + c8, and α3(t) = c9t + c10 are linear
functions and α2(t) = c11t2 + c12t + c13 as a quadratic function with arbitrary constants ci ,
i = 1, . . . , 13.
In this way, Eq. (6) can be furnished as follows

ξ1 = c7

6
t + c8 + c1

6
(2x − z) + c4

2
z,

ξ2 = c1

12
(9t − 12y + 6z) + c4

12
(−9t + 24y − 6z) + c3

2
t + c3

3
z + c6,

ξ3 = c3t + c4z + c5,

τ = c1t + c2,

η = c7

9
x + (c11t

2 + c12t + c13)z + c9t + c10 + c1

6
(−2x + y − 2u) − c3

3
x − c4

2
y.

(7)
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Thus the Lie algebra of infinitesimal symmetries of (2) can be generated with the help of
the following vectors:

V1 = 1

6
(2x − z)

∂

∂x
+ 1

12
(9t − 12y + 6z)

∂

∂y
+ t

∂

∂t
+ 1

6
(−2x + y − 2u)

∂

∂u
,

V2 = ∂

∂t
, V3 =

(
t

2
+ z

3

)
∂

∂y
+ t

∂

∂z
− x

3

∂

∂u
,

V4 = z

2

∂

∂x
+ 1

12
(−9t + 24y − 6z)

∂

∂y
+ z

∂

∂z
− y

2

∂

∂u
,

V5 = ∂

∂z
, V6 = ∂

∂y
, V7 = t

6

∂

∂x
+ x

9

∂

∂u
,

V8 = ∂

∂x
, V9 = t

∂

∂u
, V10 = ∂

∂u
, V11 = zt2 ∂

∂u
, V12 = zt

∂

∂u
, V13 = z

∂

∂u
.

(8)

2.1 Computation of Lie brackets

We outline a relation between two invariant solutions. The relation holds true if the one can
be mapped to the other via a group of transformations generated by a linear combinations
of the operators in (8). Those mappings determine the equivalence relation, which provides
a partition on the set of all group invariant solutions. Usually, there are a significant number
of vector fields of the Lie algebra, obtained by adopting linear combinations of generators
Vi , i = 1, 2, . . . , 13. Subsequently, it is enough to put all similar subalgebras into one class
and select a representative from each class.

Commutator Table 1 of the Lie algebra can be obtained from the vector fields Vi , i =
1, 2, . . . , 13, whose (i, j)th entry is given by [Vi ,V j ] = Vi ∗V j = Vi ·V j −V j ·Vi which is
anti-symmetric with its diagonal elements all being zero as we obtain [Vα,Vβ ] = −[Vβ,Vα].
2.2 Adjoint representations

To compute adjoint representations of symmetry operators for Eq. (2), we use the Lie series
[3,5]

Ad(exp(ϑVi ))V j =
∞∑
n=0

ϑn

n! (adVi )
n(V j ) = V j − ϑ[Vi ,V j ] + 1

2
ϑ2[Vi , [Vi ,V j ]] − · · · .

(9)
The full adjoint representation table entries are tabulated in Table 2.

With the assistance of Tables 1 and 2 and by carefully applying adjoint maps, we discuss
useful linear combinations of vector fields for the considered equation, which are taken as
follows:

(i) V2, (ii) V5, (iii) V6

(iv) V7, (v) V8, (vi) V1 + V5

(vii) V2 + V5, (viii) V2 + V9, (ix) V2 + V5 + V6

(x) V2 + V5 + V6 + V8 + V11, (xi) V2 + V5 + V6 + V12, (xii) V2 + V8 + V13.

(10)
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3 Symmetry reductions and closed-form solutions

In this section, we obtain numerous closed-form invariant solutions for Eq. (2) utilizing the
Lie symmetry technique. Three stages of symmetry reductions will be taken with the aid
of invariant (or similarity) functions. To the end, we first solve the associated Lagrange’s
characteristic system given by

dx

ξ1 = dy

ξ2 = dz

ξ3 = dt

τ
= du

η
, (11)

which leads to similarity functions.

3.1 Vector field V2

Let us consider

V2 = ∂

∂t
. (12)

The corresponding Lagrange’s system is acquired via (11) and (12):

dx

0
= dy

0
= dz

0
= dt

1
= du

0
. (13)

The constants of integration provide the invariant functions of Eq. (2):

u(x, y, t) = f (X, Y, Z), X = x, Y = y, and Z = z, (14)

where X , Y , and Z are three invariant functions, and f is an invariant solution of extended
JM equation (2). Substituting Eq. (14) into Eq. (2), we get a reduced equation (a PDE) as
follows:

fX X XY + 3 fX fXY + 3 fY fX X − 3( fX Z + fY Z + fZ Z ) = 0. (15)

We can easily find the two travelling wave solutions for Eq. (15):

f (X, Y, Z) = 2 tanh

(
C2X + C3Y +

(
−1

2
(C2 + C3) − A

)
Z + C1

)
C2 + C4,

f (X, Y, Z) = 2 tanh

(
C2X + C3Y +

(
−1

2
(C2 + C3) + A

)
Z + C1

)
C2 + C4.

The corresponding travelling wave solutions to Eq. (2) are given by

u(x, y, z, t) = 2 tanh

(
C2x + C3y +

(
−1

2
(C2 + C3) − A

)
z + C1

)
C2 + C4, (16)

u(x, y, z, t) = 2 tanh

(
C2x + C3y +

(
−1

2
(C2 + C3) + A

)
z + C1

)
C2 + C4, (17)

where A =
√

48C3
2C3 + 9C2

2 + 18C2C3 + 9C2
3/6 and Ci , i = 1, . . . , 4 are arbitrary con-

stants.
To obtain more exact solutions of extended JM equation (2), we apply the similarity

transformation method (STM) to Eq. (15) and construct a new set of infinitesimal generators

ξX = a1

3
(X + Z) + a4,

ξY = a1Y + a3,
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ξZ = a1Z + a2,

η f = −a1

3
( f + X + Y ) + a5Z + a6,

where ξX , ξY , ξZ , and η f denote the generators of infinitesimal transformations with respect
to the indicated variables and ai , i = 1, . . . , 6 are arbitrary constants. To obtain a larger class
of solutions of Eq. (2), we study different cases on the parameters ai .

Case 1(a) Take a2 �= 0, and all remaining parameters are zero.
Furthermore, the function f can be furnished into a new similarity variable H with new
invariant functions r and s:

f (X, Y, Z) = H(r, s), r = X, s = Y. (18)

Equation (15) can be rewritten in the new invariant function H as

Hrrrs + 3Hr Hrs + 3HsHrr = 0. (19)

Assume the travelling wave solution H(r, s) = G(ζ ) of Eq. (19), where ζ = r − as and a
is the wave speed. Then the reduced ODE from Eq. (19) is

G ′′′′(ζ ) + 6G ′G ′′ = 0. (20)

Accordingly, we derive the following exact solutions of Eq. (20):

G(ζ ) = 2

C1 + ζ
+ C2,

G(ζ ) = −C1C2ζ + C2
2 + 2C1

C1ζ − C2
,

G(ζ ) = 2 WeierstrassZeta(C1 + ζ, 0,C2).

As a result, we acquire the closed-form solutions of Eq. (2):

u(x, y, z, t) = 2

C1 + x − ay
+ C2, (21)

u(x, y, z, t) = −C1C2(x − ay) + C2
2 + 2C1

C1(x − ay) − C2
, (22)

u(x, y, z, t) = 2 WeierstrassZeta(C1 + x − ay, 0,C2), (23)

where C1 and C2 are arbitrary constants.
Case 1(b) Take a3 �= 0, and the rest are zero.
The function f (X, Y, T ) can be reformed as

f (X, Y, T ) = H(r, s), r = X, s = Z .

The new invariant solution H(r, s) with its invariants r and s reduces Eq. (15) to

Hrs + Hss = 0. (24)

The following travelling wave solutions of Eq. (24) can be obtained:

H(r, s) = C1 exp(s − r),

H(r, s) = C3 tanh3(C2(s − r) + C1) + C4 tanh(C2(s − r) + C1) + C5,

H(r, s) = C3 tanh3(C2(s − r) + C1) + C4 tanh2(C2(s − r) + C1)
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+ C5 tanh(C2(s − r) + C1) + C6.

Therefore, three new classes of closed-form solutions of Eq. (2) read

u(x, y, z, t) = C1 exp(z − x), (25)

u(x, y, z, t) = C3 tanh3(C2(z − x) + C1) + C4 tanh(C2(z − x) + C1) + C5, (26)

u(x, y, z, t) = C3 tanh3(C2(z − x) + C1) + C6 tanh2(C2(z − x) + C1)

+ C4 tanh(C2(z − x) + C1) + C5, (27)

where Ci , i = 1, . . . , 5, appearing in the solutions of Eq. (2) are arbitrary constants.

3.2 Vector field V5

Let us consider

V5 = ∂

∂z
. (28)

For this vector field, we directly obtain

u(x, y, t) = f (X, Y, Z), X = x, Y = y, and T = t. (29)

Using Eqs. (2) and (29), we get a reduced equation

fX X XY + 3 fY fX X + 3 fX fXY + 2 fY T = 0. (30)

Again, we construct travelling wave solutions to Eq. (30), in which the considered group is
a translation group on the (X, Y, T ) space:

f (X, Y, T ) = C1

T
1
3

+ X2

3T
2
3

− C2

X
,

f (X, Y, T ) = 2C2 tanh(−2C3
2T + C2X + C3Y + C1) + C4.

These solutions of Eq. (30) collaborate to obtain the closed-form solutions of Eq. (2):

u(x, y, z, t) = C1

t
1
3

+ x2

3t
2
3

− C2

x
, (31)

u(x, y, z, t) = 2C2 tanh(−2C3
2 t + C2x + C3y + C1) + C4, (32)

where Ci , i = 1, . . . , 4, are arbitrary constants. Utilizing the Lie group technique, we derive
a new set of infinitesimals as

ξX = 1

3
α′

1(T )X + α2(T ),

ξY = α3(Y ),

τT = α1(T ),

η f = −1

3
α′

1(T )X + 1

9
α

′(T )′
1 X2 + 2

3
α′

2(T )X + α4(T ).

Assume α1(T ) = aT + b, α2(T ) = α4(T ) = 0 and α3(Y ) = 0. Thus, we have

dX
aX
3

= dY

0
= ddT

aT + b
= d f

−a f
3

. (33)
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The similarity form H of the solution of Eq. (30) with a pair of new similarity variables r
and s is

f (X, Y, T ) = H(r, s)

(aT + b)
1
3

, r = X

(aT + b)
1
3

and s = Y.

Therefore, one obtains

Hrrrs + 3Hr Hrs + 3HsHrr − 2a

3
(Hs + Hrs) = 0. (34)

We solve Eq. (34) to obtain the following solutions:

H(r, s) = s + a

9
r2 + C1r + C2, (35)

H(r, s) = log s + a

9
r2 + C1r + C2. (36)

These solutions of Eq. (34) help us to obtain exact solutions to extended JM equation (2):

u(x, y, z, t) = y

(at + b)
1
3

+ ax2

9(at + b)
+ C1

x

(at + b)
2
3

+ C2

(at + b)
1
3

, (37)

u(x, y, z, t) = log y

(at + b)
1
3

+ ax2

9(at + b)
+ C1

x

(at + b)
2
3

+ C2

(at + b)
1
3

, (38)

where a, b are arbitrary parameters appearing in the generators of infinitesimal transforma-
tions for Eq. (30), and C1 and C2 are another pair of arbitrary constants.

3.3 Vector field V6

Let us consider

V6 = ∂

∂y
.

Characteristic equations (11) for the vector field V6 reduce Eq. (2) to

u(x, y, z, t) = f (X, Z , T ), where X = x, T = t and Z = z. (39)

With the help of Eqs. (2) and (39), thus one obtains

fX Z + fZ Z = 0. (40)

Using (40) and (39) via symbolic computation, we get a desired invariant solution of extended
JM equation (2):

u(x, y, z, t) = g(x − z, t) + h(x, t), (41)

where g, h are arbitrary functions. Some following particular solutions can be worked out as
follows:

u(x, y, z, t) = C4 tanh3(C3t − C2x + C2z + C1)

+ C5 tanh(C3t − C2x + C2z + C1) + C6, (42)

u(x, y, z, t) = C4 tanh3(C3t − C2x + C2z + C1)

+ C7 tanh2(C3t − C2x + C2z + C1)

+ C6 tanh(C3t − C2x + C2z + C1) + C6, (43)

where Ci , i = 1, . . . , 6, are arbitrary constants.
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3.4 Vector field V7

Let us consider

V7 = t

6

∂

∂x
+ x

9

∂

∂u
. (44)

The associated characteristic Lagrange’s system can be computed by using Eqs. (44) and
(11). Solutions of those characteristic equations contain constants of integration, which are
known as invariant functions. Thus, we can reduce Eq. (2) to give

u(x, y, t) = f (Y, T, Z) + x2

3t
, where Y = y, Z = z, and T = t. (45)

The invariant functions in Eq. (45) reduce Eq. (2) into a PDE in f with the new independent
variables Y , T , and Z :

2 fY + 2T fYT − 3T ( fY Z + fZ Z ) = 0. (46)

The following travelling wave solution of Eq. (2) can be found by solving Eq. (46):

u(x, y, z, t) = x2

3t
+ A

t
exp

⎛
⎝C1

(
y − z

2

)
+

√
C2

1 + 4C2

2C1
z + 3C2t

2C1

⎞
⎠

+ B

t
exp

⎛
⎝C1

(
y − z

2

)
−

√
C2

1 + 4C2

2C1
z + 3C2t

2C1

⎞
⎠ , (47)

where A = C1C2C4, B = C1C3C4 and Ci ’s, i = 1, . . . , 4, are arbitrary constants.

3.5 Vector field V8

Let us consider

V8 = ∂

∂x
. (48)

The vector field V8 along with Eq. (11) produces a similarity form of solutions of Eq. (2)
with new similarity variables:

u(x, y, z, t) = f (Y, Z , T ), where Y = y, Z = z, and T = t. (49)

Using Eqs. (2) and (49), we have

2 fY T − 3 fY Z − 3 fZ Z = 0. (50)

We solve Eq. (50) via the travelling wave solution method and then obtain the travelling
wave solutions of Eq. (2):

u(x, y, z, t) = C4 tanh3
(

3C3(C2 + C3)t

2C2
+ C2y + C3z + C1

)

+ C5 tanh

(
3C3(C2 + C3)t

2C2
+ C2y + C3z + C1

)
+ C6, (51)

u(x, y, z, t) = C4 tanh3
(

3C3(C2 + C3)t

2C2
+ C2y + C3z + C1

)
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+ C7 tanh2
(

3C3(C2 + C3)t

2C2
+ C2y + C3z + C1

)

+ C5 tanh

(
3C3(C2 + C3)t

2C2
+ C2y + C3z + C1

)
+ C6, (52)

where Ci , i = 1, . . . , 7, are arbitrary constants. The profiles of the acquired solutions of the
extended JM equation are represented in the following figures. The analysis reveals different
types of solutions such as solitons, kinky wave solutions, and interaction solutions.

3.6 Vector field V1 + V5

The related Lagrange’s system is interpreted as

dx
1
6 (2x − z)

= dy
1
4 (3t − 4y + 2z)

= dz

1
= dt

t
= du

1
6 (−2u − 2x + z)

. (53)

Equation (53) introduces the following similarity solution

u(x, y, z, t) = U (X, Y, Z)
3
√
t

+ −16
(
2t4/3X + t (Z + 4) + Y

) − 16t log(t) + 3t2

64t

with X = x − 1
2 (log(t) + Z + 3)

3
√
t

, Y = t y −
(

3t2

8
+ t Z

2
− t

2
+ 1

2
t log(t)

)
and

Z = z − log(t). (54)

On solving (54) and (2), one obtains

9UZZ + 6UY Z − 6YUYY + 2XUXY − 4UY − 9UXUXY − 9UYUXX − 3UXXXY = 0.

(55)

Applying the symmetry transformation method to (55), then the desired infinitesimals are
given as follows:

ξX = a2, ξY = 0, ξZ = a1, ηU = 2

9
Xa2 + Za3 + a4, (56)

where ai ’s, 1 ≤ i ≤ 4, are arbitrary constants.
Case (1) Take a3 = a4 = 0 and all other constants are nonzero.
From Eq. (56), we get the characteristic system as:

dX

a2
= dY

0
= dZ

a1
= dU

2
9 Xa2

, (57)

which gives the similarity solution

U (X, Y, T ) = G(P, Q) +
2A2

(
A2Z2

2 + PZ
)

9
with P = X − A2Z , Q = Y. (58)

Using (58) and (55), we have the reduced equation

2A2
2 + 6QGQQ − 2(P − 3A2)GPQ + 4GQ − 9A2

2GPP + 9GQGPP + 9GPGPQ + 3GPPPQ = 0.

(59)

By utilizing the symmetry transformation method on (59), new infinitesimals are:

ηG = b2 + 2

9
b1P, ξP = b1, ξQ = 0, (60)
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where b1 and b2 are arbitrary constants. The characteristic system for (60) is

dP

b1
= dQ

0
= dG

b2 + 2
9b1P

, (61)

which gives the similarity form

G(P, Q) = B2P + P2

9
+ H(R) with R = Q, (62)

where B2 = b2
b1

. Using (62) and (59), we get an ODE

RH ′′ + H ′ = 0. (63)

On solving (63), we have

H(R) = K1 log(R) + K2, (64)

where K1 and K2 are arbitrary constants. Hence, we obtain

u(x, y, z, t) = −288B2
3√t

(
2A2

3√t(z − log(t)) − 2x + z + 3
) + 81t2 − 72t (4x + 2y − z + 3)

576t

+ 16(−2x + z + 3)2

576t
+ (K2(log(t (−3t + 8y − 4z + 4)) − log(8)) + K1)

t1/3 . (65)

3.7 Vector field V2 + V9

The related Lagrange’s system is interpreted as

dx

0
= dy

0
= dz

0
= dt

1
= du

t
, (66)

which gives

u(x, y, z, t) = U (X, Y, Z) + t2

2
with X = x, Y = y and Z = z. (67)

In view of (67) and (2), one obtains

3UZZ + 3UY Z + 3UXZ − 3UXUXY − 3UYUXX −UXXXY = 0. (68)

Utilizing the symmetry transformation method on (68), then new infinitesimals are given as:

ξX = a1

3
(X + Z) + a4, ξY = Ya1 + a3,

ξZ = Za1 + a2, ηU = 1

3
(−X − Y −U )a1 + Za5 + a6, (69)

where ai ’s, 1 ≤ i ≤ 6, are arbitrary constants.
Case (1) Take a1 = a5 = 0 and all other constants are nonzero.
From Eq. (69), we get the characteristic system as:

dX

a4
= dY

a3
= dZ

a2
= dU

a6
, (70)

which produces

U (X, Y, T ) = G(P, Q) + A6Z with P = X − Z A4, Q = Y − Z A3, (71)

where A3 = a3
a2

, A4 = a4
a2

, and A6 = a6
a2

are constants.
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Using (71) and (68), we have the reduced equation

3A3(A3 − 1)GQQ + (3A3(2A4 − 1) − 3A4)GPQ + 3(A4 − 1)A4GPP

− 3GQGPP − 3GPGPQ − GPPPQ = 0. (72)

Again, upon applying the Lie symmetry method to equation (72), new infinitesimals are:

ηG = 1

3

(
(4A3A4 − 2A3 − 2)P + 4QA2

4 − 4QA4 − G
)
b1 + b4, ξP = b1P

3
+ b3, ξQ = b1Q + b2,

(73)

where bi ’s, 1 ≤ i ≤ 3, are arbitrary constants. The characteristic system for (73) is

dP

b3
= dQ

b2
= dG

b4
, (74)

which gives the similarity form

G(P, Q) = B4Q + H(R) with R = P − B3Q, (75)

where B3 = b3
b2

and B4 = b4
b2

. Using (75) and (68), we get an ODE

B3H
(4) + 6B3H

′H ′′ + 3LH ′′(R) = 0, (76)

where

L = A4 (−2A3B3 + B3 − 1) + A3B3 ((A3 − 1) B3 + 1) + A2
4 − B4.

On solving (76), we have

H(R) = − LR

2B3
+ 2

R
+ K3 and H(R) = K4 − LR

2B3
, (77)

whereK3 andK4 are arbitrary constants. Accordingly, we derive the following two solutions:

u(x, y, z, t) = L (B3 (y − A3z) + A4z − x)

2B3
+ 2

B3 (A3z − y) − A4z + x

+ B4 (y − A3z) + A6z + t2

2
+ K3, (78)

u(x, y, z, t) = B3
(−A3z (2B4 + L) + 2A6z + 2B4y + 2K4 + Ly + t2

) + A4Lz − Lx

2B3
.

(79)

3.8 Vector field V2 + V5

The associated characteristic system is

dx

0
= dy

0
= dz

1
= dt

1
= du

0
. (80)

Equation (80) yields

u(x, y, z, t) = U (X, Y, T ) with X = x, Y = y and Z = z − t. (81)

On substituting u from (81) into (2), we get a new diminished equation

3(UXZ +UZZ ) + 5UY Z − 3UXUXY − 3UYUXX −UXXXY = 0. (82)
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Again, we apply the Lie symmetry method to Eq. (82), and then new infinitesimals are given
as:

ξX = a1

3
(X + Z) + a4, ξY = Ya1 + a3,

ξZ = Za1 + a2, ηU = 1

9
(−5X − 3Y − 3U )a1 + Za5 + a6, (83)

where ai ’s, 1 ≤ i ≤ 6, are arbitrary constants.
Case (1) Take a1 = a5 = 0 and all other constants are nonzero.
From Eq. (83), we get characteristic system as:

dX

a4
= dY

a3
= dZ

a2
= dU

a6
, (84)

which gives the similarity solution

U (X, Y, T ) = G(P, Q) + A6Z with P = X − Z A4, Q = Y − Z A3, (85)

where A3 = a3
a2

, A4 = a4
a2

, and A6 = a6
a2

.
Using (85) and (82), we have the reduced equation

A3 (3A3 − 5)GQQ + 3 (A4 − 1) A4GPP − 3GQGPP

− (5A4 − 3A3(2A4 − 1))GPQ − 3GPGPQ − GPPPQ = 0. (86)

Again, apply the Lie symmetry method to Eq. (86), and then new infinitesimals are:

ηG = 1

3

(
(4A3A4 − 2A3 − 2)P + 4QA2

4 − 4QA4 − G − 4p

3

)
b1 + b4, ξP = b1P

3
+ b3,

ξQ = b1Q + b2, (87)

where bi ’s, 1 ≤ i ≤ 4, are arbitrary constants.
Take b1 = 0 and all other constants are nonzero. The characteristic system for (87) is

dP

b3
= dQ

b2
= dG

b4
, (88)

that gives the similarity form

G(P, Q) = B4Q + H(R) with R = P − B3Q, (89)

where B4 = b4
b2

and B3 = b3
b2

. Using (89) and (86), we get an ODE

B3H
(4)(R) + H ′′(R)

(
6B3H

′(R)
) + LH ′′(R) = 0, (90)

where

L = A4 ((5 − 6A3) B3 − 3) + 3A2
3B

2
3 + A3B3 (3 − 5B3) + 3A2

4 − 3B4.

On solving (90), we have

H(R) = 2

R
− LR

6B3
+ K5 and H(R) = − LR

6B3
+ K6, (91)

where K5 and K6 are arbitrary constants. Using back substitution, we acquire the following
solutions of extended JM (2):

u(x, y, z, t) = B3(t − z) (A3 (6B4 + L) − 6A6) + A4L(z − t) − Lx

6B3
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+ 2

(A4 − A3B3) (t − z) − B3y + x
+ B4y + Ly

6
+ K5, (92)

u(x, y, z, t) = B3 ((t − z) (A3 (6B4 + L) − 6A6) + 6B4y + 6K6 + Ly) + A4L(z − t) − Lx

6B3
. (93)

3.9 Vector field V2 + V5 + V6

The associated characteristic system is

dx

0
= dy

1
= dz

1
= dt

1
= du

0
, (94)

which yields

u(x, y, z, t) = U (X, Y, Z) with X = x, Y = y − t and Z = z − t. (95)

On substituting u from (95) into (2), one obtains

3(UXZ +UZZ ) + 2UYY + 5UY Z − 3UXUXY − 3UYUXX −UXXXY = 0. (96)

Again, we utilize the Lie symmetry method in the case of equation (96); then, new infinites-
imals are given as:

ξX = a1

3
(X + Z) + a4, ξY = Ya1 + a3,

ξZ = Za1 + a2, ηU = 1

3
(−X − Y −U )a1 + Za5 + a6 − 2

9
a1X, (97)

where ai ’s, 1 ≤ i ≤ 6, are arbitrary constants.
Case (i) Take a1 = a5 = 0 and all other constants are nonzero.
From Eq. (97), we get the characteristic system as:

dX

a4
= dY

a3
= dZ

a2
= dU

a6
. (98)

Thus, we have

U (X, Y, T ) = G(P, Q) + A6Z with P = X − Z A4, Q = Y − Z A3, (99)

where A3 = a3
a2

, A4 = a4
a2

, and A6 = a6
a2

.
Using (99) and (96), we have the reduced equation

(A3 − 1) (3A3 − 2)GQQ + 3
(
(A4 − 1) A4 − GQ

)
GPP

− (5A4 + A3 (3 − 6A4) + 3GP )GPQ − GPPPQ = 0. (100)

Again, apply the Lie symmetry method to Eq. (100), and then new infinitesimals are:

ηG = 1

3

(
(4A3A4 − 2A3 − 2)P + 4QA2

4 − 4QA4 − G − 4p

3

)
b1 + b4, ξP = b1P

3
+ b3,

ξQ = b1Q + b2, (101)

where bi ’s, 1 ≤ i ≤ 4, are arbitrary constants.
Take b1 = 0 and all other constants are nonzero. The characteristic system for (101) is

dP

b3
= dQ

b2
= dG

b4
, (102)
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which gives the similarity form

G(P, Q) = B4Q + H(R) with R = P − B3Q, (103)

where B4 = b4
b2

and B3 = b3
b2

. Using (103) and (100), we get an ODE

B3H
(4)(R) + H ′′(R)

(
2B3kH

′(R)
) + LH ′′(R) = 0, (104)

where

L = A4 ((5 − 6A3) B3 − 3) + 3A2
3B

2
3 + A3B3 (3 − 5B3) + 3A2

4 + 2B2
3 − 3B4.

On solving (104), we have

H(R) = 2

R
− LR

6B3
+ K7 and H(R) = − LR

6B3
+ K8, (105)

where K7 and K8 are arbitrary constants. Consequently, we obtain

u(x, y, z, t) = − L (B3 (A3(z − t) + t − y) + A4(t − z) + x)

6B3

+ 2

B3 (A3(z − t) + t − y) + A4(t − z) + x

+ B4 (A3(t − z) − t + y) + A6(z − t) + K7, (106)

u(x, y, z, t) = − L (B3 (A3(z − t) + t − y) + A4(t − z) + x)

6B3

+ B4 (A3(t − z) − t + y) + A6(z − t) + K8. (107)

3.10 Vector field V2 + V5 + V6 + V8 + V11

The associated characteristic system is

dx

1
= dy

1
= dz

1
= dt

1
= du

z t2 , (108)

which yields

u(x, y, z, t) = U (X, Y, Z) − 1

12
t3(t − 4z) with X = x − t, Y = y − t and Z = z − t.

(109)

On substituting u from (109) into (2), we obtain

3UZZ + 5UY Z + 2UYY + 3UXZ + 2UXY − 3UXUXY − 3UYUXX −UXXXY = 0. (110)

We can find the travelling wave solution for Eq. (110):

U (X, Y, Z) = c5 + 2c1 tanh
[
c1X + 1

4

(
4c3

1 − 2c1 − 5c3

±
√

16c6
1 − 16c4

1 − 40c3c3
1 + 4c2

1 − 4c3c1 + c2
3

)
Y + c3Z + c4

]
. (111)

The corresponding travelling wave solution to Eq. (2) is given by
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(x, y, z, t) = c5 + 2c1 tanh
[
c1(x − t) + 1

4

(
4c3

1 − 2c1 − 5c3

±
√

16c6
1 − 16c4

1 − 40c3c3
1 + 4c2

1 − 4c3c1 + c2
3

)
(y − t) + c3(z − t) + c4

]

− 1

12
t3(t − 4z). (112)

Let us consider a travelling wave solution U (X, Y, Z) = H(ζ ) for Eq. (110), where ζ =
μX + νY + λZ . Then the reduced ODE from Eq. (110) is

μ3νH (4) + 6μ2νH ′H ′′ − (2ν + 3λ)(μ + ν + λ)H ′′ = 0. (113)

Accordingly, we derive the following exact solutions:

H(ζ ) = (2 ν + 3 λ)(μ + ν + λ)

6μ2ν
ζ + K9,

H(ζ ) = 2μ

ζ
+ (2 ν + 3 λ)(μ + ν + λ)

6μ2ν
ζ + K9.

As a result, we arrive at the invariant solutions of Eq. (2):

u(x, y, z, t) = (2 ν + 3 λ)(μ + ν + λ)

6μ2ν
(μ(x − t) + ν(y − t) + λ(z − t)) + K9, (114)

u(x, y, z, t) = (2 ν + 3 λ)(μ + ν + λ)

6μ2ν
(μ(x − t) + ν(y − t) + λ(z − t)) + K9

+ 2μ

(μ(x − t) + ν(y − t) + λ(z − t))
. (115)

Again, we apply the Lie symmetry method to equation (110), and then new infinitesimals
are given as:

ξX = a1

3
(X + Z) + a4, ξY = Ya1 + a3,

ξZ = Za1 + a2, ηU = 1

9
(−X − 3Y − 3U )a1 + Za5 + a6, (116)

where ai ’s, 1 ≤ i ≤ 6, are arbitrary constants.
Case (i) Take a2 �= 0 and all other constants are zero.
From Eq. (116), we get the characteristic system as follows:

dX

0
= dY

0
= dZ

a2
= dU

0
, (117)

which gives

U (X, Y, T ) = G(P, Q) with P = X, Q = Y. (118)

Using (118) and (110), we have the reduced equation

2GQQ + 2GPQ − 3GPGPQ − 3GQGPP − GPPPQ = 0. (119)

Again, apply the Lie symmetry method to Eq. (119), and then new infinitesimals are:

ξP = b1P

3
+ b3, ξQ = b1Q + b2, ηG = 4P − 3G

9
b1 + b4, (120)

where bi ’s, 1 ≤ i ≤ 4, are arbitrary constants.

123



  843 Page 22 of 30 Eur. Phys. J. Plus         (2021) 136:843 

Take b1 �= 0 and all other constants are zero. The characteristic system for (120) is

dP
P
3

= dQ

Q
= dG

4P−3G
9

, (121)

which gives the similarity form

G(P, Q) = H(R)
3
√
Q

+ 2 R 3
√
Q

3
with R = P

3
√
Q

. (122)

Using (122) and (119), we get an ODE

3RH (4) + 12H (3) + 2R2H ′′ + H
(
8 + 9H ′′) + 18H ′2 + 6RH ′ (2 + 3H ′′) = 0. (123)

On solving (123), we have

H(R) = K10

R
and H(R) = K10

R
− 2R2

9
, (124)

where K7 and K8 are arbitrary constants. Consequently, we obtain

u(x, y, z, t) = K10

x − t
+ 1

12

(−t4 + 4t3z − 8t + 8x
)
, (125)

u(x, y, z, t) = − K10

t − x
− 1

12
t3(t − 4z) + 2(t − x)2

9(t − y)
+ 2(x − t)

3
. (126)

3.11 Vector field V2 + V5 + V6 + V12

The associated characteristic system is

dx

0
= dy

1
= dz

1
= dt

1
= du

z t
, (127)

which yields

u(x, y, z, t) = U (X, Y, Z) + t2 z

2
with X = x, Y = y − t and Z = z − t. (128)

On substituting u from (128) into (2), we obtain

3UZZ + 5UY Z + 2UYY + 3UXZ − 3UXUXY − 3UYUXX −UXXXY = 0. (129)

We can find the travelling wave solution for Eq. (129):

U (X, Y, Z) = 2c1 tanh

(
c1X + 1

4

(
4c3

1 − 5c3 ±
√

16c6
1 − 40c3c3

1 − 24c3c1 + c2
3

)

× Y + c3Z + c4) + c5. (130)

The corresponding travelling wave solution to Eq. (2) is given by

u(x, y, z, t) = 2c1 tanh

(
c1x + 1

4

(
4c3

1 − 5c3 ±
√

16c6
1 − 40c3c3

1 − 24c3c1 + c2
3

)
(y − t)

+ c3(z − t) + c4

)
+ c5. (131)
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Again, we apply the Lie symmetry method to equation (129), and then new infinitesimals
are given as:

ξX = a1

3
(X + Z) + a4, ξY = Ya1 + a3,

ξZ = Za1 + a2, ηU = 1

9
(−5X − 3Y − 3U )a1 + Za5 + a6, (132)

where ai ’s, 1 ≤ i ≤ 6, are arbitrary constants.
Case (1) Take a1 = a5 = 0 and all other constants are nonzero.
From Eq. (132), we get the characteristic system as:

dX

a4
= dY

a3
= dZ

a2
= dU

a6
, (133)

which gives the similarity solution

U (X, Y, T ) = G(P, Q) + A6Z with P = X − Z A4, Q = Y − Z A3, (134)

where A3 = a3
a2

, A4 = a4
a2

, and A6 = a6
a2

.
Using (134) and (129), we have the reduced equation

GPPPQ + 3GPGPQ + 3GQGPP + (1 − A3) (3A3 − 2)GQQ + 3 (1 − A4) A4GPP

+ (5A4 + 3A3(1 − 2A4))GPQ = 0. (135)

Again, upon applying the Lie symmetry method to equation (135), new infinitesimals are:

ηG = 1

9

(
(6A2

4 + (12A3 − 16)A4 − 6A3)P − 3G
)
b1 + b4,

ξP = b1P

3
+ b3, ξQ = b1Q + b2, (136)

where bi ’s, 1 ≤ i ≤ 4, are arbitrary constants.
Take b1 = 0 and the other constants are nonzero. The characteristic system for (136) is

dP

b3
= dQ

b2
= dG

b4
, (137)

which gives the similarity form

G(P, Q) = B4Q + H(R) with R = P − B3Q, (138)

where B4 = b4
b2

and B3 = b3
b2

. Using (138) and (135), we get an ODE

B3H
(4)(R) + H ′′(R)

(
6B3H

′(R)
) + LH ′′(R) = 0, (139)

where

L = A4((6A3 − 5)B3 − 3) + A3B3(5B3 − 3) − 3A2
3B

2
3 − 3A2

4 − 2B2
3 + 3B4.

On solving (139), we have

H(R) = 2

R
+ LR

6B3
+ K11 and H(R) = LR

6B3
+ K12, (140)

where K11 and K12 are arbitrary constants. Accordingly, we receive the following solutions:

u(x, y, z, t) = 2

x + A4(t − z) + B3(t − y + (z − t)A3)
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+ L(x + A4(t − z) + B3(t − y + (z − t)A3))

6B3

+ K11 + B4(y − t + (t − z)A3)

+ A6(z − t) + t2z

2
, (141)

u(x, y, z, t) = L(x + A4(t − z) + B3(t − y + (z − t)A3))

6B3

+ K12 + B4(y − t + (t − z)A3)

+ A6(z − t) + t2z

2
. (142)

3.12 Vector field V2 + V8 + V13

The associated characteristic system is

dx

1
= dy

0
= dz

0
= dt

1
= du

z
, (143)

which yields

u(x, y, z, t) = U (X, Y, Z) + zt with X = x − t, Y = y and Z = z. (144)

On substituting u from (144) into (2), we get

3(UZZ +UY Z +UXZ ) + 2UXY − 3UXUXY − 3UYUXX −UXXXY = 0. (145)

Again, we apply the transformation technique to equation (145), and then new infinitesimals
are given as:

ξX = a1

3
(X + Z) + a4, ξY = Ya1 + a3,

ξZ = Za1 + a2, ηU = 1

9
(X − 3Y − 3U )a1 + Za5 + a6, (146)

where ai ’s, 1 ≤ i ≤ 6, are arbitrary constants.
Case (1) Take a2 �= 0 and all other constants are zero.
From Eq. (146), we get the characteristic system as:

dX

0
= dY

0
= dZ

a2
= dU

0
, (147)

which yields

U (X, Y, T ) = G(P, Q) with P = X, Q = Y. (148)

Using (148) and (145), we have the reduced equation

GPPPQ + 3GPGPQ + 3GQGPP − 2GPQ = 0. (149)

We can find the travelling wave solution for Eq. (145):

G(P, Q) = c1 + √
2 tanh

(
P√
2

± (c2Q + c3)

)
, (150)

where ci , i = 1, . . . , 3, are arbitrary constants.
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The corresponding travelling wave solution to Eq. (2) is given by

u(x, y, z, t) = zt + c1 + √
2 tanh

(
x − t√

2
± (c2y + c3)

)
. (151)

Upon using the symmetry transformation method on (149), new infinitesimals are:

ηG = 1

3
(4P − 3G)b1 + b3, ξP = b1P + b2, ξQ = φ(Q), (152)

where bi ’s, 1 ≤ i ≤ 3, are arbitrary constants and φ(Q) is any arbitrary function.
Take b1 = 1 and the other constants as zero. The characteristic system for (152) is

dP

P
= dQ

φ(Q)
= dG

1
3 (4P − 3G)

, (153)

which provides

G(P, Q) = H(R)

P
+ 2P

3
with R = log(P) −

∫
dQ

φ(Q)
. (154)

Using (154) and (149), we get an ODE

12H ′2 + H ′(6 − 9H − 6H ′′) + H ′′(3H − 11) + 6H (3) − H (4) = 0. (155)

On solving (155), we have

H(R) = 2

3
+ 2

R
. (156)

Consequently, we receive the following solutions of extended JM equation (2):

u(x, y, z, t) = z t + 2(x − t)

3
+ 1

x − t

(
2

3
+ 2

log(x − t) − ∫ dy
φ(y)

)
. (157)

4 Physical interpretation and discussions

In the present section, we exhibit the physical interpretation of the obtained soliton solutions
via Eqs. (21), (22), (23), (47), (65), (78), (92), (106), and (141) with the assistance of
numerical simulation by choosing appropriate values to the arbitrary parameter constants
Ci ’s, i = 1, . . . , 7. The value of an arbitrary parameter constant is shown as a random
number of 3D-shapes tracing of solutions in such a way that we can get analytically as well
as physically meaningful results and record the specific value in the corresponding analysis.
The interaction of soliton solutions can be explained by observing the distinct solitonic wave
structures of solutions in the above figures.

Figure 1 reflects the evolution wave profile behavior represented via Eqs. (21) and (22)
which are the solutions of extended JM equation (2). We have taken appropriate values of the
arbitrary constants as C1 = 0.002,C2 = 1, and a = 1 for the space range −5000 ≤ x, y ≤
50,000. Evolution wave profiles can be observed via Fig. 1a, b shows rational soliton forms.

Figure 2 shows the multi-solitons behavior of the solutions given by Eq. (23) is represented
graphically via Fig. 2a when C1 = 0.971,C2 = 0.003, and a = 14.047 for the space range
−5 ≤ x, y ≤ 5, Fig. 2b for the similar space range −5 ≤ x ≤ 5,−2 ≤ y ≤ 2, and the values
of the arbitrary constants and space range are the same as in Fig. 2a.
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Fig. 1 3D-graphs of evolution profiles for solutions (21) and (22) with involved arbitrary constants as C1 =
0.002,C2 = 1 and a = 1 for the space range −5000 ≤ x, y ≤ 50000

Fig. 2 3D-graphs of multi-solitons shapes for solution (23) with C1 = 0.971,C2 = 0.003, and a = 14.047
for the space range −5 ≤ x, y ≤ 5 and −5 ≤ x ≤ 5,−2 ≤ y ≤ 2

Figure 3 shows the physical behavior of the wave profile of solution (47) is observed. This
figure shows the doubly soliton wave profile at y = 1 and after y = 11 profile annihilated
into a single soliton wave profile when C1 = 1, C2 = 0.01, A = 1.0321, B = 0.1456, and
z = −1.4351 for the space range −100 ≤ x, t ≤ 100.

Figure 4 shows the parabolic wave profile of solution (65) is represented in Fig. 4a, b. The
arbitrary constants are chosen as A2 = 0.15, B2 = 11, z = 1 ,K1 = 3, K2 = 3 and the
space range −650 ≤ x ≤ 500, 1 ≤ y ≤ 100.

Figure 5 shows the solution given by Eq. (78) represents lump-type soliton profiles with
arbitrary constants L = 1.2, A3 = 0.1, A4 = 1.11, A6 = 0.15, B2 = 0.2, t = 1, and
K3 = 3 and the space range −30 ≤ x, z ≤ 30. These solitary wave solutions arrive at a
balance between the nonlinearity and the dispersion.
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Fig. 3 3D-graphs of doubly solitons and single solitons for solution (47) with C1 = 1, C2 = 0.01, A =
1.0321, B = 0.1456, and z = −1.4351 for the space range −100 ≤ x, t ≤ 100

Fig. 4 3D-graphs of parabolic solitons for solution (65) with A2 = 0.15, B2 = 11, z = 1 ,K1 = 3, K2 = 3
and the space range −650 ≤ x ≤ 500, 1 ≤ y ≤ 100

Figure 6 shows the dynamical structure of the solution is shown two solitonic behaviors
for Eq. (92) with arbitrary constants L = 2, A3 = 13, A4 = 18, A6 = 1, B3 = 6, B4 =
21, z = 1, and K5 = 3 and the space range −30 ≤ x, y ≤ 30.

Figure 7 shows the multi-solitons wave profiles are exhibited graphically for Eq. (106) by
suitable values of arbitrary constants L = 0.003, A3 = 0.5, A4 = 0.19, A6 = 0.11, B3 =
2, B4 = 0.1, y = 0.006, and K7 = 13 and the space range −30 ≤ x, z ≤ 30.

Figure 8 shows the interactions between parabolic solitons structures with lump-type
solitons for solution (141) have been observed in this figure. The arbitrary constants are taken
as L = 0.003, A3 = 1.8, A4 = 18, A6 = 0.2, B3 = 10.07, B4 = 0.3, z = 0.42, K11 = 1
for the range −30 ≤ x ≤ 30 and −10 ≤ t ≤ 10.
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Fig. 5 3D-graphs of lump-form solitons for solution (78) with arbitrary constants L = 1.2, A3 = 0.1, A4 =
1.11, A6 = 0.15, B2 = 23, B3 = 0.2, t = 1 ,K3 = 3

Fig. 6 3D-graphs of triply solitons and double solitons for solution (92) with arbitrary constants L = 2, A3 =
13, A4 = 18, A6 = 1, B3 = 6, B4 = 21, z = 1 ,K5 = 3

5 Conclusion

In summary, Lie point symmetries and their corresponding similarity reductions have been
constructed for an extended (3+1)-dimensional Jimbo–Miwa (JM) equation. Abundant
closed-form invariant solutions of the extended JM equation have been successfully derived
by employing the Lie group technique. The resulting solutions reflect the dynamics of mul-
tiple solitons structures and are compatible with numerical results. It is remarkable to notify
that the generated invariant closed-form solutions in this work have not been documented in
the previous findings. Furthermore, the wide diversity of features and physical parameters of
these constructed solutions are expressed via three-dimensional graphics by using the best
choice of the involved constant parameters. This research work is highly suggested in the
fields of advanced research and development.
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Fig. 7 3D-graphs of lump-form solitons for solution (106) with arbitrary constants L = 0.003, A3 =
0.5, A4 = 0.19, A6 = 0.11, B3 = 2, B4 = 0.1, y = 0.06 ,K7 = 13

Fig. 8 3D-graphs of interactions between lump solitons and parabolic solitons for solution (141) with arbitrary
constants L = 0.003, A3 = 1.8, A4 = 18, A6 = 0.2, B3 = 10.07, B4 = 0.3, z = 0.42 ,K11 = 1
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