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 A B S T R A C T

This study explores the implications of non-Maxwellian electron distributions on modulational instability 
and the formation of ion-acoustic rogue wave triplets in unmagnetized collisionless plasma. We employ 
the reductive perturbation technique to derive the nonlinear Schrödinger equation from a fluid model that 
incorporates these non-Maxwellian electron distributions. This framework enables a comprehensive analysis 
of the modulational instability of ion-acoustic waves, characterized by the ratio of dispersion and nonlinear 
coefficients within the nonlinear Schrödinger equation. The injection of nonthermal electrons and spectral 
indices via 𝑞𝑛-nonextensive nonthermal and generalized (𝑟, 𝑞) distribution functions significantly influences 
the onset of modulational instability and its corresponding growth rate, providing critical insights into the 
dynamic behavior of the plasma system. These distribution functions facilitate the identification of dark and 
bright solitons in stable and unstable regions, respectively. Furthermore, we incorporate multiple physical 
free parameters that affect the formation of rogue wave triplets. Remarkably, our findings reveal that these 
parameters in the second-order rogue wave solution lead to three distinct peaks arranged in a triangular pattern 
accompanied by a novel rotation of these peaks. We have thoroughly investigated the existence regions of both 
dark and bright envelope solitons, which correspond to the modulationally unstable and stable regimes of ion-
acoustic waves, respectively. Our study explores into the criteria that govern the formation of these solitons, 
elucidating their unique features in the context of the stability dynamics of the plasma’s wave system. This 
systematic analysis enhances our understanding of the properties of ion-acoustic solitary waves that may arise 
in non-Maxwellian space plasmas, paving the way for future research in this area.
1. Introduction

The phenomenon of modulational instability (MI) (so-called
Benjamin–Feir Instability) emerges from the interplay between the 
nonlinear self-interaction and linear dispersion or diffraction of the 
wave configurations. This fundamental mechanism facilitates the am-
plification of perturbations on a continuous wave backdrop. MI has 
garnered significant attention across various fields, including nonlin-
ear optics [1], fluid dynamics [2], plasma physics [3], Bose–Einstein 
condensates [4], and deep water waves [5]. Nonetheless, investigating 
MI in ion-acoustic waves (IAWs) has remained a prominent topic in 
plasma physics. The nonlinear Schrödinger equation (NLSE) describes 
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the underlying mechanism of MI, which generates localized pulses 
through the slow variation of a monochromatic plane wave. Moreover, 
the MI and soliton formation governed by the NLSE have drawn 
significant conclusions because of their stable wave propagation. The 
first experimental study of MI in monochromatic IAWs was carried out 
by Watanabe [6]. MI has been a key area of study, with its occurrence 
being explored in dispersive and nonlinear plasma systems for various 
wave modes. This dispersive and nonlinear media have long been 
recognized for wave energy localization.

Numerous theoretical investigations have explored the MI for differ-
ent types of wave modes. For instance, the MI of IAWs with thermally 
960-0779/© 2025 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.chaos.2025.116262
Received 8 October 2024; Received in revised form 21 February 2025; Accepted 2 
data mining, AI training, and similar technologies.
March 2025

https://www.elsevier.com/locate/chaos
https://www.elsevier.com/locate/chaos
https://orcid.org/0000-0001-8287-5190
https://orcid.org/0000-0003-0770-7255
mailto:abdullah@ustc.edu.cn
mailto:shabaan27@gmail.com
https://doi.org/10.1016/j.chaos.2025.116262
https://doi.org/10.1016/j.chaos.2025.116262


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 195 (2025) 116262A. Khan et al.
adiabatic ions in a collisionless electron-positron-ion (e–p–i) plasma 
was reported by Chawla et al. [7]. Moreover, Jain and Mishra [8] 
explored the propagation of IAWs with large amplitude in a colli-
sionless plasma containing the thermally adiabatic ions, isothermal 
positrons, and electrons with two temperature distributions. However, 
the nonlinear amplification of modulated electrostatic waves in pair 
plasmas was explained by Kourakis et al. [9] through a fluid model. 
Nejoh [10] explored the large-amplitude ion-acoustic waves in an 
e–p–i plasma, focusing on ion temperature effects. Numerous stud-
ies have been conducted to examine the propagation of IAWs with 
𝑞𝑛-nonextensive electrons and positrons by utilizing the bifurcation 
process of planar dynamical systems, as seen in Ghosh et al. [11]. 
They found that both solitary and periodic waves exist, with a solid 
connection to the physical parameters involved. The research by Tiwari 
et al. [12] supported this study by examining the effects of cold ions, 
hot electrons, and positrons in forming ion-acoustic dressed solitons in 
a plasma. Saha et al. [13] studied the dynamical structures of IAWs 
in e–p–i magnetoplasmas with superthermal electrons and positrons, 
observing two- and three-solitons propagation using the Hirota direct 
method on the Kadomtsev–Petviashvili equation. Moreover, the oblique 
propagation of IAWs and the emergence of envelope soliton were 
further investigated by Jehan et al. [14]. They have found that the 
presence of positrons alters the stability regions for small propagation 
angles relative to the propagation direction. IAWs in unmagnetized and 
collisionless plasma systems serve an important role in the research of 
rogue wave phenomena.

Rogue waves have gained significant attention in the scientific 
community due to their sudden emergence occurring in the extreme 
ocean waves [5,15–17]. A more plausible mechanism for the forma-
tion of strongly localized rogue waves is the MI of weakly nonlinear 
monochromatic waves, which was first discovered in water waves [18]. 
This instability is best described by the NLSE [19], which governs the 
dynamics of wave trains in both time and space in waters of finite and 
infinite depths [5]. The hierarchy solutions localized in both time and 
space is found within the exact breather solutions on a finite back-
ground, amplifying the carrier wave’s amplitude by a factor of 3 and 
beyond [20,21]. Solutions exhibiting these features are considered well-
suited to describe the formation of rogue waves [22–24]. The Peregrine 
breather soliton, long been debated in the scientific community [5,15], 
was experimentally observed in fiber optics [25]. It was later detected 
in a water-wave tank [26], and subsequently observed in multicom-
ponent plasma [27]. These findings confirmed the effectiveness of the 
nonlinear approach in describing the rogue waves. Furthermore, this 
nonlinear approach predicts not only the fundamental Peregrine soliton 
but also an infinite sequence of higher-order breather solutions, each 
with an increasingly more significant amplitude [20,21], all of which 
are localized in both space and time.

Various advanced methods have been employed to derive solutions 
for the NLSE and analyze their physical implications. These techniques 
include the Hirota bilinear method, the Darboux transformation, the 
inverse scattering transform, the Krylov–Bogoliubov–Mitropolsky ap-
proach, and the reductive perturbation method (RPT), among others [5,
28–31]. The RPT fundamentally reinterprets the spatial and temporal 
scales [32] for the governing equations of systems that model the long-
wavelength scenarios. These governing equations through the RPT are 
reduced to simplify nonlinear evolution equations, such as Burgers, 
Korteweg–de Vries (KdV) and NLS equations. Several studies have used 
RPT to investigate the dynamics of non-linear acoustic waves [32–34]. 
Hence, it is significant to identify that RPT can serve as a powerful 
tool analyzing small-amplitude nonlinear wave dynamics in plasma 
systems. One of the most widely used approaches, the multiple scales 
technique (applied in both space and time), typically leads to the 
derivation of the NLSE that governs the evolution of a slowly modulated 
wavepacket envelope. A key trigger mechanisms for the growth of 
envelope solitons is MI, as it causes a wave field that was initially 
continuous or weakly modulated to spontaneously produce localized 
2

wave packets or solitons. In nonlinear plasma waves, MI plays a crucial 
role in energy localization, leading to the emergence of bright envelope 
solitons. However, the dark solitons exist even in the absence of MI, 
while gray envelope solitary waves, which are characterized by a 
velocity-dependent amplitude that may arise under certain conditions. 
In space plasmas, Kourakis and Shukla [35] explored the oblique 
modulation of electron acoustic waves, signifying that these waves 
could become unstable and the stability criteria strongly depend on 
the angle 𝜃 between the modulated wave and the wave propagation 
directions. They further showed that various types of localized envelope 
excitations of electron acoustic waves can arise in the system. The high-
frequency dissipative envelope soliton in the framework of fluid theory 
has also been investigated in nonthermal plasmas [36]. In plasma 
systems, multiple distribution functions have been applied to study of 
rogue waves within the frameworks of ion and electron acoustic waves.

Though the Maxwellian distribution applies to systems in ther-
modynamic equilibrium, but astrophysical and space plasma systems 
that possess particle distributions deviate from it due to their quasi-
steady state nature. Owing to non-equilibrium phenomena, electrons 
and ions in reality may not follow the Maxwellian distribution [37,38]. 
To address non-equilibrium phenomena, Qureshi et al. [39] proposed 
a more suitable and all-inclusive velocity distribution, referred to as 
the (𝑟, 𝑞) generalized distribution function. The parameters 𝑟 and 𝑞 in 
this distribution function correspond to high-energy particles located 
on the wider shoulder of the velocity curve and the superthermality 
detected at the tail of the velocity curve, respectively. Zaheer et al. [40] 
employed the (𝑟, 𝑞) distribution to study electrostatic wave modes, 
while Qureshi et al. [39] used it to examine the parallel propagation 
of electromagnetic waves. Shah et al. [41] explored nonlinear electron 
acoustic waves in planetary magnetospheres using the generalized (𝑟, 𝑞)
distribution, which accommodates both compressive and rarefactive 
solitary waves, in contrast to Maxwellian and kappa distributions that 
only allow rarefactive structures. Besides the (𝑟, 𝑞) distribution function, 
the 𝑞-nonextensive nonthermal distribution has been adopted for col-
lective and nonlinear systems exhibiting long-range interactions, which 
are often observed in astrophysics and plasma physics [42,43]. The 
study by Samanta et al. [44] focused on IAWs in a two-component 
plasma, considering the effects of a static magnetic field and kappa-
distributed electrons. They have determined that the planar dynamical 
systems accommodates both solitary and periodic traveling wave so-
lutions by using bifurcation theory. In this study, the nonextensive 
parameter 𝑞 is referred to as 𝑞𝑛 to differentiate it from the index 𝑞 in 
the generalized (𝑟, 𝑞) distribution function. This study aims to reassess 
the MI of IAWs using the (𝑟, 𝑞) distribution function and to compare 
the results with those obtained from the 𝑞𝑛-nonextensive nonthermal 
distribution. To our knowledge, the MI and the rogue wave triplets for 
IAWs for the generalized (𝑟, 𝑞) distribution function and 𝑞𝑛-nonextensive 
nonthermal distribution are not explored yet.

Therefore, the purpose of this study is to offer a comprehensive 
analysis of MI and its corresponding growth rate for IAWs, focusing 
on the effects of the spectral indices of the generalized distribution 
function on the rogue wave triplets. In earlier studies, the Lorentzian 
kappa velocity distribution and nonextensive distribution functions 
with nonthermal character have been used to investigate the MI and 
first-order rogue waves of IAWs [45]. Here, we use the same set of 
fluid equations for stability analysis of IAWs with the (𝑟, 𝑞) distribu-
tion function and compare the results with those obtained using the 
nonextensive distribution function. The stable region of MI reduces 
concerning the 𝑃∕𝑄 ratio due to the spectral indices of the generalized 
distribution function, which will be discussed later. Here, the terms 𝑃
and 𝑄 are the dispersion and nonlinear terms of NLSE, respectively. 
Moreover, the study also yields the explicit equations for the growth 
rate and rogue waves associated with MI. The graphical representations 
of the rogue wave triplets have also been displayed.

This paper is organized as follows: Section 2 discusses the dis-
tribution functions, the derivation of the NLSE using the reductive 
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perturbation scheme, and the graphical representation of dark and 
bright solitons in terms of 𝑃∕𝑄 ratio. The derivation of the MI growth 
rate and its graphical representation is outlined in Section 3. The results 
related to the emergence of rogue waves are presented in Section 4. 
Section 5 provides a comprehensive overview of the envelope soliton 
solutions derived from the NLSE. The concluding remarks are given in 
Section 6.

2. Distribution functions and the governing equations

This study focuses on the propagation of nonlinear ion-acoustic soli-
tary waves within an unmagnetized and collisionless plasma obeying 
the generalized (𝑟, 𝑞) distribution and 𝑞𝑛-nonextensive nonthermal dis-
tribution functions. Different distribution functions have been modeled 
for the Earth’s magnetosphere, particularly for the polar cusp [46] 
and the magnetosheath [47] that reveal unique features differing from 
Maxwellian and kappa distributions. In this context, a generalized (𝑟, 𝑞)
distribution function has been adopted, which has the following form 
as [48,49]: 

𝑓(𝑟,𝑞)(𝑢) = 

[

1 + 1
𝑞 − 1

(

𝑢2 − 2𝑒𝜙∕𝑚𝑒

𝛬𝑣2𝑡ℎ

)(𝑟+1)
]−𝑞

, (1)

where 

 =
3𝛤 [𝑞](𝑞 − 1)−3∕(2+2𝑟)

4𝜋𝛬3∕2𝑣3∕2𝑡ℎ 𝛤 [𝑞 − 3
2+2𝑟 ]𝛤 [1 + 3

2+2𝑟 ]
, (2)

𝛬 =
3(𝑞 − 1)−1∕(1+𝑟)𝛤 [𝑞 − 3

2+2𝑟 ]𝛤 [ 3
2+2𝑟 ]

2𝛤 [𝑞 − 5
2+2𝑟 ]𝛤 [ 5

2+2𝑟 ]
, (3)

where 𝑣𝑡ℎ(=
√

2𝑇𝑒∕𝑚𝑒), 𝛤 , 𝑒, 𝜙 stand for the thermal velocity, the 
gamma function, the electronic charge, and the electrostatic potential, 
respectively. The variables 𝑚𝑒 and 𝑇𝑒 in 𝑣𝑡ℎ correspond to the electron 
mass and temperature. To ensure that the velocity distribution function 
(1) is a real and positive function, the constraints 𝑞(𝑟 + 1) > 5∕2 and 
𝑞 > 1 must hold. Integrating (1) in the velocity space yields the electron 
density as: 
𝑛𝑒 = 1 + 𝐶1𝛹 + 𝐶2𝛹

2 + 𝐶3𝛹
3, (4)

where 𝛹 = 𝑒𝜙∕𝑇𝑒 corresponds to the normalized electrostatic potential 
and 

𝐶1 =
(𝑞 − 1)

−1
1+𝑟 𝛤 [𝑞 − 1

2+2𝑟 ]𝛤 [ 1
2+2𝑟 ]

2𝛬𝛤 [ 3
2+2𝑟 ]𝛤 [𝑞 − 3

2+2𝑟 ]
, (5)

𝐶2 =
−(𝑞 − 1)

−2
1+𝑟 𝛤

[

𝑞 + 1
2+2𝑟

]

𝛤
[

−1
2+2𝑟

]

8𝛬2𝛤
[

3
2+2𝑟

]

𝛤
[

𝑞 − 3
2+2𝑟

] , (6)

𝐶3 =
(𝑞 − 1)

−3
1+𝑟 𝛤

[

𝑞 + 3
2+2𝑟

]

𝛤
[

−3
2+2𝑟

]

16𝛬3𝛤
[

3
2+2𝑟

]

𝛤
[

𝑞 − 3
2+2𝑟

] . (7)

 Equations (5–7) reduce to 𝐶1 = 1, 𝐶2 = 1∕2, and 𝐶3 = 1∕6 under the 
conditions 𝑞 → ∞ and 𝑟 = 0, retrieving the Maxwellian distribution. In 
the case of 𝑞 → 𝜅 + 1 and 𝑟 = 0, the kappa distribution is recovered 
with the parameters 𝐶1 = (𝜅 − 1∕2)∕(𝜅 − 3∕2), 𝐶2 = (𝜅 − 1∕2)(𝜅 +
1∕2)∕(2(𝜅 − 3∕2)2) and 𝐶3 = (𝜅2 − 1∕4)(𝜅 + 3∕2)∕(6(𝜅 − 3∕2)3). We 
focus on elucidating the importance of the (𝑟, 𝑞) generalized distribution 
function and exploring its broader implications for MI and rogue wave 
analysis. Fig.  1 shows the distribution function plotted against the 
normalized velocity 𝑢𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 for different values of the spectral index 𝑟
at fixed 𝑞. The figure shows that as 𝑟 increases, the distribution becomes 
flatter at the peak compared to the Maxwellian distribution. While 
the Maxwellian distribution exhibits a Gaussian (bell-shaped) profile, 
the generalized distribution displays a more complex structure, often 
featuring heavy tails or nonthermal characteristics depending on the 
3

spectral indices. Furthermore, an increase in 𝑟 broadens the shoulders 
of the distribution function and reduces the presence of high-energy 
particles. Similarly, increasing 𝑞 while keeping 𝑟 fixed also leads to a 
decrease in the distribution function at higher energy levels. This pa-
per’s main objective is to understand how the (𝑟, 𝑞) distributed electrons 
and the electrons obeying the nonextensive nonthermal distribution 
function influence the onset of MI and rogue waves in the plasma 
system. The current investigation aimed to shed light on the dynamics 
of IAWs in nonthermal plasma environments within the framework of 
the fluid model with these distributions. The electrons are considered 
to be nonextensive and exhibit nonthermal behavior, which can be 
represented by the following distribution function as [45,50]: 

𝑓𝑒(𝑢𝑥) = 𝐶𝑞𝑛 ,𝛼

{

1+𝛼
( 𝑢4𝑥
𝑣4𝑡𝑒

−
2𝜙
𝑇𝑒

)2
}[

1−(𝑞𝑛−1)
( 𝑢2𝑥
𝑣2𝑡𝑒

−
2𝜙
𝑇𝑒

)

]
1

𝑞𝑛−1
+ 1

2

(8)

where 𝐶𝑞𝑛 ,𝛼 , 𝛼, and 𝑞𝑛 are the normalization constant, nonthermal 
electrons, and nonextensive parameter, respectively [45]. Moreover, 
Verheest [51] provided a constraint on the range of nonextensive 
parameter to be more relevant 1∕3 < 𝑞𝑛 < 1. The electron density is 
obtained by integrating the distribution function in (8) over the velocity 
space as follows [45]: 

𝑛𝑒(𝜙) =

{

1 +
(

𝑞𝑛 − 1
)

𝑒𝜙
𝑇𝑒

}
1

𝑞𝑛−1
+ 1

2
[

1 + 𝐴
(

𝑒𝜙
𝑇𝑒

)

+ 𝐵
(

𝑒𝜙
𝑇𝑒

)2
]

, (9)

where the parameters 𝐴 = −16𝑞𝑛𝛼∕(12𝛼 + 15𝑞2𝑛 − 14𝑞𝑛 + 3) and 𝐵 =
16𝑞𝑛𝛼(2𝑞𝑛−1)∕(12𝛼+15𝑞2𝑛−14𝑞𝑛+3). To facilitate our analysis, we define 
the dimensionless parameter 𝛹 = 𝑒𝜙∕𝑇𝑒 in Eq. (9), which will play a 
key role in all subsequent theoretical formulations. For the derivation of 
NLSE using the nonextensive nonthermal electron velocity distribution, 
the parameters 𝐶1, 𝐶2, and 𝐶3 are derived by Bouzit et al. [45]. These 
parameters 𝐶1, 𝐶2, and 𝐶3 are distinct from the ones obtained in the 
(𝑟, 𝑞) generalized distribution function.

This study focuses on the system of normalized fluid equations 
(i.e., continuity, momentum, and Poisson’s equations) for the MI, which 
describe the plasma environment as: 
𝜕𝑛𝑖
𝜕𝑡

+
𝜕(𝑛𝑖𝑢𝑖)
𝜕𝑥

= 0, (10)

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑖
𝜕𝑢𝑖
𝜕𝑥

= − 𝜕𝛹
𝜕𝑥

, (11)

𝜕2𝛹
𝜕𝑥2

= 𝑛𝑒 − 𝑛𝑖. (12)

here the variables 𝑛𝑖(𝑛𝑒), 𝑢𝑖, and 𝛹 correspond to the normalized 
ion(electron) densities, ion velocity, and electrostatic potential, respec-
tively. The ion (electron) densities are normalized by their equilib-
rium values 𝑛𝑖0(𝑛𝑒0), while 𝑢𝑖 is normalized by the ion acoustic speed 
𝐶𝑖𝑠(= 𝜆𝐷𝑖𝜔𝑝𝑖) where 𝜔𝑝𝑖 (defined as 

√

(4𝜋𝑛0𝑒2∕𝑚𝑖) and 𝜆𝐷𝑖 (defined as 
√

(𝑇𝑖∕4𝜋𝑛0𝑒2)) represent the ion plasma frequency and Debye length, 
respectively. In this study, the temporal coordinate 𝑡 and the spatial 
coordinate 𝑥 are normalized by the inverse of ion plasma frequency 
(𝜔−1

𝑝𝑖 ) and ion Debye length (𝜆𝐷𝑖), respectively. To explore the behavior 
of IAWs modulation, we apply the reductive perturbation technique, 
which leads to the derivation of the NLSE. In this formulation, the 
independent variables 𝜉 = 𝜀(𝑥 − 𝑣𝑔𝑡) and 𝜏 = 𝜀2𝑡 are introduced, with 
𝜀 as a small perturbation and 𝑣𝑔 representing the group velocity of the 
wave. However, the dependent variables are expanded as

𝑛𝑖 = 1 +
∞
∑

𝑚=1
𝜀(𝑚) +

∞
∑

𝑙=−∞
𝑛(𝑚)𝑙 (𝜉, 𝜏)𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)] (13)

𝑢𝑖 =
∞
∑

𝑚=1
𝜀(𝑚) +

∞
∑

𝑙=−∞
𝑢(𝑚)𝑙 (𝜉, 𝜏)𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)], (14)

𝛹 =
∞
∑

𝜀(𝑚) +
∞
∑

𝛹 (𝑚)
𝑙 (𝜉, 𝜏)𝑒𝑥𝑝[𝑖(𝑘𝑥 − 𝜔𝑡)]. (15)
𝑚=1 𝑙=−∞
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Fig. 1. Variation of the generalized (𝑟, 𝑞) distribution function with respect to normalized velocity 𝑢 for different values of (a) the spectral index 𝑟 at 𝑞 = 2 and (b) the spectral 
index 𝑞 at 𝑟 = 1.
) 
The zeroth-order harmonic causes nonlinear self-interaction in carrier 
waves. However, the analytical calculations from the zeroth-order har-
monic equations to the third-order reduced equations demonstrate the 
significance of nonlinear self-interaction in carrier waves. The analysis 
defines the dependent variables 𝑛, 𝑢, and 𝛹 as functions of fast (𝑥, 𝑡)
and slow (𝜉, 𝜏) coordinates to effectively separate different scales. The 
reductive perturbation method is employed to study the modulation of 
IAWs, leading to the derivation of the NLSE. For that, the independent 
variables are stretched as 𝜉 = 𝜀(𝑥 − 𝑣𝑔𝑡) and 𝜏 = 𝜀2𝑡, where 𝜀
represents a small parameter describing the perturbation strength, and 
𝑣𝑔 is the group velocity of the wave packet. The field variables (𝑛, 𝑢, 𝛹 )
are expanded in powers of 𝜀, expressed in terms of both fast (𝑥 =
𝜉0, 𝑡 = 𝜏0) and slow (𝜉, 𝜏) coordinates. Furthermore, the fast spatial and 
temporal coordinates are (𝜉0, 𝜏0), while the slow coordinates are (𝜉, 𝜏). 
This systematic separation effectively describes the nonlinear dynamics 
of the system.

The condition 𝐴𝑚
𝑙 = (𝐴𝑚

−𝑙)
∗ must be satisfied to confirm that the 

physical quantities 𝑛𝑝, 𝑛𝑛, 𝑢𝑝,𝑛, and 𝛹 remain real, where the aster-
isk denotes complex conjugation of the associated variable. By sub-
stituting these conditions along with the stretched coordinates into 
Eqs. (10)–(12) and equating terms of the same power of 𝜖, the reduced 
equations for the 𝑚th order are derived. For instance, at the first-order 
approximation (𝑚 = 1), the first-order quantities 𝑛(1) , 𝑢(1) , and 𝛹 (1)
4

𝑝1,𝑛1 𝑝1,𝑛1 1
are obtained using Eqs.  (10)–(12) as: 
𝜕𝑛(1)1
𝜕𝜏0

+
𝜕𝑢(1)1
𝜕𝜉0

= 0,
𝜕𝑢(1)1
𝜕𝜏0

+
𝜕𝛹 (1)

1
𝜕𝜉0

= 0,

𝜕2𝛹 (1)
1

𝜕𝜉20
= 𝐶1𝛹

(1)
1 − 𝑛(1)1 .

(16)

The following system of equations is obtained by applying Eqs.  (13)–(15
to the second-order perturbation equations of 𝑂(𝜀2) as: 
𝜕𝑛(2)1
𝜕𝜏0

+
𝜕𝑢(2)1
𝜕𝜉0

= 𝑣𝑔
𝜕𝑛(1)1
𝜕𝜉

−
𝜕𝑢(1)1
𝜕𝜉

, (17)

𝜕𝑢(2)1
𝜕𝜏0

+
𝜕𝛹 (2)

1
𝜕𝜉0

= 𝑣𝑔
𝜕𝑢(1)1
𝜕𝜉

−
𝜕𝛹 (1)

1
𝜕𝜉

, (18)

𝜕2𝛹 (2)
1

𝜕𝜉20
+ 𝐶1𝛹

(2)
1 − 𝑛(2)1 = 2

𝜕2𝛹 (1)
1

𝜕𝜉0𝜕𝜉
. (19)

The linear dispersion relation for IAWs is derived by solving the system 
in Eq. (16) through the solution (𝑛(1)1 , 𝑢(1)1 , 𝛹 (1)

1 )𝑇 =
(

[𝑁 (1)(𝜉, 𝜏), 𝑈 (1)(𝜉, 𝜏),

𝛹 (1)(𝜉, 𝜏)]𝑇 + c.c.)
)

exp[𝑖𝜃] with 𝜃 = 𝑘𝑥 − 𝜔𝑡 as: 

𝜔2
= 1 . (20)
𝑘2 𝑘2 + 𝐶1
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Fig. 2. Variation of the wave frequency with respect to normalized wavenumber (𝑘) for different values of (a) the spectral index 𝑟 at 𝑞 = 2, (b) the spectral index 𝑞 at 𝑟 = 1, (c) 
the group velocity (𝑣𝑔 ) for different values of 𝑟 at 𝑞 = 2, and (d) the group velocity (𝑣𝑔 ) for different values of 𝑞 at 𝑟 = 1.
The compatibility condition is obtained from the second-order per-
turbation equations using Eq. (20). This modified condition offers 
a comprehensive framework for understanding the plasma system’s 
behavior under perturbations and is expressed as: 

𝑣𝑔 =
𝐶1

(𝑘2 + 𝐶1)3∕2
(21)

 Following similar steps by applying the standard analysis (as in 
Ref. [45]), we derive the corresponding NLSE using the second and 
third order harmonic solutions as: 

𝑖 𝜕𝛹
(1)

𝜕𝜏
+ 𝑃 𝜕2𝛹 (1)

𝜕𝜉2
+𝑄|𝛹 (1)

|

2𝛹 (1) = 0 (22)

with

𝑃 = −3
2
𝑘𝐶1

1
(𝑘2 + 𝐶1)5∕2

𝑄 = 𝑘
2(𝑘2 + 𝐶1)3∕2

[

3𝐶3 + 2𝐶2(𝐴𝛹 + 𝐵𝛹 ) − 2(𝑘2 + 𝐶1)3∕2(𝐴𝑢 + 𝐵𝑢)

− (𝑘2 + 𝐶1)(𝐴𝑛 + 𝐵𝑛)
]

, (23)

where 𝑃  and 𝑄 are the dispersion and nonlinear coefficients, respec-
tively. The variables defining these coefficients of NLSE are: 𝐴𝛹 =
(𝑘2 + 𝐶1)2∕2𝑘2 − 𝐶2∕3𝑘2, 𝐵𝛹 = (−2𝐶2𝑣2𝑔 + (𝑘2 + 3𝐶1))∕(𝐶1𝑣2𝑔 − 1), 
𝐴𝑛 = (𝐶1 + 4𝑘2)𝐴𝛹 + 𝐶2, 𝐵𝑛 = 𝐶1𝐵𝛹 + 2𝐶2, 𝐴𝑢 = 𝜔∕𝑘[𝐴𝑛 − (𝑘2 +
𝐶1)2], and 𝐵𝑢 = −2(𝑘2 + 𝐶1)2 ⋅ 𝜔∕𝑘 + 𝑣𝑔𝐵𝑛. The nonlinear propagation 
of IAWs gives rise to two prominent effects: (i) nonlinear frequency 
shift and (ii) group velocity dispersion. However, different mechanisms 
contribute to the nonlinear frequency shift, namely, nonlinear Landau 
damping, trapped electrons and ions, wave-wave coupling. These con-
tributions have drastically different amplitude dependence because the 
5

nonlinearity coefficient in the NLSE affects the nonlinear frequency 
shift. Conversely, the manifestation of group velocity dispersion occurs 
through its corresponding coefficient in the NLSE.

In Figs.  2(a) and 2(b), the angular frequency 𝜔 is plotted over 
the wavenumber (𝑘) for various values of the spectral indices of the 
generalized distribution function. The frequency increases with the 
spectral indices, as clearly illustrated by the relation 𝜔2 = 𝑘2∕(𝑘2 +𝐶1). 
Furthermore, the frequency approaches unity over a broad range of 
𝑘; in Figs.  2(a) and 2(b).  It is noteworthy that for higher values of 
the spectral indices of the generalized distribution function, the carrier 
frequency 𝜔(𝑘) exhibits a nonmonotonic trend. At large wavenumbers, 
the said frequency approaches unity, indicating that the wave reaches 
the high-frequency regime where it becomes less sensitive to further 
increases in 𝑘. In contrast, the group velocity behaves differently. At 
lower wavenumbers, specifically for 𝑟 = 1 and 𝑞 = 2, the group 
velocity is nearly one, while it decreases as the wavenumber rises. 
The group velocity is larger than unity as the spectral indices of the 
generalized distribution function increase, as illustrated in Figures 2 
(c) and (d). This indicates that the wave packet slows down as the 
wavenumber enhances, indicating the presence of wave dissipation or 
damping mechanisms in the plasma.

This paper investigates the nonlinear properties of IAWs, examining 
the impact of various plasma parameters and the non-Maxwellian 
spectral indices (𝑟, 𝑞). This study is relevant to auroral plasmas in 
Earth’s magnetosphere, where observations suggest the presence of 
beam electrons that influence the IAW dynamics. To explore the pos-
sible nonlinear effects, we analyze an extreme case with 𝑟 = 5 and 
𝑞 = 10, extending beyond the previously established ranges [39,52]. 
Furthermore, Williams et al. [53] restricted the range of permissible 
nonextensive parameters to 0.6 < 𝑞 < 1 in the 𝑞 -nonextensive 
𝑛 𝑛
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Fig. 3. Variation of the ratio 𝑃∕𝑄 with respect to normalized wavenumber (𝑘) for different values of (a) the spectral index 𝑟(= 1.0, 1.5, 3.0, 10.0) at 𝑞 = 2 and (b) the spectral index 
𝑞(= 2.0, 3.0, 5.0, 10.0) at 𝑟 = 1.0.
nonthermal distribution function. In the extensive case where 𝑞 = 1 (the 
limiting case), the distribution function described in Eq.  (8) reduces to 
the well-known Cairns distribution [54]. In this work, the nonthermal 
electron parameter 𝛼 is comparable to the one employed by Bouzit 
et al. [45]. The nonlinear effects in the NLSE allow us to examine the 
stable/unstable regions of IAWs. However, the dispersion and nonlinear 
coefficients (𝑃  and 𝑄) are the key parameters in the NLSE that influence 
the stable and unstable regions. The stable soliton solutions to MI are 
predicted by the NLSE, depending on the signs and magnitudes of 𝑃
and 𝑄 [55]. For 𝑃𝑄 < 0, the amplitude-modulated envelope remains 
unaffected by external disturbances, indicating a dark or stable soliton. 
The amplitude-modulated envelope becomes unstable for 𝑃𝑄 > 0 due 
to external disturbances. The instability region promotes the collection 
of plasma species, leading to the formation of both bright solitons and 
rogue waves [56].

Based on the MI criteria, the stable and unstable regions of IAWs 
are distinctly identified in terms of the 𝑃∕𝑄 ratio. The stable and 
unstable domains are determined by the negative (positive) 𝑃∕𝑄 ratio. 
This further facilitates the analysis of dark and bright solitons. The 
6

negative sign of 𝑃∕𝑄 corresponds to an innately stable dark soliton. On 
the other hand, bright soliton is signified by the positive sign of 𝑃∕𝑄
and is either unstable or marginally unstable. The dependence of 𝑃∕𝑄
against wavenumber (𝑘) for distinct values of the spectral indices (𝑟, 𝑞)
of the distribution function as shown in Fig.  3. The stable region of the 
dark soliton decreases as the spectral index 𝑟 increases, as depicted in 
Fig.  3(a). The impact of the index 𝑟 on the dark soliton becomes more 
prominent at the lower end of 𝑘., while its effect on the bright soliton 
becomes less significant at the larger end of 𝑘. The onset of instability, 
characterized by the critical value 𝑘𝑐 (= 2𝑄𝑃−1𝛹 2

0 ) is reduced to smaller 
values as 𝑟 intensifies. This suggests that the non-Maxwellian index 𝑟
promotes the emergence of instability at large wavelengths. The thresh-
old value for the instability is 1.75 at 𝑟 = 1 and fixed 𝑞, which resembles 
the previous results by Bouzit et al. [45]. Furthermore, as illustrated in 
Fig.  3(a), the MI threshold value varies inversely with the index 𝑟. Fig. 
3(b) shows the profile of 𝑃∕𝑄 ratio against 𝑘 for the spectral index 𝑞 at 
fixed 𝑟(= 2). Here, dark and bright solitons can exist, defining the stable 
and unstable regions of the MI, respectively. The threshold value of the 
MI in terms of 𝑃∕𝑄 as a function of 𝑘 varies inversely with 𝑞 as clearly 
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Fig. 4. Variation of the ratio 𝑃∕𝑄 for the generalized (𝑟, 𝑞) and 𝑞𝑛-nonextensive distribution functions with respect to normalized wavenumber (𝑘) for different values of (a) the 
spectral index 𝑟(= 1.0, 1.5) at 𝑞 = 2 and 𝛼(= 0.05, 0.07) at 𝑞𝑛 = 0.9, and (b) the spectral index 𝑞(= 2.0, 3.0) at 𝑟 = 1.0 and 𝑞𝑛 = (0.9, 1.0) at 𝛼 = 0.05.
illustrated from Fig.  3(b). One can immediately conclude that the dark 
soliton is found in the region 0 < 𝑘 < 1.75, while the bright solitons 
is found in the region 𝑘 > 1.75 for the different choices of the spectral 
indices of the generalized distribution function. The non-Maxwellian 
parameters exhibit only a marginal influence on the bright soliton at 
the higher end of 𝑘, as demonstrated by the small images in Fig.  3. Fig. 
3 elucidates the effects of increasing nonlinearity (dependent on the 
spectral indices of the distribution function) on the stability of envelope 
solitons within the plasma system. As the spectral indices vary, the 
system undergoes a transition from a dark soliton (characterized by 
𝑃∕𝑄 < 0) to a bright soliton regime (where 𝑃∕𝑄 > 0). In later 
scenario, an instability becomes more prominent at higher values of the 
spectral indices, particularly at larger wavenumbers. This indicates that 
enhanced nonlinearities can destabilize bright solitons, leading to more 
intricate wave dynamics. The transition from stable to unstable region 
is a key aspect of the plasma system dynamics, which confirms the 
possibility of rogue wave formation, where localized large-amplitude 
waves can suddenly appear. This shift in soliton stability indicates the 
strong relationship between nonlinearity and the emergence of extreme 
7

wave phenomena, such as rogue waves, which are often associated with 
MI.

This study also explores the influence of 𝑞𝑛-nonextensive nonther-
mal distribution on MI and compares the findings with those from the 
(𝑟, 𝑞) distributed electrons, as depicted in Fig.  4. The parameter 𝑞𝑛 can 
assume the value in the range of 0.6 < 𝑞𝑛 ≤ 1 in the nonextensive 
nonthermal distribution, as explained by Bouzit et al. [45], whereas the 
parameter 𝑞 is restricted from being one in the generalized distribution 
function presented by Shabbir et al. [49]. Both distribution functions 
identify the stable (unstable) regions, represented by negative (positive) 
values of the 𝑃∕𝑄 ratio, respectively. The 𝑃∕𝑄 < 0 region is conducive 
to dark solitons, while the 𝑃∕𝑄 > 0 region is indicative of bright 
solitons. It is found that the 𝑞𝑛-nonextensive nonthermal distribution 
significantly impacts the dark and bright soliton compared to the (𝑟, 𝑞)
distribution function as shown in Fig.  4(a). For the case 𝛼 = 0.05, the 
onset of instability using the 𝑞𝑛-nonextensive nonthermal distribution is 
dramatically smaller than that found with the spectral index (𝑟) of the 
generalized distribution function. However, the inclusion of minimum 
nonthermal electrons (𝛼 = 0.07) significantly reduces the onset of 
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Fig. 5. Variation of the MI growth rates with respect to modulation wavenumber (𝐾𝑀 ) for different values of (a) the spectral index 𝑟 at 𝑞 = 2, 𝛹0 = 0.1, and 𝑘 = 2.5, (b) the 
spectral index 𝑞 at 𝑟 = 1, 𝛹0 = 0.1, and 𝑘 = 2.5, (c) the normalized wavenumber 𝑘 at 𝑟 = 1, 𝑞 = 2, and 𝛹0 = 0.1, and (d) the real amplitude 𝛹0 at 𝑟 = 1, 𝑞 = 2, and 𝑘2.5.
instability. On the other hand, the nonextensive parameter (𝑞𝑛) com-
pared to the spectral index (𝑞) of the generalized distribution function 
significantly influences the stable and unstable regions as shown in Fig. 
4(b). It is observed that the critical value of the MI for the nonextensive 
parameter (𝑞𝑛 = 0.9) at 𝛼 = 0.05 is 0.56, which is substantially smaller 
than that found for 𝑞 = 2 at 𝑟 = 1 in the generalized distribution 
function, as illustrated in Fig.  4(b). The analysis indicates that the 
𝑞𝑛-nonextensive nonthermal distribution influences MI and envelope 
solitons more than the generalized (𝑟, 𝑞) distribution function.

3. Stability analysis of the ion acoustic-waves

A small perturbation 𝛿𝛹 can be introduced to analyze the MI of 
IAWs. Despite the critical influence of obliqueness on the stability 
criteria, the IAWs are considered to propagate in the direction of 
the pump carrier waves [57,58]. For the analysis of MI of IAWs, we 
assume the plane wave solution as 𝛹 (1) = 𝛹0𝑒𝑥𝑝 (𝑖𝜉 + 𝑖𝜛𝜏), where 
𝛹0, , and 𝜛 represent the constant real amplitude, the modulation 
wavenumber, and the real frequency, respectively. Applying this plane 
wave solution into the NLSE leads to the derivation of the nonlinear 
perturbed dispersion relation as: 𝜛 = 𝑄𝛹 2

0 − 𝑃2. For the analysis of 
MI, we introduce a small perturbation in 𝛹 (1), yielding the following 
form. 
𝛹 = (𝛹0 + 𝛿𝛹 ) exp (𝑖𝜉 + 𝑖𝜛𝜏) (24)

where 𝛿𝛹 corresponds to the small perturbation in amplitude. The 
constant pump carrier amplitude 𝛹0 is substantially larger than its 
perturbed counterpart, i.e. |𝛹0| ≫ |𝛿𝛹 |. The NLSE (Eq. (22)) is further 
simplified by substituting Eq. (24) and omitting higher-order perturbed 
amplitudes, resulting in the linearized equation in 𝛿𝛹 as follows: 

𝑖 𝜕𝛿𝛹 −𝜛𝛿𝛹+𝑃
(

𝜕2𝛿𝛹 + 2𝑖 𝜕𝛿𝛹 −2𝛿𝛹
)

+𝑄𝛹 2(2𝛿𝛹+𝛿𝛹⋆) = 0 (25)
8

𝜕𝜏 𝜕𝜉2 𝜕𝜉 0
here the asterisk signifies the complex conjugate of the 𝛿𝛹 . Based on 
the approach described by Kengne and Liu [59], we look for solutions 
to Eq. (25) in the following form: 

𝛿𝛹 = 𝑏1 exp[𝑖(𝐾𝑀 𝜉 −𝛺𝜏)] + 𝑏⋆2 exp[−𝑖(𝐾𝑀 𝜉 −𝛺⋆𝜏)], (26)

in Eq. (26), 𝑏1 and 𝑏⋆2  are complex amplitudes, where 𝛺 denotes 
the complex modulation frequency, and 𝐾𝑀  is the real modulation 
wavenumber associated with the perturbations. Applying the real mod-
ulation frequency (e.g., 𝜛 = 𝑄𝛹 2

0 −𝑃
2) along with Eq. (26) to Eq. (25) 

leads to the following equation for the complex frequency (𝛺) as: 

𝛺 = 2𝑃𝐾𝑀 ± 𝑖𝑃𝐾𝑀

√

2𝑄
𝑃

𝛹 2
0 −𝐾2

𝑀 (27)

The dependence of the modulation frequency (𝛺) on both the real 
modulation wavenumber 𝐾𝑀  and the carrier wavenumber  is evident 
from Eq. (27). The imaginary component of 𝛺 determines the stability 
of the IAWs. According to Eq. (27), the IAWs will be unstable under 
modulation if 𝐼𝑚(𝛺) is greater than zero, while they will be stable if 
𝐼𝑚(𝛺) is zero or negative. It is important to note that when 2𝑄𝛹 2

0 ∕𝑃 >
𝐾2

𝑀 , the IAWs remain unstable under modulation since their frequency 
is real for any admissible value of modulation wavenumber (𝐾𝑀 ). 
Conversely, when 2𝑄𝛹 2

0 ∕𝑃 < 𝐾2
𝑀 , the IAWs remain stable under 

modulation because the real part of the frequency is zero for any value 
of the modulated wavenumbers (𝐾𝑀 ). For a positive product 𝑃𝑄, the 
frequency 𝛺 will show a nonzero real part if the modulation of the 
perturbation meets the following criteria. 

𝐾2 − 2𝑄𝛹 2 < 0 (28)
𝑀 𝑃 0
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Fig. 6. Variation of the MI growth rates for the generalized (𝑟, 𝑞) and 𝑞𝑛-nonextensive distribution functions with respect to modulation wavenumber (𝐾𝑀 ) for different values of 
(a) the spectral index 𝑟(= 1.0, 1.5) at 𝑞 = 2 and 𝛼(= 0.05, 0.07) at 𝑞𝑛 = 0.9, and (b) the spectral index 𝑞(= 2.0, 3.0) at 𝑟 = 1.0 and 𝑞𝑛 = (0.9, 1.0) at 𝛼 = 0.05.
Under condition (28), the equation that determines the local growth 
rate 𝐼𝑚(𝛺) of MI is as follows: 

𝐼𝑚(𝛺) = |𝑃𝐾𝑀 |

√

2𝑄
𝑃

𝛹 2
0 −𝐾2

𝑀 (29)

We now analyze the stability and instability of modulated wave packets 
using the NLSE (22) that describes the MI of IAWs. Bains et al. [50] 
examined that the IAWs become unstable under modulation when 
𝑃𝑄 > 0. Here 𝑃𝑄 > 0 is the region where 𝐾2

𝑀  is less than the 
critical wavenumber 𝑘𝑐 (= 2𝑄𝛹 2

0 ∕𝑃 ). The 𝑘𝑐 defines the boundary of 
the instability region. Two distinct solitons can be identified: stable 
dark envelope solitons for region 𝑃𝑄 < 0 and unstable bright envelope 
solitons for region 𝑃𝑄 > 0. Furthermore, the spectral indices (𝑟, 𝑞) of 
the generalized distribution function clearly influence the dispersion 
and nonlinear coefficients (𝑃  and 𝑄), which in turn have a potential 
impact on the stable and unstable regions of IAWs.

We investigate the impact of the spectral indices in the generalized 
distribution function on the MI growth rate of IAWs in a long range of 
modulation wavenumbers (𝐾𝑀 ) as shown in Fig.  5. The growth rate is 
evaluated in the MI region where 𝑃𝑄 > 0, indicating that the dispersion 
and nonlinear terms have the same sign. The growth rate of MI of IAWs 
for various choices of the index 𝑟 reaches a peak value in the middle of 
the modulation wavenumber. The peak value of the MI growth rate for 
9

𝑟 = 1 is found to be larger than that found for 𝑟 = 10 as shown in Fig. 
5(a). It is important to identify that the growth rate for 𝑟 = 10 is fully 
suppressed at 𝐾𝑀 = 0.8. However, the suppression effect becomes less 
as the value of 𝑟 decreases. Furthermore, in the range 0 < 𝐾𝑀 < 0.5, the 
growth rate is enhanced due to the modulation wavenumber 𝐾𝑀  being 
located outside the square root (e.g., see Eq. (29)), as shown in Fig. 
5(a). As evident from Eq. (29), the MI growth rate decreases due to 𝐾𝑀
being inside the square root. The influence of the spectral index 𝑞 on 
the MI growth rate is depicted in Fig.  5(b). The growth rate shows the 
similar trend as for the spectral index 𝑟. The role of the spectral index 
𝑞 in the MI analysis is less prominent than that of the 𝑟, as portrayed 
in Fig.  5(b). This study finds that the impact of both non-Maxwellian 
indices on the growth rate of MI is marginal at the high end of 𝐾𝑀 .

The MI growth rate, depicted in Figs.  5(c) and 5(d), is evaluated 
as a function of 𝐾𝑀  for various choices of carrier wavenumbers 𝑘 and 
a real constant amplitude 𝛹0. The spectral indices of the distribution 
function for this case are kept constant which are (1, 2). It is evident 
from Eq. (29) that the critical wavenumber 𝑘𝑐 significantly depends 
on the carrier wavenumber 𝑘, which in turn enhances the unstable 
region of the instability. As the carrier wavenumber 𝑘 increases, the 
ratio 𝑄∕𝑃  also increases, thereby increasing the range of modulation 
wavenumber 𝐾𝑀 . For this purpose, Fig.  5(c) demonstrates that the 
critical wavenumber 𝑘  increases with the carrier wavenumber 𝑘, which 
𝑐
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Fig. 7. The 1D behavior of the first-order rogue waves |𝛹1| with respect to 𝜉 for different values of (a) the spectral index 𝑟 at 𝑞 = 2, 𝑘 = 2.5, and 𝜏 = 0.5, (b) the spectral index 𝑞
at 𝑟 = 1, 𝑘 = 2.5, and 𝜏 = 0.5, (c) the wavenumber 𝑘 at 𝑟 = 1 and 𝑞 = 2, and (d) temporal coordinate 𝜏 at 𝑟 = 1, 𝑞 = 2, and 𝑘 = 2.5.
enhances the instability region. Fig.  5(d) shows that the growth rate of 
MI increases as the constant real amplitude 𝛹0 increases. The modula-
tion wavenumber outside the square root (e.g. see Eq. (29)) causes the 
growth rates to increase and reach peak values in the unstable region. 
This indicates that the maximum value of the growth rate becomes 
more prominent when the constant amplitude 𝛹0 increases. However, 
the growth rates are entirely suppressed when 𝐾𝑀 > 3 for all amplitude 
values 𝛹0 due to 𝐾𝑀  being inside the square root, as illustrated in 
Fig.  5(d). The increased instability at larger 𝛹0 indicates that a higher 
plasma potential amplifies MI. In general, MI dynamics are significantly 
influenced by the spectral indices of the generalized distribution func-
tion (𝑟, 𝑞), the wavenumber 𝑘, and the plasma potential 𝛹0, as shown in 
Fig.  5. It demonstrates that the instability growth rate decreases with 
rising spectral indices 𝑟 and 𝑞, indicating that higher values of these 
indices tend to stabilize the IAWs. Conversely, the plasma potential 𝛹0
and the carrier wavenumber enhance the instability at large modulation 
wavenumber.

The nonextensive nonthermal velocity distribution, characterized 
by the parameters 𝑞𝑛 and 𝛼, reflects the effects of nonextensive and 
nonthermal electrons on MI, while the parameters 𝑟 and 𝑞 serve as 
the spectral indices in the generalized distribution function. We inves-
tigate the impact of 𝑞𝑛 and 𝛼 on the MI growth rate and compare it 
with the results obtained from the generalized distribution function, 
as shown in Fig.  6(a). In Fig.  6(a), the growth rate observed for the 
parameters 𝑞𝑛 and 𝛼 is higher than that of the generalized distribution 
parameters. Compared to the generalized distribution, the MI growth 
rate in the nonextensive velocity distribution is nearly 0.004 times 
larger. Moreover, the influence of the parameters 𝑞𝑛 and 𝛼 on the MI 
growth rates is more significant than that of the spectral indices 𝑟 and 
𝑞. The injection of nonthermal electrons (𝛼) into the plasma system 
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expands the instability region of IAWs, as illustrated in Figure 6(a). 
In the cases of 𝑞𝑛 = 0.9 and 𝑞𝑛 = 1.0, the MI growth rate follows 
an inverse trend to that for nonthermal electrons (𝛼), as illustrated 
in Fig.  6(b). Compared to the generalized distribution function, the 
instability region of IAWs is much more significant in the nonextensive 
nonthermal distribution. This suggests that the scenario for the emer-
gence of rogue wave triplets in a plasma system, as indicated by the 
fluid model for IAWs, is still probable in the instability region [45,50]. 
Compared to the 𝑞𝑛-nonextensive nonthermal distribution function, the 
generalized (𝑟, 𝑞) distribution results in a lower growth rates in the 
small 𝑘 region by modifying the plasma’s response to long-wavelength 
perturbations, thereby reducing the available energy for instability at 
large scales. On the other hand, the nonextensive nonthermal distri-
bution enhances the suppression of the growth rate in the large 𝑘
regime, indicating a stronger damping effect on the instability at short 
wavelengths. These distributions play distinct roles in the dynamics 
of MI in plasmas, with the generalized (𝑟, 𝑞) distribution stabilizing 
long-wavelength modes and the nonextensive nonthermal distribution 
damping short-wavelength modes.

4. Formation of rogue wave triplets

The emergence of rogue waves of IAWs in a dispersive plasma 
medium is described by the NLSE (Eq.  (22)). This equation is a partial 
differential equation that illustrates the effects of both dispersion and 
nonlinearity. Furthermore, this equation admits numerous types of 
solutions, namely breathers, rogue waves, rogue wave triplets, dark 
and bright solitons. These solutions are contingent upon the features 
of plasma and their initial conditions. The NLSE provides infinitely 
numerous exact breather solutions for 𝛹 , localized in space and time 
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Fig. 8. The 3D behavior of the first-order rogue waves |𝛹1| with respect to 𝜉 and 𝜏 for (a) 𝑘 = 2.5, (b) 𝑘 = 3.0, (c) 𝑘 = 3.5, and (d) 𝑘 = 4.0 at 𝑟 = 1 and 𝑞 = 2.
in the modulationally unstable region where 𝑃𝑄 > 0. The growth of 
random amplitude perturbations in the 𝑃𝑄 > 0 region leads to the 
emergence of rogue waves. The rational solution of Eq. (22) for the 
rogue wave in the 𝑃𝑄 > 0 region can be obtained using the Darboux 
transformation scheme for both time and space as follows [60,61]: 

𝛹𝑛(𝜉, 𝜏) =

[

(−1)𝑛 +
𝐺𝑛(𝜉, 𝜏) + 𝑖𝐾𝑛(𝜉, 𝜏)

𝐷𝑛(𝜉, 𝜏)

]

𝑒𝑥𝑝(𝑖𝑄𝜏), (30)

where 𝐺𝑛, 𝐾𝑛, and 𝐷𝑛 are functions related to the order 𝑛 of the solu-
tion. To ensure the solution remains finite everywhere, the denominator 
𝐷𝑛 must not have any zeros. The first-order rogue wave solution of 
Eq. (22) is given as [60,61]: 

𝛹1(𝜉, 𝜏) =

[

−1 + 4 1 + 2𝑖𝑄𝜏

1 + 4(𝑄𝜏)2 + 4
(

√

𝑄
2𝑃 𝜉

)2

]

𝑒𝑥𝑝(𝑖𝑄𝜏), (31)

The second-order rogue wave solution of Eq. (22) is given as [60,61] 

𝛹2(𝜉, 𝜏) =

[

1 +
𝐺2(𝜉, 𝜏) + 𝑖𝐾2(𝜉, 𝜏)

𝐷2(𝜉, 𝜏)

]

𝑒𝑥𝑝(𝑖𝑄𝜏), (32)

with

𝐺2 = 12

[

3 − 16
(

√

𝑄
2𝑃

𝜉
)4

− 24
(

√

𝑄
2𝑃

𝜉
)2

(

4(𝑄𝜏)2 + 1
)

−4𝛽
(

√

𝑄
2𝑃

𝜉
)

(33)

−80(𝑄𝜏)4 − 72(𝑄𝜏)2 + 4𝛾(𝑄𝜏)

]

,
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𝐾2 = 24

[

𝑄𝜏
{

15 − 16
(

√

𝑄
2𝑃

𝜉
)4

+ 24
(

√

𝑄
2𝑃

𝜉
)2

− 4𝛽
√

𝑄
2𝑃

𝜉
}

(34)

−8
{

4
(

√

𝑄
2𝑃

𝜉
)2

+ 1
}

(𝑄𝜏)3 − 16(𝑄𝜏)5

+ 𝛾
{

2(𝑄𝜏)2 − 2
(

√

𝑄
2𝑃

𝜉
)2

− 1
2

}

]

,

𝐷2 = 64
(

√

𝑄
2𝑃

𝜉
)6

+ 48
(

√

𝑄
2𝑃

𝜉
)4

(

4(𝑄𝜏)2 + 1
)

+12
(

√

𝑄
2𝑃

𝜉
)2{

3 − 4(𝑄𝜏)2
}2

+ 64(𝑄𝜏)6 + 432(𝑄𝜏)4 +

396(𝑄𝜏)2 + 9 + 𝛽
[

𝛽 + 4
(

√

𝑄
2𝑃

𝜉
)

(

12(𝑄𝜏)2 − 4
(

√

𝑄
2𝑃

𝜉
)2

+ 3
)

]

+ 𝛾

⎡

⎢

⎢

⎢

⎣

𝛾 + 4(𝑄𝜏)

⎧

⎪

⎨

⎪

⎩
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(
√

𝑄
2𝑃

𝜉

)2

− 4(𝑄𝜏)2 − 9

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

. (35)

the parameters 𝛽 and 𝛾 are real constants that can be chosen arbitrarily. 
The solution involves 𝐷2 as a 6th-order polynomial, while 𝐺2 and 𝐾2
as 4th- and 5th-order polynomials, respectively. Ankiewicz et al. [60] 
employed different coefficients compared to those in (e.g., see Dubard 
et al. [62]), owing to the precise form of the NLSE. The presence 
of the free parameters 𝛾 and 𝛽 distinguishes these equations from 
those found earlier by Akhmediev et al. [21]. It was concluded by 
Ankiewicz et al. [60] that these solutions agree with the equations 
derived by Akhmediev et al. [21] when 𝛾 and 𝛽 are both set to zero. 
The presence of non-zero parameters significantly affects the higher-
order rogue wave structure. In this work, we extend the analysis of 
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Fig. 9. The 1D behavior of the rogue wave triplets |𝛹2| with respect to 𝜉 for different values of (a) the wavenumber 𝑘 at 𝜏 = 0.5, 𝛽 = 100, and 𝛾 = 0 (b) the temporal coordinate 
𝜏 at 𝑘 = 2.5, 𝛽 = 100, and 𝛾 = 0, (c) the physical free parameter 𝛽 at 𝑘 = 2.5, 𝜏 = 0.5, and 𝛾 = 0, and (d) the physical free parameter 𝛾 at 𝑘 = 2.5, 𝜏 = 0.5, and 𝛽 = 100.
Ankiewicz et al. [60] on higher-order rogue waves, referred to as rogue 
wave triplets, for the IAWs using the plasma fluid model. The goal of 
our analysis below is to identify the relative positions concerning 𝛾 and 
𝛽 for rogue wave triplets in the plasma system.

The substantial impacts of the spectral indices (𝑟, 𝑞), the carrier 
wavenumber 𝑘, and the temporal coordinate 𝜏 on the first-order rogue 
waves of IAWs are explored, as depicted in Fig.  7. It is evident from Fig. 
7(a) that the peak value of the rogue wave positioned at 𝜉 = 0 increases 
with the index 𝑟 at fixed 𝑞(= 2) and 𝜏(= 0.5). Since the ratio 𝑃∕𝑄 against 
𝑘 shows minimal variation for various values of 𝑟, therefore a similar 
trend of 𝑟 can be seen here in the ion acoustic first-order rogue waves. 
Moreover, the index 𝑞 also has a marginal effect on the rogue waves, as 
seen in Fig.  7(b). The intensity profile of the first-order rogue waves is 
plotted as a function of 𝜉 for different values of the wavenumber 𝑘 as 
shown in Fig.  7(c). The wavenumber significantly impacts the rogue 
waves, leading to a flattening of the amplitude of the rogue waves 
as the wavenumber increases. Moreover, the maximum values of the 
rogue wave at 𝜉 = 0 drop when 𝑘 surpasses 2.5, as depicted in Fig. 
7(c). The temporal coordinate 𝜏 also dramatically affects the dynamics 
of the first-order rogue waves, as depicted in Fig.  7(d). As illustrated 
in Fig.  7(d), the one-dimensional (1D) profile of |𝛹1| shows that the 
amplitude becomes narrower at smaller values of 𝜏, indicating a more 
robust localization of IAWs.

The three-dimensional (3D) visualization of the first-order rogue 
wave at different carrier wavenumbers 𝑘 is illustrated in Fig.  8. Here 
the spectral indices (𝑟, 𝑞) are constant (1, 2). It can be seen from Fig. 
8(a) that the rogue waves amplitude broadens at smaller values of 𝑘. 
This further indicates the localization of the rogue waves. Consistent 
with the 1D profile shown in Fig.  7(c), the amplitude of the first-order 
rogue waves of IAWs becomes narrower at 𝑘 = 2.5, but widens with 
increasing 𝑘, as illustrated in Fig.  8.
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The 1D behavior of rogue wave triplet against 𝜉 for various values 
of the wavenumber 𝑘 is evaluated while the spectral indices (𝑟, 𝑞) of 
the distribution function, the physical free parameters (𝛽 and 𝛾) and 
the temporal coordinate 𝜏 kept fixed as shown in Fig.  9. It is evident 
from this figure that the rogue waves exhibit two distinct peaks within 
the spatial coordinate range −5 < 𝜉 < 5 for different values of 𝑘. The 
rogue wave triplets reach their peak values at two different locations, 
namely 𝜉 = −1.25 and 𝜉 = 1.25 as shown in Fig.  9(a). Notably, the rogue 
waves’ peak intensity grows with increasing wavenumber at 𝜉 = −1.25
but declines at 𝜉 = 1.25, as illustrated in Fig.  9(a). As seen in Fig.  9(b), 
the intensity profiles of the rogue wave triplet are displayed for various 
values of 𝜏 in the same range of 𝜉 (−5 < 𝜉 < 5). This figure further 
illustrates that the maximum values of the rogue waves, corresponding 
to the peaks, are located at 𝜉 = −1.25 and 𝜉 = 1.25. In conclusion, the 
rogue wave triplet exhibits a similar pattern for varying values of 𝑘 and 
𝜏 (see Figs.  9(a) and 9(b) for reference). The 1D profiles of the rogue 
wave triplets is plotted in terms of physical free parameter 𝛽. A detailed 
representation of the results is provided in Fig.  9(c). Here, the spectral 
indices (𝑟, 𝑞) are set to (1, 2), while (𝑘, 𝜏) = (2.5, 0.5). The two peaks are 
also shown for different 𝛽 values while the peak intensity shifts toward 
zero in the region 𝑥𝑖 < 0 as 𝛽 decreases from 100 to 50, as depicted in 
Fig.  9(c). Conversely, in the region 𝜉 > 0, the peak intensity (|𝛹2|) shifts 
toward zero as the free parameter 𝛽 decreases. The parameter 𝛾 also 
has a significant influence on the rogue wave triplet, as shown in Fig. 
9(d). It is noteworthy that the variations in peak values of the intensity 
for different 𝛾 within the region 𝜉 > 0 are more significant than those 
found in the region 𝜉 < 0. In the region 𝜉 < 0, the maximum value of 
|𝛹2| shifts away from zero as the parameter 𝛾 gets larger (e.g. see Fig. 
9(d)).

Next, we explore the impact of the physical free parameters 𝛽 and 
𝛾 on the rogue wave triplets (|𝛹 |) of IAWs, with the 2D and 3D 
2
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Fig. 10. The 3D behavior of the rogue wave triplets |𝛹2| with respect to 𝜉 and 𝜏 for (a) 𝛽 = 100 and 𝛾 = 0, (b) 𝛽 = 0 and 𝛾 = 100, (c) 𝛽 = −100 and 𝛾 = 0, and (d) 𝛽 = 0 and 
𝛾 = −100. The other parameters are 𝑟 = 1, 𝑞 = 2, and 𝑘 = 2.5.
representations shown in Figs.  10 and 11, respectively. The ion acoustic 
rogue wave triplets resemble a second-order rogue wave that consist 
of three peaks forming a triangular pattern. To represent a qualitative 
sketch of the rogue waves structure that is symmetrical about the 𝜉-axis, 
the shift is controlled by setting the physical free parameters 𝛽 and 
𝛾 (as described in Eqs.  (33)–(35)). The intensity profiles, as depicted 
in Figs.  10(a) and 10(b), are plotted for a given set of values of the 
physical free parameters, namely (𝛽, 𝛾) = (100, 0) and (𝛽, 𝛾) = (0, 100), 
respectively. The amplitude of the rogue wave triplets at (𝛽, 𝛾) = (100, 0)
is found to be slightly larger than the amplitude at (𝛽, 𝛾) = (0, 100). It 
is interesting to observe that the triangular pattern of the rogue wave 
rotates anti-clockwise on the (𝜉, 𝜏) plane, as illustrated in Figs.  10(a) 
and 10(b). Furthermore, the variation in the absolute of ion acoustic 
rogue wave triplet profiles for negative 𝛽 and 𝛾 are also depicted in 
Figs.  10(c) and 10(d). These figures reveal that the rogue wave triplets 
also have an anti-clockwise orientation. The rogue wave triplets show a 
larger magnitude for positive (negative) values of 𝛽 at 𝛾 = 0 compared 
to positive (negative) values of 𝛾 at 𝛽 = 0. Fig.  11 displays the 2D 
representation of the rogue wave triplets for varying free parameters, 
namely 𝛽 and 𝛾. This figure also indicates the triangular pattern of the 
rogue waves. The oval-shaped red color regions in Fig.  11(a) distinctly 
indicate the peaks of the rogue wave triplets, with the bottom ovals 
regions exhibiting larger magnitudes than the top oval 𝛽 = 100 and 
𝛾 = 0. The 2D representation of rogue wave triplets shown in Fig.  11(b) 
for 𝛽 = 0 and 𝛾 = 100 indicates that the oval region on the right has a 
larger magnitude compared to the ovals regions on the left. The inverse 
behavior of the rogue wave triplets shown in Figs.  11(c) and 11(d) 
for negative values of the free parameters (𝛽 = −100 and 𝛾 = −100)
can be observed when compared with Figs.  10(a) and 10(b). One can 
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immediately draw the conclusion that a 180◦ orientation is observed 
when compare the figures 10(a) and 10(b) with Figs.  11(c) and 11(d), 
respectively.

Fig.  12 illustrates examples of the rogue wave triplets for the 
parameters 𝛽 = 100, 50, 15, 0 at 𝛾 = 0. A triangular pattern featuring 
three peaks is shown for 𝛽 = 100, as depicted in (a). The three peaks 
can also be observed when 𝛽 is adjusted to 50 (see Fig.  11(b)). For the 
scenario with 𝛽 = 15, the peaks move closer together, as illustrated in 
Fig.  12(c). Upon decreasing the parameter 𝛽 to zero, the rogue wave 
triplets are fully converted into second-order rogue waves, commonly 
known as super freak waves. It can be concluded that the rogue wave 
triplets become super freak waves under the conditions 𝛽 = 0 and 𝛾 = 0. 
In the context of MI in IAWs, rogue wave triplets typically manifest 
as three distinct localized waves arranged in triangular pattern with 
their amplitude and peak separation influenced by the free parameters 
𝛽 and 𝛾. As the parameters approach specific values, namely 𝛽 = 0 and 
𝛾 = 0, the rogue wave triplets merge into a single, highly localized 
wave with an extremely high amplitude, often referred to as a super 
freak wave. This transition emphasizes the critical role of free plasma 
parameters in shaping the instability and nonlinear IAW dynamics. As 
illustrated in Fig.  13, the intensity profiles of rogue wave triplets are 
plotted against 𝜉 at 𝜏 = 1 for different values of the parameters of both 
the distribution functions, namely (𝑟, 𝛼) and (𝑞, 𝑞𝑛). The contributions 
of nonthermal electrons 𝛼 and spectral index 𝑟 to the rogue wave 
analysis are analogous in both distribution functions. However, the 
peaks of the rogue wave at approximately 𝜉 = 2.5 are larger for 
the generalized distribution function compared to the nonextensive 
nonthermal distribution, as illustrated in Fig.  13(a). As shown in Fig. 
13(b), a similar trend is evident for the nonextensive parameter 𝑞  and 
𝑛
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Fig. 11. The 2D behavior of the rogue wave triplets |𝛹2| with respect to 𝜉 and 𝜏 for (a) 𝛽 = 100 and 𝛾 = 0, (b) 𝛽 = 0 and 𝛾 = 100, (c) 𝛽 = −100 and 𝛾 = 0, and (d) 𝛽 = 0 and 
𝛾 = −100. The other parameters are 𝑟 = 1, 𝑞 = 2, and 𝑘 = 2.5.
the spectral index 𝑞 in the nonextensive nonthermal distribution and 
the generalized distribution function, respectively. 

5. Envelope solitons

The NLSE (19) exhibits integrability and supports exact localized 
solutions such as envelope solitons [63–65]. These solutions are ex-
pressed as 𝛹𝐷,𝐵(𝜉, 𝜏) = 𝜌𝐷,𝐵(𝜉, 𝜏)𝑒𝑖𝛩𝐷,𝐵 (𝜉,𝜏), where 𝛩𝐷,𝐵 represents the 
nonlinear phase shift and 𝜌𝐷,𝐵 is the envelope amplitude for dark and 
bright solitons. The nature of the solitons depends on the signs of 
the dispersion 𝑃  and nonlinear 𝑄 coefficients of NLSE [64,65]. For 
𝑃𝑄 < 0, the system corresponds to dark soliton with large wavelengths 
or small wavenumbers in the modulationally stable region (particularly 
for carrier wavenumber 𝑘 = 1.5), as illustrated earlier in Fig.  3. 
An analytical equation describing such dark solitons is provided in 
Ref. [35] as follows

𝜌𝐷(𝜉, 𝜏) = 𝛹0

[

1 − 𝑑2sech2
(

𝜉 − 𝑉 𝜏
𝐿

)]1∕2
,

𝛩𝐷 = 1
2𝑃

[

𝑉 𝜉 −
(

𝑉 2

2
− 2𝑃𝑄𝛹0

)

𝜏
]

The parameter 𝛹0 represents an asymptotic value of the electrostatic 
potential amplitude, 𝑉  is the constant propagation speed, and 𝐿 de-
notes the soliton width. The positive constant 𝑑 determines the depth 
of the void, with 𝑑 = 1 and 𝑘 = 1.5 (consistent with the 𝑃∕𝑄 profiles) 
corresponding to dark solitons, as illustrated in Fig.  14(a) and (b). The 
dark soliton profiles are clearly illustrated for 𝜏 = 0.1 and 𝜏 = 1.0, 
respectively. The red line denotes the reference level where 𝛹𝐷, 𝐵 = 0, 
which is a baseline for visualization of the amplitude characteristic of 
dark/bright solitons. In the modulationally stable region, dark solitons 
emerge as localized envelope voids (holes) that propagate within the 
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plasma. These solitons represent localized depressions in wave am-
plitude rather than peaks, distinguishing them from bright solitons. 
Consequently, the dark solitons are a prevalent form of electrostatic 
wavepacket in plasmas, arising due to the self-modulation.

Conversely, when the dispersion 𝑃  and nonlinear 𝑄 have the same 
sign (i.e., 𝑃𝑄 > 0), corresponding to shorter wavelengths or higher 
wavenumbers (as already illustrated in Fig.  3), bright-type solitons 
emerge. An analytical equation for bright solitons is given in [35,64–
66]

𝜌𝐵(𝜉, 𝜏) = 𝛹0𝑠𝑒𝑐ℎ
[

𝜉 − 𝑉 𝜏
𝐿

]

,

𝛩𝐵 = 1
2𝑃

[

𝑉 𝜉 −
(

𝑉 2

2
+𝛺

)

𝜏
]

where 𝛺 denotes the oscillation frequency of the bell-shaped envelope 
solitons when 𝑉 = 0. Note that such excitations are observed in optical 
fibers and bear a qualitative resemblance to bright pulses in the field 
of nonlinear optics [67]. The soliton width 𝐿 exhibits a strong depen-
dence on the amplitude, given by the expression (2|𝑃 |∕|𝑄|)1∕2∕𝛹0. It 
is important to emphasize that bright solitons emerge under the same 
conditions required for the occurrence of MI, specifically when 𝑃𝑄 > 0
(usually 𝑃∕𝑄 profiles are evaluated for 𝑘 = 2.5 or above), as shown 
in Fig.  15 (a) and (b). Such bright envelope solitons are commonly 
observed in space plasmas [66,68]. 

6. Conclusion

To summarize, we have explored the MI, dark/bright solitons, and 
rogue wave triplet structures, taking into account the various pa-
rameters associated with the (𝑟, 𝑞) generalized and 𝑞𝑛-nonextensive 
nonthermal distribution functions. This paper conducts a thorough 
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Fig. 12. The 3D behavior of the rogue wave triplets |𝛹2| with respect to 𝜉 and 𝜏 for (a) 𝛽 = 100 and 𝛾 = 0, (b) 𝛽 = 50 and 𝛾 = 0, (c) 𝛽 = 15 and 𝛾 = 0, and (d) 𝛽 = 0 and 𝛾 = 0. 
The other parameters are 𝑟 = 1, 𝑞 = 2, and 𝑘 = 2.5.
comparison of IAWs, aligning the current findings using the (𝑟, 𝑞)
distribution function with earlier results by Bouzit (2015) based on 
the nonextensive nonthermal velocity distribution, which are repro-
duced herein. In this context, the fluid model that incorporates the 
continuity, velocity and Poisson equations is condensed to a NLSE by 
employing the reductive perturbation technique. The carrier frequency 
approaches unity upon increasing the wavenumber, signifying the high-
frequency regime where it becomes less sensitive to further increases 
in k, while the group velocity slows down at large wavenumbers, 
indicating the wave dissipation in the plasma. Based on the criteria 
for MI, characterized by the ratio of the coefficients of the NLSE 
(𝑃∕𝑄), the stable and unstable regions have been precisely identified 
for different distribution functions where the onset of MI arises. It 
has been noted that the stable region defining the dark soliton varies 
inversely with the spectral indices (𝑟, 𝑞), and its effect on the dark 
soliton is more significant at lower end of wavenumber (𝑘). However, 
the effect of the indices in the unstable region characterizing the bright 
soliton is minimal at high end of 𝑘. A comparison study is being 
made between these results and those obtained for the nonextensive 
nonthermal velocity distribution. The nonthermal electrons 𝛼 and the 
nonextensive parameter 𝑞𝑛 have significantly influenced the behavior 
of dark and bright solitons. A key component of the plasma system’s 
behavior under consideration is the shift from a stable to an unstable 
regime that contributes to the possibility of rogue wave formation, in 
which the localized waves of large amplitude can emerge suddenly. 
This shift in soliton instability analysis demonstrates the significant 
influence of nonlinearity in the generation of extreme wave events, 
such as rogue waves, often driven by the MI. It has also been noted 
that the growth rate of MI exhibits a strong dependence on both 
the spectral indices of the generalized distribution function and the 
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generation of nonthermal electrons in the nonextensive nonthermal 
distribution function. The unstable region, in terms of the growth rate, 
increases significantly with the presence of nonthermal electrons and 
the nonextensive parameter, rather than being influenced by the spec-
tral indices of the generalized distribution function. The generalized 
(𝑟, 𝑞) distribution function effectively suppresses growth rates in the 
small 𝑘 regime, and therefore reducing energy available for large-scale 
instabilities. Conversely, the nonextensive nonthermal distribution en-
hances the growth rate suppression in the large 𝑘 regime, suggesting 
stronger damping of shortwavelength instabilities. These distributions 
uniquely influence MI dynamics, with the (𝑟, 𝑞) distribution stabilizing 
long-wavelength modes and the nonextensive nonthermal distribution 
damping short-wavelength modes.

In addition, the characteristics of the rogue wave triplets have 
also been explored. We have provided an in-depth exploration of the 
3D visuals of the first-order rogue waves and rogue wave triplets. A 
qualitative sketch of the rogue wave triplets arranged in a triangular 
pattern has been acquired, based on the physical free parameters 𝛽
and 𝛾. Moreover, the rogue wave triplets can be regarded as super 
freak waves when the physical free parameters are both equal to zero 
(𝛽 = 0 and 𝛾 = 0). In conclusion, both the (𝑟, 𝑞) generalized distribu-
tion function and the 𝑞𝑛-nonextensive nonthermal velocity distribution 
function provide valuable insights that substantially enhance our un-
derstanding of IAWs in nonthermal plasma environments. Moreover, 
we have comprehensively examined the existence domains of both dark 
and bright solitons, which are associated with modulationally unstable 
and stable regimes of IAWs, respectively. Our analysis further explores 
the conditions under which these solitons emerge, describing their 
distinct characteristics in relation to the stability properties of the wave 
dynamics. The influence of an external magnetic field on the dynamics 
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Fig. 13. The 1D behavior of the rogue wave triplets for the generalized (𝑟, 𝑞) and 𝑞𝑛-nonextensive distribution functions with respect to spatial coordinate 𝜉 for different values 
of (a) the spectral index 𝑟(= 1.0, 1.5) at 𝑞 = 2 and 𝛼(= 0.05, 0.07) at 𝑞𝑛 = 0.9, and (b) the spectral index 𝑞(= 2.0, 3.0) at 𝑟 = 1.0 and 𝑞𝑛 = (0.9, 1.0) at 𝛼 = 0.05.
of MI and rogue wave triplets is a significant area of research in dense 
plasma environments. This particular aspect is beyond the focus of our 
present study and could serve as a subject for future study. Future work 
should also focus on implementing numerical methods to solve the 
NLSE, which will help in validating and expanding the analytical results 
presented in this study. This combination of analytical and numerical 
approaches will provide a more comprehensive understanding of the 
problem and its solutions.
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Fig. 14. Variation of the dark envelope solitons Real(𝛹𝐷) versus the spatial coordinate (𝜉) in the regime 𝑃𝑄 < 0 for different values of the temporal coordinate (a) 𝜏 = 0.1 and (b) 
𝜏 = 1.0 at 𝑑 = 1 and 𝑉 = 1.
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Fig. 15. Variation of the bright envelope solitons Real(𝛹𝐵 ) versus the spatial coordinate (𝜉) in the regime 𝑃𝑄 > 0 for different values of the temporal coordinate (a) 𝜏 = 0.1 and 
(b) 𝜏 = 1.0 at 𝑑 = 1 and 𝑉 = 1.
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