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ARTICLE INFO ABSTRACT

Keywords: This study explores the implications of non-Maxwellian electron distributions on modulational instability
Nonlinear Wave Interactions and the formation of ion-acoustic rogue wave triplets in unmagnetized collisionless plasma. We employ
Nonlinear Schrédinger equation the reductive perturbation technique to derive the nonlinear Schrodinger equation from a fluid model that

Generalized (r,q) distribution function
Envelope solitons
Nonthermal electrons

incorporates these non-Maxwellian electron distributions. This framework enables a comprehensive analysis
of the modulational instability of ion-acoustic waves, characterized by the ratio of dispersion and nonlinear
coefficients within the nonlinear Schrédinger equation. The injection of nonthermal electrons and spectral
indices via g,-nonextensive nonthermal and generalized (r,¢) distribution functions significantly influences
the onset of modulational instability and its corresponding growth rate, providing critical insights into the
dynamic behavior of the plasma system. These distribution functions facilitate the identification of dark and
bright solitons in stable and unstable regions, respectively. Furthermore, we incorporate multiple physical
free parameters that affect the formation of rogue wave triplets. Remarkably, our findings reveal that these
parameters in the second-order rogue wave solution lead to three distinct peaks arranged in a triangular pattern
accompanied by a novel rotation of these peaks. We have thoroughly investigated the existence regions of both
dark and bright envelope solitons, which correspond to the modulationally unstable and stable regimes of ion-
acoustic waves, respectively. Our study explores into the criteria that govern the formation of these solitons,
elucidating their unique features in the context of the stability dynamics of the plasma’s wave system. This
systematic analysis enhances our understanding of the properties of ion-acoustic solitary waves that may arise
in non-Maxwellian space plasmas, paving the way for future research in this area.

1. Introduction the underlying mechanism of MI, which generates localized pulses
through the slow variation of a monochromatic plane wave. Moreover,

The phenomenon of modulational instability (MI) (so-called the MI and soliton formation governed by the NLSE have drawn
Benjamin-Feir Instability) emerges from the interplay between the significant conclusions because of their stable wave propagation. The
nonlinear self-interaction and linear dispersion or diffraction of the first experimental study of MI in monochromatic IAWs was carried out

wave configurations. This fundamental mechanism facilitates the am-
plification of perturbations on a continuous wave backdrop. MI has
garnered significant attention across various fields, including nonlin-
ear optics [1], fluid dynamics [2], plasma physics [3], Bose-Einstein
condensates [4], and deep water waves [5]. Nonetheless, investigating
MI in ion-acoustic waves (IAWs) has remained a prominent topic in
plasma physics. The nonlinear Schrédinger equation (NLSE) describes

by Watanabe [6]. MI has been a key area of study, with its occurrence
being explored in dispersive and nonlinear plasma systems for various
wave modes. This dispersive and nonlinear media have long been
recognized for wave energy localization.

Numerous theoretical investigations have explored the MI for differ-
ent types of wave modes. For instance, the MI of IAWs with thermally
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adiabatic ions in a collisionless electron-positron-ion (e-p-i) plasma
was reported by Chawla et al. [7]. Moreover, Jain and Mishra [8]
explored the propagation of IAWs with large amplitude in a colli-
sionless plasma containing the thermally adiabatic ions, isothermal
positrons, and electrons with two temperature distributions. However,
the nonlinear amplification of modulated electrostatic waves in pair
plasmas was explained by Kourakis et al. [9] through a fluid model.
Nejoh [10] explored the large-amplitude ion-acoustic waves in an
e—p-i plasma, focusing on ion temperature effects. Numerous stud-
ies have been conducted to examine the propagation of IAWs with
g,-nonextensive electrons and positrons by utilizing the bifurcation
process of planar dynamical systems, as seen in Ghosh et al. [11].
They found that both solitary and periodic waves exist, with a solid
connection to the physical parameters involved. The research by Tiwari
et al. [12] supported this study by examining the effects of cold ions,
hot electrons, and positrons in forming ion-acoustic dressed solitons in
a plasma. Saha et al. [13] studied the dynamical structures of IAWs
in e-p-i magnetoplasmas with superthermal electrons and positrons,
observing two- and three-solitons propagation using the Hirota direct
method on the Kadomtsev—-Petviashvili equation. Moreover, the oblique
propagation of IAWs and the emergence of envelope soliton were
further investigated by Jehan et al. [14]. They have found that the
presence of positrons alters the stability regions for small propagation
angles relative to the propagation direction. IAWs in unmagnetized and
collisionless plasma systems serve an important role in the research of
rogue wave phenomena.

Rogue waves have gained significant attention in the scientific
community due to their sudden emergence occurring in the extreme
ocean waves [5,15-17]. A more plausible mechanism for the forma-
tion of strongly localized rogue waves is the MI of weakly nonlinear
monochromatic waves, which was first discovered in water waves [18].
This instability is best described by the NLSE [19], which governs the
dynamics of wave trains in both time and space in waters of finite and
infinite depths [5]. The hierarchy solutions localized in both time and
space is found within the exact breather solutions on a finite back-
ground, amplifying the carrier wave’s amplitude by a factor of 3 and
beyond [20,21]. Solutions exhibiting these features are considered well-
suited to describe the formation of rogue waves [22-24]. The Peregrine
breather soliton, long been debated in the scientific community [5,15],
was experimentally observed in fiber optics [25]. It was later detected
in a water-wave tank [26], and subsequently observed in multicom-
ponent plasma [27]. These findings confirmed the effectiveness of the
nonlinear approach in describing the rogue waves. Furthermore, this
nonlinear approach predicts not only the fundamental Peregrine soliton
but also an infinite sequence of higher-order breather solutions, each
with an increasingly more significant amplitude [20,21], all of which
are localized in both space and time.

Various advanced methods have been employed to derive solutions
for the NLSE and analyze their physical implications. These techniques
include the Hirota bilinear method, the Darboux transformation, the
inverse scattering transform, the Krylov-Bogoliubov-Mitropolsky ap-
proach, and the reductive perturbation method (RPT), among others [5,
28-31]. The RPT fundamentally reinterprets the spatial and temporal
scales [32] for the governing equations of systems that model the long-
wavelength scenarios. These governing equations through the RPT are
reduced to simplify nonlinear evolution equations, such as Burgers,
Korteweg—de Vries (KdV) and NLS equations. Several studies have used
RPT to investigate the dynamics of non-linear acoustic waves [32-34].
Hence, it is significant to identify that RPT can serve as a powerful
tool analyzing small-amplitude nonlinear wave dynamics in plasma
systems. One of the most widely used approaches, the multiple scales
technique (applied in both space and time), typically leads to the
derivation of the NLSE that governs the evolution of a slowly modulated
wavepacket envelope. A key trigger mechanisms for the growth of
envelope solitons is MI, as it causes a wave field that was initially
continuous or weakly modulated to spontaneously produce localized
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wave packets or solitons. In nonlinear plasma waves, MI plays a crucial
role in energy localization, leading to the emergence of bright envelope
solitons. However, the dark solitons exist even in the absence of MI,
while gray envelope solitary waves, which are characterized by a
velocity-dependent amplitude that may arise under certain conditions.
In space plasmas, Kourakis and Shukla [35] explored the oblique
modulation of electron acoustic waves, signifying that these waves
could become unstable and the stability criteria strongly depend on
the angle 6 between the modulated wave and the wave propagation
directions. They further showed that various types of localized envelope
excitations of electron acoustic waves can arise in the system. The high-
frequency dissipative envelope soliton in the framework of fluid theory
has also been investigated in nonthermal plasmas [36]. In plasma
systems, multiple distribution functions have been applied to study of
rogue waves within the frameworks of ion and electron acoustic waves.

Though the Maxwellian distribution applies to systems in ther-
modynamic equilibrium, but astrophysical and space plasma systems
that possess particle distributions deviate from it due to their quasi-
steady state nature. Owing to non-equilibrium phenomena, electrons
and ions in reality may not follow the Maxwellian distribution [37,38].
To address non-equilibrium phenomena, Qureshi et al. [39] proposed
a more suitable and all-inclusive velocity distribution, referred to as
the (r,q) generalized distribution function. The parameters r and ¢ in
this distribution function correspond to high-energy particles located
on the wider shoulder of the velocity curve and the superthermality
detected at the tail of the velocity curve, respectively. Zaheer et al. [40]
employed the (r,q) distribution to study electrostatic wave modes,
while Qureshi et al. [39] used it to examine the parallel propagation
of electromagnetic waves. Shah et al. [41] explored nonlinear electron
acoustic waves in planetary magnetospheres using the generalized (r, q)
distribution, which accommodates both compressive and rarefactive
solitary waves, in contrast to Maxwellian and kappa distributions that
only allow rarefactive structures. Besides the (r, g) distribution function,
the g-nonextensive nonthermal distribution has been adopted for col-
lective and nonlinear systems exhibiting long-range interactions, which
are often observed in astrophysics and plasma physics [42,43]. The
study by Samanta et al. [44] focused on IAWs in a two-component
plasma, considering the effects of a static magnetic field and kappa-
distributed electrons. They have determined that the planar dynamical
systems accommodates both solitary and periodic traveling wave so-
lutions by using bifurcation theory. In this study, the nonextensive
parameter ¢ is referred to as g, to differentiate it from the index ¢ in
the generalized (r, g) distribution function. This study aims to reassess
the MI of IAWs using the (r,q) distribution function and to compare
the results with those obtained from the g,-nonextensive nonthermal
distribution. To our knowledge, the MI and the rogue wave triplets for
IAWs for the generalized (r, g) distribution function and g¢,-nonextensive
nonthermal distribution are not explored yet.

Therefore, the purpose of this study is to offer a comprehensive
analysis of MI and its corresponding growth rate for IAWs, focusing
on the effects of the spectral indices of the generalized distribution
function on the rogue wave triplets. In earlier studies, the Lorentzian
kappa velocity distribution and nonextensive distribution functions
with nonthermal character have been used to investigate the MI and
first-order rogue waves of IAWs [45]. Here, we use the same set of
fluid equations for stability analysis of IAWs with the (r,q) distribu-
tion function and compare the results with those obtained using the
nonextensive distribution function. The stable region of MI reduces
concerning the P/Q ratio due to the spectral indices of the generalized
distribution function, which will be discussed later. Here, the terms P
and Q are the dispersion and nonlinear terms of NLSE, respectively.
Moreover, the study also yields the explicit equations for the growth
rate and rogue waves associated with MI. The graphical representations
of the rogue wave triplets have also been displayed.

This paper is organized as follows: Section 2 discusses the dis-
tribution functions, the derivation of the NLSE using the reductive
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perturbation scheme, and the graphical representation of dark and
bright solitons in terms of P/Q ratio. The derivation of the MI growth
rate and its graphical representation is outlined in Section 3. The results
related to the emergence of rogue waves are presented in Section 4.
Section 5 provides a comprehensive overview of the envelope soliton
solutions derived from the NLSE. The concluding remarks are given in
Section 6.

2. Distribution functions and the governing equations

This study focuses on the propagation of nonlinear ion-acoustic soli-
tary waves within an unmagnetized and collisionless plasma obeying
the generalized (r, q) distribution and g,-nonextensive nonthermal dis-
tribution functions. Different distribution functions have been modeled
for the Earth’s magnetosphere, particularly for the polar cusp [46]
and the magnetosheath [47] that reveal unique features differing from
Maxwellian and kappa distributions. In this context, a generalized (r, q)
distribution function has been adopted, which has the following form
as [48,49]:

r+1)] 74
ﬂmm=NL+ﬁ7Gi§%3y+i, o)
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where v,,(= /2T,/m,), I, e, ¢ stand for the thermal velocity, the
gamma function, the electronic charge, and the electrostatic potential,
respectively. The variables m, and T, in v,, correspond to the electron
mass and temperature. To ensure that the velocity distribution function
(1) is a real and positive function, the constraints ¢(r + 1) > 5/2 and
g > 1 must hold. Integrating (1) in the velocity space yields the electron
density as:
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where ¥ = e¢/T, corresponds to the normalized electrostatic potential
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Equations (5-7) reduce to C; = 1, C, = 1/2, and C; = 1/6 under the
conditions ¢ — oo and r = 0, retrieving the Maxwellian distribution. In
the case of ¢ - x + 1 and r = 0, the kappa distribution is recovered
with the parameters C; = (x — 1/2)/(k — 3/2), C; = (k — 1/2)(x +
1/2)/Q(x — 3/2)%) and C; = (k% — 1/4)(x + 3/2)/(6(x — 3/2)%). We
focus on elucidating the importance of the (r, q) generalized distribution
function and exploring its broader implications for MI and rogue wave
analysis. Fig. 1 shows the distribution function plotted against the
normalized velocity u,,,,mqiz.q fOT different values of the spectral index r
at fixed ¢. The figure shows that as r increases, the distribution becomes
flatter at the peak compared to the Maxwellian distribution. While
the Maxwellian distribution exhibits a Gaussian (bell-shaped) profile,
the generalized distribution displays a more complex structure, often
featuring heavy tails or nonthermal characteristics depending on the

Cz = (6)

C3 = (7)
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spectral indices. Furthermore, an increase in r broadens the shoulders
of the distribution function and reduces the presence of high-energy
particles. Similarly, increasing ¢ while keeping r fixed also leads to a
decrease in the distribution function at higher energy levels. This pa-
per’s main objective is to understand how the (r, q) distributed electrons
and the electrons obeying the nonextensive nonthermal distribution
function influence the onset of MI and rogue waves in the plasma
system. The current investigation aimed to shed light on the dynamics
of IAWs in nonthermal plasma environments within the framework of
the fluid model with these distributions. The electrons are considered
to be nonextensive and exhibit nonthermal behavior, which can be
represented by the following distribution function as [45,50]:

1
4 o) 2, qn—l+2
iz o(F-3) Jreon(FH) o

te te
where Copa> @ and ¢, are the normalization constant, nonthermal
electrons, and nonextensive parameter, respectively [45]. Moreover,
Verheest [51] provided a constraint on the range of nonextensive
parameter to be more relevant 1/3 < g, < 1. The electron density is
obtained by integrating the distribution function in (8) over the velocity
space as follows [45]:

1 1
wmita
ne(¢)={1+<qn—l>§$} [1+A<;¢>+B<;¢>], 9)

where the parameters A = —16q,a/(12a + 15q5 —14¢, +3) and B =
16g,a(2g,—1)/(12a+ ISqﬁ —144,+3). To facilitate our analysis, we define
the dimensionless parameter ¥ = e¢/T, in Eq. (9), which will play a
key role in all subsequent theoretical formulations. For the derivation of
NLSE using the nonextensive nonthermal electron velocity distribution,
the parameters C;, C,, and C; are derived by Bouzit et al. [45]. These
parameters C;, C,, and C; are distinct from the ones obtained in the
(r, q) generalized distribution function.

This study focuses on the system of normalized fluid equations
(i.e., continuity, momentum, and Poisson’s equations) for the MI, which

describe the plasma environment as:
on;  d(nu;)
— + —— =0, 10
ot ox (10)
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here the variables n;(n,), u;, and ¥ correspond to the normalized
ion(electron) densities, ion velocity, and electrostatic potential, respec-
tively. The ion (electron) densities are normalized by their equilib-
rium values #n;y(n,), while u; is normalized by the ion acoustic speed
Cis(= Ap;w,;) where o, (defined as \/(4znye?/m;) and 1p, (defined as
V(T /4znye?)) represent the ion plasma frequency and Debye length,
respectively. In this study, the temporal coordinate ¢ and the spatial
coordinate x are normalized by the inverse of ion plasma frequency
(w;{.‘) and ion Debye length (4p,), respectively. To explore the behavior
of IAWs modulation, we apply the reductive perturbation technique,
which leads to the derivation of the NLSE. In this formulation, the
independent variables & = e(x — Ugt) and r = £2¢ are introduced, with
€ as a small perturbation and v, representing the group velocity of the
wave. However, the dependent variables are expanded as
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m=1 I=—c0
U = Z £m 4 Z ,,;m)(g, expli(kx — wt)], a9
m=1 I=—0c0
W= e+ Y ¥ E Dexplithx — ). as)

l=—c0

3
I



A. Khan et al.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 195 (2025) 116262

1.0E5

—r=1.0 b
—r=1.5
—r=3.0
r=10.0
——Maxwellian

3 4o10L

ra

1020F |

—q=2.0
—q=3.0
—q=5.0

g=10.0

| —— Maxwellian |

-10 -5

0 5 10

u )
normalized

Fig. 1. Variation of the generalized (r,q) distribution function with respect to normalized velocity « for different values of (a) the spectral index r at ¢ =2 and (b) the spectral

index ¢ at r=1.

The zeroth-order harmonic causes nonlinear self-interaction in carrier
waves. However, the analytical calculations from the zeroth-order har-
monic equations to the third-order reduced equations demonstrate the
significance of nonlinear self-interaction in carrier waves. The analysis
defines the dependent variables n, u, and ¥ as functions of fast (x,7)
and slow (&, 7) coordinates to effectively separate different scales. The
reductive perturbation method is employed to study the modulation of
IAWs, leading to the derivation of the NLSE. For that, the independent
variables are stretched as ¢ = e(x — v,#) and 7 = £2t, where ¢
represents a small parameter describing the perturbation strength, and
v, is the group velocity of the wave packet. The field variables (n, u, ')
are expanded in powers of ¢, expressed in terms of both fast (x =
&y.t = 1) and slow (&, 7) coordinates. Furthermore, the fast spatial and
temporal coordinates are (&, 7)), while the slow coordinates are (&, 7).
This systematic separation effectively describes the nonlinear dynamics
of the system.

The condition A]' = (A™)* must be satisfied to confirm that the
physical quantities n,,n,,u,,, and ¥ remain real, where the aster-
isk denotes complex conjugation of the associated variable. By sub-
stituting these conditions along with the stretched coordinates into
Egs. (10)-(12) and equating terms of the same power of ¢, the reduced
equations for the mth order are derived. For instance, at the first-order

[ I
1

approximation (m = 1), the first-order quantities otnt? Yyl a1

are obtained using Egs. (10)-(12) as:
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The following system of equations is obtained by applying Egs. (13)—(15)
to the second-order perturbation equations of O(g2) as:
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The linear dispersion relation for IAWs is derived by solving the system
in Eq. (16) through the solution (n",u{", #")T = ([NU)(g, 0, U, 1),
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Fig. 2. Variation of the wave frequency with respect to normalized wavenumber (k) for different values of (a) the spectral index r at ¢ =2, (b) the spectral index ¢ at r =1, (c)
the group velocity (v,) for different values of r at ¢ =2, and (d) the group velocity (v,) for different values of ¢ at r = 1.

The compatibility condition is obtained from the second-order per-
turbation equations using Eq. (20). This modified condition offers
a comprehensive framework for understanding the plasma system’s
behavior under perturbations and is expressed as:

G
v, = —m———
k2 4+
Following similar steps by applying the standard analysis (as in

Ref. [45]), we derive the corresponding NLSE using the second and
third order harmonic solutions as:

(21

oy 9y 2
' P Ol =g 22
i——+ Y + 01| (22)
with
3 1
P=-2kC————
27 2+ ¢y
k 2 3/2
=———— | 3C; +2C,(Ap + By) — 2(k“ + C A, + B,
o 2+ [ 3 2(Ay + By) = 2( 1) (A, + By
— (K> +C))A, +B,) ] (23)

where P and Q are the dispersion and nonlinear coefficients, respec-
tively. The variables defining these coefficients of NLSE are: Ay =
(K + C?/2k* = C,/3K*, By = (-2C,u; + (K* + 3C)))/(Cyv; = 1),
A, = (C) + 4D Ay + Cy, B, = CBy + 2Cy, A, = w/k[A, — (k2 +
C))?, and B, = -2(k? + C))* - w/k + v, B,. The nonlinear propagation
of IAWs gives rise to two prominent effects: (i) nonlinear frequency
shift and (ii) group velocity dispersion. However, different mechanisms
contribute to the nonlinear frequency shift, namely, nonlinear Landau
damping, trapped electrons and ions, wave-wave coupling. These con-
tributions have drastically different amplitude dependence because the

nonlinearity coefficient in the NLSE affects the nonlinear frequency
shift. Conversely, the manifestation of group velocity dispersion occurs
through its corresponding coefficient in the NLSE.

In Figs. 2(a) and 2(b), the angular frequency w is plotted over
the wavenumber (k) for various values of the spectral indices of the
generalized distribution function. The frequency increases with the
spectral indices, as clearly illustrated by the relation @? = k?/(k> + C)).
Furthermore, the frequency approaches unity over a broad range of
k; in Figs. 2(a) and 2(b). It is noteworthy that for higher values of
the spectral indices of the generalized distribution function, the carrier
frequency w(k) exhibits a nonmonotonic trend. At large wavenumbers,
the said frequency approaches unity, indicating that the wave reaches
the high-frequency regime where it becomes less sensitive to further
increases in k. In contrast, the group velocity behaves differently. At
lower wavenumbers, specifically for r = 1 and ¢ = 2, the group
velocity is nearly one, while it decreases as the wavenumber rises.
The group velocity is larger than unity as the spectral indices of the
generalized distribution function increase, as illustrated in Figures 2
(c) and (d). This indicates that the wave packet slows down as the
wavenumber enhances, indicating the presence of wave dissipation or
damping mechanisms in the plasma.

This paper investigates the nonlinear properties of IAWs, examining
the impact of various plasma parameters and the non-Maxwellian
spectral indices (r,q). This study is relevant to auroral plasmas in
Earth’s magnetosphere, where observations suggest the presence of
beam electrons that influence the IAW dynamics. To explore the pos-
sible nonlinear effects, we analyze an extreme case with r = 5 and
g = 10, extending beyond the previously established ranges [39,52].
Furthermore, Williams et al. [53] restricted the range of permissible
nonextensive parameters to 0.6 < ¢, < 1 in the g,-nonextensive
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Fig. 3. Variation of the ratio P/Q with respect to normalized wavenumber (k) for different values of (a) the spectral index r(= 1.0,1.5,3.0,10.0) at g =2 and (b) the spectral index

q(=2.0,3.0,5.0,10.0) at r = 1.0.

nonthermal distribution function. In the extensive case where ¢ = 1 (the
limiting case), the distribution function described in Eq. (8) reduces to
the well-known Cairns distribution [54]. In this work, the nonthermal
electron parameter « is comparable to the one employed by Bouzit
et al. [45]. The nonlinear effects in the NLSE allow us to examine the
stable/unstable regions of IAWs. However, the dispersion and nonlinear
coefficients (P and Q) are the key parameters in the NLSE that influence
the stable and unstable regions. The stable soliton solutions to MI are
predicted by the NLSE, depending on the signs and magnitudes of P
and Q [55]. For PQ < 0, the amplitude-modulated envelope remains
unaffected by external disturbances, indicating a dark or stable soliton.
The amplitude-modulated envelope becomes unstable for PQ > 0 due
to external disturbances. The instability region promotes the collection
of plasma species, leading to the formation of both bright solitons and
rogue waves [56].

Based on the MI criteria, the stable and unstable regions of IAWSs
are distinctly identified in terms of the P/Q ratio. The stable and
unstable domains are determined by the negative (positive) P/Q ratio.
This further facilitates the analysis of dark and bright solitons. The

negative sign of P/Q corresponds to an innately stable dark soliton. On
the other hand, bright soliton is signified by the positive sign of P/Q
and is either unstable or marginally unstable. The dependence of P/Q
against wavenumber (k) for distinct values of the spectral indices (r, q)
of the distribution function as shown in Fig. 3. The stable region of the
dark soliton decreases as the spectral index r increases, as depicted in
Fig. 3(a). The impact of the index r on the dark soliton becomes more
prominent at the lower end of k., while its effect on the bright soliton
becomes less significant at the larger end of k. The onset of instability,
characterized by the critical value k(= 2QP‘1¥’§) is reduced to smaller
values as r intensifies. This suggests that the non-Maxwellian index r
promotes the emergence of instability at large wavelengths. The thresh-
old value for the instability is 1.75 at r = 1 and fixed g, which resembles
the previous results by Bouzit et al. [45]. Furthermore, as illustrated in
Fig. 3(a), the MI threshold value varies inversely with the index r. Fig.
3(b) shows the profile of P/Q ratio against k for the spectral index ¢ at
fixed r(= 2). Here, dark and bright solitons can exist, defining the stable
and unstable regions of the MI, respectively. The threshold value of the
MI in terms of P/Q as a function of k varies inversely with ¢ as clearly
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Fig. 4. Variation of the ratio P/Q for the generalized (r,q) and g,-nonextensive distribution functions with respect to normalized wavenumber (k) for different values of (a) the
spectral index r(=1.0,1.5) at ¢ =2 and a(= 0.05,0.07) at g, = 0.9, and (b) the spectral index ¢(=2.0,3.0) at r = 1.0 and g, = (0.9,1.0) at « = 0.05.

illustrated from Fig. 3(b). One can immediately conclude that the dark
soliton is found in the region 0 < k < 1.75, while the bright solitons
is found in the region k > 1.75 for the different choices of the spectral
indices of the generalized distribution function. The non-Maxwellian
parameters exhibit only a marginal influence on the bright soliton at
the higher end of k, as demonstrated by the small images in Fig. 3. Fig.
3 elucidates the effects of increasing nonlinearity (dependent on the
spectral indices of the distribution function) on the stability of envelope
solitons within the plasma system. As the spectral indices vary, the
system undergoes a transition from a dark soliton (characterized by
P/O < 0) to a bright soliton regime (where P/Q > 0). In later
scenario, an instability becomes more prominent at higher values of the
spectral indices, particularly at larger wavenumbers. This indicates that
enhanced nonlinearities can destabilize bright solitons, leading to more
intricate wave dynamics. The transition from stable to unstable region
is a key aspect of the plasma system dynamics, which confirms the
possibility of rogue wave formation, where localized large-amplitude
waves can suddenly appear. This shift in soliton stability indicates the
strong relationship between nonlinearity and the emergence of extreme

wave phenomena, such as rogue waves, which are often associated with
MI.

This study also explores the influence of g,-nonextensive nonther-
mal distribution on MI and compares the findings with those from the
(r, q) distributed electrons, as depicted in Fig. 4. The parameter g, can
assume the value in the range of 0.6 < ¢, < 1 in the nonextensive
nonthermal distribution, as explained by Bouzit et al. [45], whereas the
parameter g is restricted from being one in the generalized distribution
function presented by Shabbir et al. [49]. Both distribution functions
identify the stable (unstable) regions, represented by negative (positive)
values of the P/Q ratio, respectively. The P/Q < 0 region is conducive
to dark solitons, while the P/Q > 0 region is indicative of bright
solitons. It is found that the g,-nonextensive nonthermal distribution
significantly impacts the dark and bright soliton compared to the (r, q)
distribution function as shown in Fig. 4(a). For the case a = 0.05, the
onset of instability using the g,-nonextensive nonthermal distribution is
dramatically smaller than that found with the spectral index (r) of the
generalized distribution function. However, the inclusion of minimum
nonthermal electrons (¢ = 0.07) significantly reduces the onset of
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instability. On the other hand, the nonextensive parameter (g,) com-
pared to the spectral index (q) of the generalized distribution function
significantly influences the stable and unstable regions as shown in Fig.
4(b). It is observed that the critical value of the MI for the nonextensive
parameter (g, = 0.9) at « = 0.05 is 0.56, which is substantially smaller
than that found for ¢ = 2 at r = 1 in the generalized distribution
function, as illustrated in Fig. 4(b). The analysis indicates that the
g,-nonextensive nonthermal distribution influences MI and envelope
solitons more than the generalized (r, q) distribution function.

3. Stability analysis of the ion acoustic-waves

A small perturbation §% can be introduced to analyze the MI of
IAWs. Despite the critical influence of obliqueness on the stability
criteria, the IAWs are considered to propagate in the direction of
the pump carrier waves [57,58]. For the analysis of MI of IAWs, we
assume the plane wave solution as ¥V = W exp (iK¢ + iwt), where
¥,, K, and w represent the constant real amplitude, the modulation
wavenumber, and the real frequency, respectively. Applying this plane
wave solution into the NLSE leads to the derivation of the nonlinear
perturbed dispersion relation as: w = Qng — PK2. For the analysis of
MI, we introduce a small perturbation in ¥V, yielding the following
form.

¥ = (¥, + 6¥)exp (iK¢ + iwr) @4

where 8% corresponds to the small perturbation in amplitude. The
constant pump carrier amplitude ¥, is substantially larger than its
perturbed counterpart, i.e. |¥,| > |6%¥|. The NLSE (Eq. (22)) is further
simplified by substituting Eq. (24) and omitting higher-order perturbed
amplitudes, resulting in the linearized equation in 6% as follows:

iy ( 4 95

j—— —wsW+P 2ikE — K25y P2R5Y+5¥P*) =0 (25
i———wo¥+ 3§2+1 T >+Qo( +6¥7) (25)

here the asterisk signifies the complex conjugate of the §%. Based on
the approach described by Kengne and Liu [59], we look for solutions
to Eq. (25) in the following form:

8% = by expli(K y & — Q0)] + b¥ expl—i(K & — 2* 1)), (26)

in Eq. (26), b; and b;‘ are complex amplitudes, where Q denotes
the complex modulation frequency, and K,, is the real modulation
wavenumber associated with the perturbations. Applying the real mod-
ulation frequency (e.g., w = Q‘P&—P]CZ) along with Eq. (26) to Eq. (25)
leads to the following equation for the complex frequency (£2) as:

Q=2PKyK+iPKy Z?Qavg -K2

@7
The dependence of the modulation frequency (£2) on both the real
modulation wavenumber K, and the carrier wavenumber K is evident
from Eq. (27). The imaginary component of 2 determines the stability
of the IAWs. According to Eq. (27), the IAWs will be unstable under
modulation if Im(€) is greater than zero, while they will be stable if
Im(£2) is zero or negative. It is important to note that when 2Q'I’g /P>
KIZVI’ the IAWSs remain unstable under modulation since their frequency
is real for any admissible value of modulation wavenumber (K,,).
Conversely, when 2Qll’g /P < K3,
modulation because the real part of the frequency is zero for any value

the IAWs remain stable under

of the modulated wavenumbers (K,,). For a positive product PQ, the
frequency £ will show a nonzero real part if the modulation of the
perturbation meets the following criteria.

k2, - 22

2
I PY’O<0

(28)
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Under condition (28), the equation that determines the local growth
rate Im(Q) of MI is as follows:

20
P
We now analyze the stability and instability of modulated wave packets
using the NLSE (22) that describes the MI of IAWs. Bains et al. [50]
examined that the IAWs become unstable under modulation when
PQO > 0. Here PO > 0 is the region where KJZW is less than the
critical wavenumber k(= 2Q¥’g /P). The k, defines the boundary of
the instability region. Two distinct solitons can be identified: stable
dark envelope solitons for region PQ < 0 and unstable bright envelope
solitons for region PQ > 0. Furthermore, the spectral indices (r,q) of
the generalized distribution function clearly influence the dispersion
and nonlinear coefficients (P and Q), which in turn have a potential
impact on the stable and unstable regions of IAWs.

We investigate the impact of the spectral indices in the generalized
distribution function on the MI growth rate of IAWs in a long range of
modulation wavenumbers (K,,) as shown in Fig. 5. The growth rate is
evaluated in the MI region where PQ > 0, indicating that the dispersion
and nonlinear terms have the same sign. The growth rate of MI of IAWs
for various choices of the index r reaches a peak value in the middle of
the modulation wavenumber. The peak value of the MI growth rate for

Im(Q) = |PK | 2 - K3, (29)

r =1 is found to be larger than that found for r = 10 as shown in Fig.
5(a). It is important to identify that the growth rate for r = 10 is fully
suppressed at K,, = 0.8. However, the suppression effect becomes less
as the value of r decreases. Furthermore, in the range 0 < K, < 0.5, the
growth rate is enhanced due to the modulation wavenumber K, being
located outside the square root (e.g., see Eq. (29)), as shown in Fig.
5(a). As evident from Eq. (29), the MI growth rate decreases due to K,
being inside the square root. The influence of the spectral index g on
the MI growth rate is depicted in Fig. 5(b). The growth rate shows the
similar trend as for the spectral index r. The role of the spectral index
g in the MI analysis is less prominent than that of the r, as portrayed
in Fig. 5(b). This study finds that the impact of both non-Maxwellian
indices on the growth rate of MI is marginal at the high end of K,,.
The MI growth rate, depicted in Figs. 5(c) and 5(d), is evaluated
as a function of K, for various choices of carrier wavenumbers k and
a real constant amplitude ¥,. The spectral indices of the distribution
function for this case are kept constant which are (1,2). It is evident
from Eq. (29) that the critical wavenumber k, significantly depends
on the carrier wavenumber k, which in turn enhances the unstable
region of the instability. As the carrier wavenumber k increases, the
ratio Q/P also increases, thereby increasing the range of modulation
wavenumber K,,. For this purpose, Fig. 5(c) demonstrates that the
critical wavenumber k, increases with the carrier wavenumber k, which
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atr=1, k=25, and r =0.5, (c) the wavenumber k at r =1 and g =2, and (d) temporal coordinate r at r=1, ¢ =2, and k =2.5.

enhances the instability region. Fig. 5(d) shows that the growth rate of
MI increases as the constant real amplitude ¥, increases. The modula-
tion wavenumber outside the square root (e.g. see Eq. (29)) causes the
growth rates to increase and reach peak values in the unstable region.
This indicates that the maximum value of the growth rate becomes
more prominent when the constant amplitude ¥, increases. However,
the growth rates are entirely suppressed when K,, > 3 for all amplitude
values ¥, due to K, being inside the square root, as illustrated in
Fig. 5(d). The increased instability at larger ¥, indicates that a higher
plasma potential amplifies MI. In general, MI dynamics are significantly
influenced by the spectral indices of the generalized distribution func-
tion (r, ¢), the wavenumber k, and the plasma potential ¥, as shown in
Fig. 5. It demonstrates that the instability growth rate decreases with
rising spectral indices r and ¢, indicating that higher values of these
indices tend to stabilize the IAWs. Conversely, the plasma potential ¥,
and the carrier wavenumber enhance the instability at large modulation
wavenumber.

The nonextensive nonthermal velocity distribution, characterized
by the parameters ¢, and a, reflects the effects of nonextensive and
nonthermal electrons on MI, while the parameters r and g serve as
the spectral indices in the generalized distribution function. We inves-
tigate the impact of ¢, and a on the MI growth rate and compare it
with the results obtained from the generalized distribution function,
as shown in Fig. 6(a). In Fig. 6(a), the growth rate observed for the
parameters g, and « is higher than that of the generalized distribution
parameters. Compared to the generalized distribution, the MI growth
rate in the nonextensive velocity distribution is nearly 0.004 times
larger. Moreover, the influence of the parameters g, and a on the MI
growth rates is more significant than that of the spectral indices r and
q. The injection of nonthermal electrons («) into the plasma system
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expands the instability region of IAWs, as illustrated in Figure 6(a).
In the cases of g, = 0.9 and g, = 1.0, the MI growth rate follows
an inverse trend to that for nonthermal electrons («), as illustrated
in Fig. 6(b). Compared to the generalized distribution function, the
instability region of IAWSs is much more significant in the nonextensive
nonthermal distribution. This suggests that the scenario for the emer-
gence of rogue wave triplets in a plasma system, as indicated by the
fluid model for IAWs, is still probable in the instability region [45,50].
Compared to the g,-nonextensive nonthermal distribution function, the
generalized (r,q) distribution results in a lower growth rates in the
small k region by modifying the plasma’s response to long-wavelength
perturbations, thereby reducing the available energy for instability at
large scales. On the other hand, the nonextensive nonthermal distri-
bution enhances the suppression of the growth rate in the large k
regime, indicating a stronger damping effect on the instability at short
wavelengths. These distributions play distinct roles in the dynamics
of MI in plasmas, with the generalized (r,q) distribution stabilizing
long-wavelength modes and the nonextensive nonthermal distribution
damping short-wavelength modes.

4. Formation of rogue wave triplets

The emergence of rogue waves of IAWs in a dispersive plasma
medium is described by the NLSE (Eq. (22)). This equation is a partial
differential equation that illustrates the effects of both dispersion and
nonlinearity. Furthermore, this equation admits numerous types of
solutions, namely breathers, rogue waves, rogue wave triplets, dark
and bright solitons. These solutions are contingent upon the features
of plasma and their initial conditions. The NLSE provides infinitely
numerous exact breather solutions for ¥, localized in space and time
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Fig. 8. The 3D behavior of the first-order rogue waves |¥,;| with respect to ¢ and 7 for (a) k =2.5, (b) k=3.0, (¢c) k=35, and (d) k=40 atr=1and g=2.

in the modulationally unstable region where PQ > 0. The growth of
random amplitude perturbations in the PQ > 0 region leads to the
emergence of rogue waves. The rational solution of Eq. (22) for the
rogue wave in the PQ > 0 region can be obtained using the Darboux
transformation scheme for both time and space as follows [60,61]:

G, 1)+ iK,(, 1)
D,¢.7)

where G,, K,, and D, are functions related to the order » of the solu-
tion. To ensure the solution remains finite everywhere, the denominator
D, must not have any zeros. The first-order rogue wave solution of
Eq. (22) is given as [60,61]:

¥, (& 1) = [(—1)" + ]exp(iQT), (30)

1+42i07t

1 +4(Qr)? +4<,/%§>

The second-order rogue wave solution of Eq. (22) is given as [60,61]

V(& 1) = [—1 +4 2] exp(iQ7), (31)

P&, 7) = [1 + —Gz(é’ggﬁz(é’ T)]exp(iQr), (32)
h(S,
with
o\ 0.\
G, =12 [3—16( ﬁ§> —24( ﬁ,:) (4(Qr)2+1)
o
_4ﬂ< ﬁ§> (33)

-80(Q7)* — 72(Q7)* + 47(Q7) ] ,
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the parameters § and y are real constants that can be chosen arbitrarily.
The solution involves D, as a 6th-order polynomial, while G, and K,
as 4th- and 5th-order polynomials, respectively. Ankiewicz et al. [60]
employed different coefficients compared to those in (e.g., see Dubard
et al. [62]), owing to the precise form of the NLSE. The presence
of the free parameters y and p distinguishes these equations from
those found earlier by Akhmediev et al. [21]. It was concluded by
Ankiewicz et al. [60] that these solutions agree with the equations
derived by Akhmediev et al. [21] when y and p are both set to zero.
The presence of non-zero parameters significantly affects the higher-
order rogue wave structure. In this work, we extend the analysis of

396(Q7)> +9+ 8 [ﬁ + 4(

(35)
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Ankiewicz et al. [60] on higher-order rogue waves, referred to as rogue
wave triplets, for the IAWs using the plasma fluid model. The goal of
our analysis below is to identify the relative positions concerning y and
p for rogue wave triplets in the plasma system.

The substantial impacts of the spectral indices (r,q), the carrier
wavenumber k, and the temporal coordinate = on the first-order rogue
waves of IAWs are explored, as depicted in Fig. 7. It is evident from Fig.
7(a) that the peak value of the rogue wave positioned at £ = 0 increases
with the index r at fixed ¢(= 2) and z(= 0.5). Since the ratio P/Q against
k shows minimal variation for various values of r, therefore a similar
trend of r can be seen here in the ion acoustic first-order rogue waves.
Moreover, the index ¢ also has a marginal effect on the rogue waves, as
seen in Fig. 7(b). The intensity profile of the first-order rogue waves is
plotted as a function of & for different values of the wavenumber k as
shown in Fig. 7(c). The wavenumber significantly impacts the rogue
waves, leading to a flattening of the amplitude of the rogue waves
as the wavenumber increases. Moreover, the maximum values of the
rogue wave at ¢ = 0 drop when k surpasses 2.5, as depicted in Fig.
7(c). The temporal coordinate r also dramatically affects the dynamics
of the first-order rogue waves, as depicted in Fig. 7(d). As illustrated
in Fig. 7(d), the one-dimensional (1D) profile of || shows that the
amplitude becomes narrower at smaller values of 7, indicating a more
robust localization of IAWs.

The three-dimensional (3D) visualization of the first-order rogue
wave at different carrier wavenumbers k is illustrated in Fig. 8. Here
the spectral indices (r,q) are constant (1,2). It can be seen from Fig.
8(a) that the rogue waves amplitude broadens at smaller values of k.
This further indicates the localization of the rogue waves. Consistent
with the 1D profile shown in Fig. 7(c), the amplitude of the first-order
rogue waves of IAWs becomes narrower at k = 2.5, but widens with
increasing k, as illustrated in Fig. 8.
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The 1D behavior of rogue wave triplet against ¢ for various values
of the wavenumber k is evaluated while the spectral indices (r,q) of
the distribution function, the physical free parameters (f and y) and
the temporal coordinate 7 kept fixed as shown in Fig. 9. It is evident
from this figure that the rogue waves exhibit two distinct peaks within
the spatial coordinate range —5 < & < 5 for different values of k. The
rogue wave triplets reach their peak values at two different locations,
namely £ = —1.25 and & = 1.25 as shown in Fig. 9(a). Notably, the rogue
waves’ peak intensity grows with increasing wavenumber at & = —1.25
but declines at & = 1.25, as illustrated in Fig. 9(a). As seen in Fig. 9(b),
the intensity profiles of the rogue wave triplet are displayed for various
values of 7 in the same range of & (-5 < & < 5). This figure further
illustrates that the maximum values of the rogue waves, corresponding
to the peaks, are located at ¢ = —1.25 and & = 1.25. In conclusion, the
rogue wave triplet exhibits a similar pattern for varying values of k and
7 (see Figs. 9(a) and 9(b) for reference). The 1D profiles of the rogue
wave triplets is plotted in terms of physical free parameter g. A detailed
representation of the results is provided in Fig. 9(c). Here, the spectral
indices (r, q) are set to (1,2), while (k, 7) = (2.5,0.5). The two peaks are
also shown for different § values while the peak intensity shifts toward
zero in the region xi < 0 as f decreases from 100 to 50, as depicted in
Fig. 9(c). Conversely, in the region ¢ > 0, the peak intensity (|%,|) shifts
toward zero as the free parameter # decreases. The parameter y also
has a significant influence on the rogue wave triplet, as shown in Fig.
9(d). It is noteworthy that the variations in peak values of the intensity
for different y within the region ¢ > 0 are more significant than those
found in the region ¢ < 0. In the region ¢ < 0, the maximum value of
|¥,| shifts away from zero as the parameter y gets larger (e.g. see Fig.
9(d)).

Next, we explore the impact of the physical free parameters g and
y on the rogue wave triplets (|%,|) of IAWs, with the 2D and 3D
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representations shown in Figs. 10 and 11, respectively. The ion acoustic
rogue wave triplets resemble a second-order rogue wave that consist
of three peaks forming a triangular pattern. To represent a qualitative
sketch of the rogue waves structure that is symmetrical about the £-axis,
the shift is controlled by setting the physical free parameters g and
y (as described in Egs. (33)-(35)). The intensity profiles, as depicted
in Figs. 10(a) and 10(b), are plotted for a given set of values of the
physical free parameters, namely (8,y) = (100,0) and (8,7) = (0, 100),
respectively. The amplitude of the rogue wave triplets at (8, y) = (100, 0)
is found to be slightly larger than the amplitude at (8,y) = (0, 100). It
is interesting to observe that the triangular pattern of the rogue wave
rotates anti-clockwise on the (&, 7) plane, as illustrated in Figs. 10(a)
and 10(b). Furthermore, the variation in the absolute of ion acoustic
rogue wave triplet profiles for negative f and y are also depicted in
Figs. 10(c) and 10(d). These figures reveal that the rogue wave triplets
also have an anti-clockwise orientation. The rogue wave triplets show a
larger magnitude for positive (negative) values of g at y = 0 compared
to positive (negative) values of y at § = 0. Fig. 11 displays the 2D
representation of the rogue wave triplets for varying free parameters,
namely g and y. This figure also indicates the triangular pattern of the
rogue waves. The oval-shaped red color regions in Fig. 11(a) distinctly
indicate the peaks of the rogue wave triplets, with the bottom ovals
regions exhibiting larger magnitudes than the top oval § = 100 and
y = 0. The 2D representation of rogue wave triplets shown in Fig. 11(b)
for # =0 and y = 100 indicates that the oval region on the right has a
larger magnitude compared to the ovals regions on the left. The inverse
behavior of the rogue wave triplets shown in Figs. 11(c) and 11(d)
for negative values of the free parameters (f = —100 and y = —100)
can be observed when compared with Figs. 10(a) and 10(b). One can
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immediately draw the conclusion that a 180° orientation is observed
when compare the figures 10(a) and 10(b) with Figs. 11(c) and 11(d),
respectively.

Fig. 12 illustrates examples of the rogue wave triplets for the
parameters f# = 100,50, 15,0 at y = 0. A triangular pattern featuring
three peaks is shown for f = 100, as depicted in (a). The three peaks
can also be observed when f is adjusted to 50 (see Fig. 11(b)). For the
scenario with g = 15, the peaks move closer together, as illustrated in
Fig. 12(c). Upon decreasing the parameter f§ to zero, the rogue wave
triplets are fully converted into second-order rogue waves, commonly
known as super freak waves. It can be concluded that the rogue wave
triplets become super freak waves under the conditions # = 0 and y = 0.
In the context of MI in IAWs, rogue wave triplets typically manifest
as three distinct localized waves arranged in triangular pattern with
their amplitude and peak separation influenced by the free parameters
p and y. As the parameters approach specific values, namely g = 0 and
y = 0, the rogue wave triplets merge into a single, highly localized
wave with an extremely high amplitude, often referred to as a super
freak wave. This transition emphasizes the critical role of free plasma
parameters in shaping the instability and nonlinear IAW dynamics. As
illustrated in Fig. 13, the intensity profiles of rogue wave triplets are
plotted against & at = = 1 for different values of the parameters of both
the distribution functions, namely (r,a) and (g, g,). The contributions
of nonthermal electrons a and spectral index r to the rogue wave
analysis are analogous in both distribution functions. However, the
peaks of the rogue wave at approximately ¢ = 2.5 are larger for
the generalized distribution function compared to the nonextensive
nonthermal distribution, as illustrated in Fig. 13(a). As shown in Fig.
13(b), a similar trend is evident for the nonextensive parameter g, and
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Fig. 11. The 2D behavior of the rogue wave triplets |¥,| with respect to ¢ and = for (a) f =100 and y =0, (b) # =0 and y =100, (¢c) f = —100 and y =0, and (d) =0 and

y = —100. The other parameters are r =1, ¢ =2, and k =2.5.

the spectral index ¢ in the nonextensive nonthermal distribution and
the generalized distribution function, respectively.

5. Envelope solitons

The NLSE (19) exhibits integrability and supports exact localized
solutions such as envelope solitons [63-65]. These solutions are ex-
pressed as ¥p, (€,7) = pp (€, 7)e'9P8ED, where O, 5 represents the
nonlinear phase shift and p,  is the envelope amplitude for dark and
bright solitons. The nature of the solitons depends on the signs of
the dispersion P and nonlinear Q coefficients of NLSE [64,65]. For
PQ < 0, the system corresponds to dark soliton with large wavelengths
or small wavenumbers in the modulationally stable region (particularly
for carrier wavenumber k = 1.5), as illustrated earlier in Fig. 3.
An analytical equation describing such dark solitons is provided in
Ref. [35] as follows

_ 1/2
pp& 1) =%, [1 — d?sech? <§%>] )

1 V?
=55 [V.»:- (7 —2PQ¥’0> T]

The parameter ¥, represents an asymptotic value of the electrostatic
potential amplitude, V is the constant propagation speed, and L de-
notes the soliton width. The positive constant d determines the depth
of the void, with d = 1 and k = 1.5 (consistent with the P/Q profiles)
corresponding to dark solitons, as illustrated in Fig. 14(a) and (b). The
dark soliton profiles are clearly illustrated for r = 0.1 and = = 1.0,
respectively. The red line denotes the reference level where ¥, B =0,
which is a baseline for visualization of the amplitude characteristic of
dark/bright solitons. In the modulationally stable region, dark solitons
emerge as localized envelope voids (holes) that propagate within the

Op
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plasma. These solitons represent localized depressions in wave am-
plitude rather than peaks, distinguishing them from bright solitons.
Consequently, the dark solitons are a prevalent form of electrostatic
wavepacket in plasmas, arising due to the self-modulation.
Conversely, when the dispersion P and nonlinear Q have the same
sign (i.e., PQ > 0), corresponding to shorter wavelengths or higher
wavenumbers (as already illustrated in Fig. 3), bright-type solitons
emerge. An analytical equation for bright solitons is given in [35,64—

66]
pa(&,T) = Wysech [5 'LVT] ,

“zp[e (0]

where Q denotes the oscillation frequency of the bell-shaped envelope
solitons when V' = 0. Note that such excitations are observed in optical
fibers and bear a qualitative resemblance to bright pulses in the field
of nonlinear optics [67]. The soliton width L exhibits a strong depen-
dence on the amplitude, given by the expression (2| P|/|Q])'/?/¥,. It
is important to emphasize that bright solitons emerge under the same
conditions required for the occurrence of MI, specifically when PQ > 0
(usually P/Q profiles are evaluated for k = 2.5 or above), as shown
in Fig. 15 (a) and (b). Such bright envelope solitons are commonly
observed in space plasmas [66,68].

Op

6. Conclusion

To summarize, we have explored the MI, dark/bright solitons, and
rogue wave triplet structures, taking into account the various pa-
rameters associated with the (r,¢q) generalized and g¢,-nonextensive
nonthermal distribution functions. This paper conducts a thorough
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Fig. 12. The 3D behavior of the rogue wave triplets |¥,| with respect to £ and = for (a) =100 and y =0, (b) f=50 and y =0, (¢c) f=15and y =0, and (d) =0 and y =0.

The other parameters are r =1, g =2, and k =2.5.

comparison of IAWs, aligning the current findings using the (r,q)
distribution function with earlier results by Bouzit (2015) based on
the nonextensive nonthermal velocity distribution, which are repro-
duced herein. In this context, the fluid model that incorporates the
continuity, velocity and Poisson equations is condensed to a NLSE by
employing the reductive perturbation technique. The carrier frequency
approaches unity upon increasing the wavenumber, signifying the high-
frequency regime where it becomes less sensitive to further increases
in k, while the group velocity slows down at large wavenumbers,
indicating the wave dissipation in the plasma. Based on the criteria
for MI, characterized by the ratio of the coefficients of the NLSE
(P/Q), the stable and unstable regions have been precisely identified
for different distribution functions where the onset of MI arises. It
has been noted that the stable region defining the dark soliton varies
inversely with the spectral indices (r,q), and its effect on the dark
soliton is more significant at lower end of wavenumber (k). However,
the effect of the indices in the unstable region characterizing the bright
soliton is minimal at high end of k. A comparison study is being
made between these results and those obtained for the nonextensive
nonthermal velocity distribution. The nonthermal electrons « and the
nonextensive parameter g, have significantly influenced the behavior
of dark and bright solitons. A key component of the plasma system’s
behavior under consideration is the shift from a stable to an unstable
regime that contributes to the possibility of rogue wave formation, in
which the localized waves of large amplitude can emerge suddenly.
This shift in soliton instability analysis demonstrates the significant
influence of nonlinearity in the generation of extreme wave events,
such as rogue waves, often driven by the MI. It has also been noted
that the growth rate of MI exhibits a strong dependence on both
the spectral indices of the generalized distribution function and the

15

generation of nonthermal electrons in the nonextensive nonthermal
distribution function. The unstable region, in terms of the growth rate,
increases significantly with the presence of nonthermal electrons and
the nonextensive parameter, rather than being influenced by the spec-
tral indices of the generalized distribution function. The generalized
(r,q) distribution function effectively suppresses growth rates in the
small k regime, and therefore reducing energy available for large-scale
instabilities. Conversely, the nonextensive nonthermal distribution en-
hances the growth rate suppression in the large k regime, suggesting
stronger damping of shortwavelength instabilities. These distributions
uniquely influence MI dynamics, with the (r, ¢) distribution stabilizing
long-wavelength modes and the nonextensive nonthermal distribution
damping short-wavelength modes.

In addition, the characteristics of the rogue wave triplets have
also been explored. We have provided an in-depth exploration of the
3D visuals of the first-order rogue waves and rogue wave triplets. A
qualitative sketch of the rogue wave triplets arranged in a triangular
pattern has been acquired, based on the physical free parameters p
and y. Moreover, the rogue wave triplets can be regarded as super
freak waves when the physical free parameters are both equal to zero
(B = 0 and y = 0). In conclusion, both the (r, q) generalized distribu-
tion function and the g,-nonextensive nonthermal velocity distribution
function provide valuable insights that substantially enhance our un-
derstanding of IAWs in nonthermal plasma environments. Moreover,
we have comprehensively examined the existence domains of both dark
and bright solitons, which are associated with modulationally unstable
and stable regimes of IAWSs, respectively. Our analysis further explores
the conditions under which these solitons emerge, describing their
distinct characteristics in relation to the stability properties of the wave
dynamics. The influence of an external magnetic field on the dynamics
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Fig. 13. The 1D behavior of the rogue wave triplets for the generalized (r,q) and g,-nonextensive distribution functions with respect to spatial coordinate ¢ for different values
of (a) the spectral index r(=1.0,1.5) at ¢ =2 and a(= 0.05,0.07) at g, = 0.9, and (b) the spectral index g(=2.0,3.0) at r = 1.0 and ¢, = (0.9,1.0) at « = 0.05.

of MI and rogue wave triplets is a significant area of research in dense
plasma environments. This particular aspect is beyond the focus of our
present study and could serve as a subject for future study. Future work
should also focus on implementing numerical methods to solve the
NLSE, which will help in validating and expanding the analytical results
presented in this study. This combination of analytical and numerical
approaches will provide a more comprehensive understanding of the
problem and its solutions.
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