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Abstract
A fifth-order nonlinear Schrödinger equation which describes the one-dimensional
anisotropic Heisenberg ferromagnetic spin chain is under investigation in this paper.
Starting from the spectral analysis, a matrix Riemann–Hilbert problem is established
on the real axis. Then, through solving the resulting matrix Riemann–Hilbert problem
under the condition of no reflection, we systematically derive multi-soliton solutions
to the fifth-order nonlinear Schrödinger equation. In addition, the localized structures
of one-soliton solution are shown vividly via a few plots.

Keywords Fifth-order nonlinear Schrödinger equation · Riemann–Hilbert problem ·
Soliton solutions

Mathematics Subject Classification 35Q55 · 37K10 · 35C08

1 Introduction

One of the three branches of nonlinear science is the theory of solitons. Due to the
fact that investigating exact solutions to nonlinear evolution equations (NLEEs) can
provide more insight into interpreting nonlinear phenomena in many fields, such as
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hydrodynamics, plasma dynamics, optical communication and solid state physics, it
is of particular significance to seek abundant exact solutions of NLEEs [1–6]. Thus
far, a number of efficient approaches have been presented for deriving exact solutions,
some of which include the Hirota’s bilinear method [7–9], the Darboux transformation
method [10–12], the Riemann–Hilbert method [13–22], the KP hierarchy reduction
method [23] and the generalized unifiedmethod [24]. In recent years, there has been an
increasing interest in treating NLEEs via utilizing the Riemann–Hilbert technique. For
example, Wang et al. [20] investigated the focusing Kundu–Eckhaus equation through
Riemann–Hilbert formulation. Consequently, the bright N-soliton solutions to this
equation were gained explicitly. More recently, a matrix Riemann–Hilbert problem
was formulated for a six-component system of fourth-order AKNS equations [21],
and then multi-soliton solutions to the considered system were worked out.

In this paper, we consider the following fifth-order nonlinear Schrödinger (NLS)
equation [25]

iqt +
1

2
qxx + |q|2q − iα(qxxx + 6|q|2qx ) + γ (qxxxx + 6q2x q

∗ + 4q|qx |2 + 8|q|2qxx
+ 2q2q∗

xx + 6q|q|4) − iδ(qxxxxx + 10|q|2qxxx + 30|q|4qx + 10qqxq
∗
xx

+ 10qq∗
x qxx + 20q∗qxqxx + 10q2x q

∗
x ) � 0, (1)

which is used to describe one-dimensional anisotropic Heisenberg ferromagnetic spin
chain.Here q represents a normalized complex amplitude of the optical pulse envelope,
the subscripts denote the partial derivativeswith respect to the scaled spatial coordinate
x and time coordinate t correspondingly, whereas α, γ and δ are respectively the real
coefficients of the third-, fourth- and fifth-order terms, and the asterisk signifies the
complex conjugation. Actually, Eq. (1) covers many significant nonlinear differential
equations, which are given below:

(i) When α � γ � δ � 0, Eq. (1) is reduced to the focusing NLS equation [26]
describing the wave evolution in different physical systems.

(ii) Whenα �� 0 andγ � δ � 0, Eq. (1) becomes theHirota equation [27] describing
the propagation of a subpicosecond or femtosecond pulse.

(iii) When α � δ � 0 and γ �� 0, Eq. (1) is turned into the fourth-order disper-
sive NLS equation [28] describing the one-dimensional anisotropic Heisenberg
ferromagnetic spin chain with the octuple-dipole interaction.

(iv) When α � γ � 0 and δ �� 0, Eq. (1) is converted into the fifth-order NLS
equation [29] describing the Heisenberg ferromagnetic spin system.

There have been several studies on the fifth-order NLS equation (1) up to now. For
instance, the study in [25] presented Lax pair, and exact expressions for the most
representative soliton solutions, which involves two-soliton collisions and the degen-
erate case of two-soliton solution, as well as beating structures composed of two or
three solitons, were attained by applying the Darboux scheme. In another study [30],
infinitely-many conservation laws for Eq. (1) were constructed on basis of the Lax pair.
By use of the Hirota’s bilinear method, the one-, two- and three-soliton solutions in
analytic forms were generated. In addition, the Akhmediev breathers, Kuznetsov-Ma
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solitons and rogue wave solutions were explored by using the Darboux transformation
method [31].

The current study seeks to find multi-soliton solutions of the fifth-order NLS equa-
tion (1) via the Riemann–Hilbert method. The outline of the paper is as follows. In
Sect. 2, we build a matrix Riemann–Hilbert problem on the real line by performing
the analysis on the given spectral problem. In Sect. 3, based on the obtained Rie-
mann–Hilbert problem in which the jump matrix is takn as the identity matrix, we
compute multi-soliton solutions to the considered equation (1). The last section is a
brief conclusion.

2 Matrix Riemann–Hilbert problem

The aim of this section is to formulate a matrix Riemann–Hilbert problem. The Lax
pair [25] associated with Eq. (1) takes the form

�x � U�, U � i

(
ζ q∗
q −ζ

)
, (2a)

�t � V�, V �
5∑

c�0

iζ c
(
Ac B∗

c
Bc −Ac

)
, (2b)

where � � (ϕ,ψ)T is the spectral function, the symbol T means transpose of the
vector, and ζ is a spectral parameter. Moreover,

A5 � 16δ, A4 � −8γ , A3 � −4α − 8δ|q|2,
A2 � 1 + 4γ |q|2 + 4iδ(q∗

x q − qxq
∗),

A1 � 2α|q|2 + 6δ|q|4 − 2iγ (q∗
x q − qxq

∗) + 2δ(q∗
xxq − |qx |2 + qxxq

∗),

A0 � −1

2
|q|2 − 3γ |q|4 − iα(q∗

x q − qxq
∗)

− γ (q∗
xxq − |qx |2 + qxxq

∗) − iδ(q∗
xxxq − q∗

xxqx

+ qxxq
∗
x − qxxxq

∗) − 6iδ(q∗
x q − qxq

∗)|q|2,
B5 � 0, B4 � 16δq, B3 � −8γ q + 8iδqx , B2 � −4αq − 8δ|q|2q − 4iγ qx − 4δqxx ,

B1 � q + 4γ |q|2q − 2iαqx − 12iδ|q|2qx + 2γ qxx − 2iδqxxx ,

B0 � 2α|q|2q + 6δ|q|4q +
1

2
iqx + 6iγ |q|2qx + αqxx

+ 2δq∗
xxq

2 + 4δ|qx |2q + 6δq2x q
∗

+ 8δqxx |q|2 + iγ qxxx + δqxxxx .

For the convenience of analysis, we write the Lax pair (2) as the equivalent form

�x � (iζσ + Ũ )�, (3a)

�t � [
(16iδζ 5 − 8iγ ζ 4 − 4iαζ 3 + iζ 2)σ + Q̃

]
�, (3b)
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where

σ �
(
1 0
0 −1

)
, Q �

(
0 q∗
q 0

)
,

Q̃ � i

(
A0 B∗

0
B0 −A0

)
+ iζ

(
A1 B∗

1
B1 −A1

)
+ iζ 2

(
0 B∗

2
B2 0

)
+ iζ 3

(
0 B∗

3
B3 0

)
+ iζ 4

(
0 B∗

4
B4 0

)

+ iζ 5
(
0 B∗

5
B5 0

)
+ iζ 2[4γ |q|2 + 4iγ (q∗

x q − qxq
∗)

]
σ − 8iζ 3δ|q|2σ .

Here we posit that the potential function q in the Lax pair (3) decays to zero
sufficiently fast as x → ±∞. It can be seen from (3) that when x → ±∞,
� ∝ eiζσ x+

(
16iδζ 5−8iγ ζ 4−4iαζ 3+iζ 2

)
σ t . This leads us to introduce the following trans-

formation

� � μeiζσ x+
(
16iδζ 5−8iγ ζ 4−4iαζ 3+iζ 2

)
σ t ,

based on which the Lax pair (3) becomes

μx � iζ [σ ,μ] + Ũμ, (4a)

μt � (16iδζ 5 − 8iγ ζ 4 − 4iαζ 3 + iζ 2)[σ ,μ] + Q̃μ, (4b)

where [σ ,μ] � σμ − μσ is the commutator and Ũ � i Q.
Now we begin to consider the spectral analysis, for which we merely concentrate

on the spectral problem (4a). Because the analysis will take place at a fixed time, the
t-dependence will be suppressed. As for (4a), we write its two matrix Jost solutions
as a collection of columns

μ±(x, ζ ) � ([μ±]1, [μ±]2)(x, ζ ), (5)

obeying the asymptotic conditions

μ−(x, ζ ) → I2, x → −∞, (6a)

μ+(x, ζ ) → I2, x → +∞, (6b)

where the subscripts of μ signify which end of the x-axis the boundary conditions are
set, and I2 is the unit matrix of rank 2. The μ±(x, ζ ) are uniquely determined by the
integral equations of Volterra-type

μ−(x, ζ ) � I2 +
∫ x

−∞
eiζσ (x−y)Ũ (y)μ−(y, ζ )e−iζσ (x−y)dy, (7a)

μ+(x, ζ ) � I2 −
∫ +∞

x
eiζσ (x−y)Ũ (y)μ+(y, ζ )e

−iζσ (x−y)dy. (7b)
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The direct analysis on (7) yields that [μ−]1, [μ+]2 are analytic for ζ ∈ D
− and

continuous for ζ ∈ D
−∪R, while [μ+]1, [μ−]2 are analytic for ζ ∈ D

+ and continuous
for ζ ∈ D

+ ∪ R, where D− and D+ are respectively the lower and upper half ζ -plane.
It is indicated due to the Abel’s identity and trQ � 0 that the determinants of μ±

are independent of x. Evaluating detμ− at x � −∞ and detμ+ at x � +∞, we see
that detμ±(x, ζ ) � 1 for ζ ∈ R. Since both μ−E and μ+E are matrix solutions of
the spectral problem (4a), they must be linearly dependent, namely

μ−E � μ+ES(ζ ), E � eiζσ x , S(ζ ) �
(
s11 s12
s21 s22

)
, ζ ∈ R. (8)

Here S(ζ ) is a scattering matrix. It is obvious that det S(ζ ) � 1.
A matrix Riemann–Hilbert problem we are looking for is related to two matrix

functions: one is analytic in D
+ and the other is analytic in D

−. Set the analytic
function P1 in D+ be

P1(x, ζ ) � ([μ+]1, [μ−]2)(x, ζ ). (9)

And then, P1 can be expanded into the asymptotic series at large-ζ

P1(x, ζ ) � P (0)
1 +

P (1)
1

ζ
+
P (2)
1

ζ 2 + O

(
1

ζ 3

)
, ζ → ∞. (10)

Since P1 satisfies the spectral problem (4a), inserting (10) into (4a) and equating terms
with like powers of ζ directly leads to

O(1) : i
[
σ , P (1)

1

]
+ i QP (0)

1 � P (0)
1x ,

O(ζ ) : i
[
σ , P (0)

1

] � 0.

Hence we have P (0)
1 � I2, i.e. P1 → I2, ζ ∈ D

+ → ∞.

We continue to find the analytic counterpart of P1 in D
−. For this purpose, we

partition the inverse matrices of μ± into rows, that is

μ−1± �
⎛
⎝[μ−1± ]1

[μ−1± ]2

⎞
⎠, (11)

which fulfill the adjoint scattering equation related to (4a)

Kx � iζ [σ , K ] − KŨ , (12)

and follow the boundary conditions μ−1± → I2 as x → ±∞. It is apparent from (8)
that

E−1μ−1− � R(ζ )E−1μ−1
+ , (13)
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where R(ζ ) � (rlk)2×2 is the inverse matrix of S(ζ ). Hence, the matrix function P2
which is analytic in D− is given as

P2(x, ζ ) �
⎛
⎝[μ−1

+ ]1

[μ−1− ]2

⎞
⎠(x, ζ ). (14)

In the same way as P1, it turns out that the very large-ζ asymptotic behavior of P2 is
P2 → I2 as ζ ∈ D

− → ∞.

Substituting (5) into (8) gives rise to

([μ−]1, [μ−]2) � ([μ+]1, [μ+]2)

(
s11 s12e2iζ x

s21e−2iζ x s22

)
,

from which we obtain

[μ−]2 � s12e
2iζ x [μ+]1 + s22[μ+]2.

Hence, P1 is of the form

P1 � ([μ+]1, [μ−]2) � ([μ+]1, [μ+]2)

(
1 s12e2iζ x

0 s22

)
.

On the other hand, via carrying (11) into (13), we derive
⎛
⎝[μ−1− ]1

[μ−1− ]2

⎞
⎠ �

⎛
⎝ r11 r12e2iζ x

r21e−2iζ x r22

⎞
⎠

⎛
⎝[μ−1

+ ]1

[μ−1
+ ]2

⎞
⎠,

from which we can express [μ−1− ]2 as

[μ−1− ]2 � r21e
−2iζ x [μ−1

+ ]1 + r22[μ
−1
+ ]2.

Subsequently, P2 is of the form

P2 �
⎛
⎝[μ−1

+ ]1

[μ−1− ]2

⎞
⎠ �

⎛
⎝ 1 0

r21e−2iζ x r22

⎞
⎠

⎛
⎝[μ−1

+ ]1

[μ−1
+ ]2

⎞
⎠.

Having constructed two matrix functions P1 and P2 which are analytic in D
+ and

D
− respectively so far, we are in a position to work out a matrix Riemann–Hilbert

problem. Here we denote that the limit of P1 is P+ as ζ ∈ D
+ → R and the limit of P2

is P− as ζ ∈ D
− → R, based on which a matrix Riemann–Hilbert problem desired

can be acquired below

P−(x, ζ )P+(x, ζ ) �
(

1 s12e2iζ x

r21e−2iζ x 1

)
, ζ ∈ R. (15)
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The canonical normalization conditions are given by

P1(x, ζ ) → I2, ζ ∈ D
+ → ∞,

P2(x, ζ ) → I2, ζ ∈ D
− → ∞,

and s12r21 + s22r22 � 1.
In what follows, we plan to retrieve the potential function q(x, t). As a matter of

fact, expanding P1 at large-ζ as

P1(ζ ) � I2 +
P (1)
1

ζ
+
P (2)
1

ζ 2 + O

(
1

ζ 3

)
, ζ → ∞,

and then inserting this expansion into (4a), we know

Q � −[
σ , P (1)

1

]
.

Thereupon, the potential function is restructured as

q(x, t) � 2(P (1)
1 )21,

where (P (1)
1 )21 is the (2,1)-element of P (1)

1 .

3 Soliton solutions

The previous section has described a matrix Riemann–Hilbert problem for Eq. (1).
Nextwe treat theRiemann–Hilbert problem in the sense of irregularity. The irregularity
means that both det P1(ζ ) and det P2(ζ ) possess some zeros in their analytic domains.
By drawing on the definitions of P1 and P2 as well as the scattering relation (8), we
have

det P1(ζ ) � s22(ζ ), det P2(ζ ) � r22(ζ ),

from which we know that det P1(ζ ) and det P2(ζ ) possess the same zeros as s22(ζ )
and r22(ζ ) respectively, and r22 � (S−1)22 � s11.

In view of the above, it is time to discuss the characteristic feature of zeros. Regard-
ing the matrix Q having the symmetry relation Q
 � Q, where the superscript 

signifies the Hermitian of a matrix, we know

μ
±(ζ ∗) � μ−1± (ζ ). (16)

The expressions (9) and (14) can be rewritten as

P1 � μ+H1 + μ−H2, (17a)

P2 � H1μ
−1
+ + H2μ

−1− , (17b)
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where H1 � diag(1, 0) and H2 � diag(0, 1). By taking the Hermitian of (17a) and
making use of (16), we find

P

1 (ζ ∗) � P2(ζ ), ζ ∈ D

−, (18)

and the involution property of the scattering matrix S
(ζ ∗) � S−1(ζ ). This evidently
leads to

s∗
22(ζ

∗) � r22(ζ ), ζ ∈ D
−, (19)

which suggests that each zero ζ j of s22 leads to each zero ζ ∗
j of r22 correspondingly.

Therefore, we suppose that det P1 has N simple zeros {ζ j }Nj�1 in D
+ and det P2 has N

simple zeros {ζ̂ j }Nj�1 in D
−, where ζ̂ j � ζ ∗

j . These zeros together with the nonzero
vectors ν j and ν̂ j constitute the full set of the generic discrete data, which meet the
equations

P1(ζ j )ν j � 0, (20a)

ν̂ j P2(ζ̂ j ) � 0, (20b)

where ν j and ν̂ j denote column vectors and row vectors respectively. Taking the
Hermitian of Eq. (20a) and using (18), we see that

ν̂ j � ν

j , 1 ≤ j ≤ N . (21)

By differentiations of Eq. (20a) in x and t respectively and use of the Lax pair (4), we
get

P1(ζ j )

(
∂ν j

∂x
− iζ jσν j

)
� 0,

P1(ζ j )

(
∂ν j

∂t
− (16iδζ 5

j − 8iγ ζ 4
j − 4iαζ 3

j + iζ 2
j )σν j

)
� 0,

which generates

ν j � e

(
iζ j x+

(
16iδζ 5j −8iγ ζ 4j −4iαζ 3j +iζ

2
j

)
t
)
σ
ν j0, 1 ≤ j ≤ N ,

with ν j0 being the complex constant vectors. Also according to the relation (21), we
have

ν̂ j � ν

j0e

(
−iζ ∗

j x+
(
−16iδζ ∗

j
5+8iγ ζ ∗

j
4+4iαζ ∗

j
3−iζ ∗

j
2
)
t
)
σ
, 1 ≤ j ≤ N .
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Worthy to note that, the Riemann–Hilbert problem (15) we treat corresponds to the
reflectionless case. Hence, the solutions [32] for the Riemann–Hilbert problem (15)
can be given as

P1(ζ ) � I2 −
N∑

k�1

N∑
j�1

νk ν̂ j (M−1)k j

ζ − ζ̂ j
, (22a)

P2(ζ ) � I2 +
N∑

k�1

N∑
j�1

νk ν̂ j (M−1)k j

ζ − ζk
, (22b)

where M is a N × N matrix with entries

mkj � ν̂kν j

ζ j − ζ̂k
, 1 ≤ k, j ≤ N ,

and (M−1)k j means the (k, j)-entry of the inverse matrix ofM. From expression (22a),
we have

P (1)
1 � −

N∑
k�1

N∑
j�1

νk ν̂ j (M
−1)k j .

As a consequence, the expression of general N-soliton solution of the fifth-order NLS
equation (1) can be derived as follows

q � −2
N∑

k�1

N∑
j�1

α∗
jβke

−θk+θ∗
j (M−1)k j , (23)

where

mkj � α∗
kα j eθ∗

k +θ j + β∗
k β j e−θ∗

k −θ j

ζ j − ζ ∗
k

, 1 ≤ k, j ≤ N .

Here we have set nonzero vectors νk0 � (αk, βk)T and θk � iζk x +(16iδζ 5
k −8iγ ζ 4

k −
4iαζ 3

k + iζ 2
k )t, (Imζk > 0, 1 ≤ k ≤ N ).

In the rest of this section, we write out one- and two-soliton solutions explicitly.
For the case of N � 1, the one-soliton solution can be readily obtained as

q(x, t) � − 2α∗
1β1(ζ1 − ζ ∗

1 )e
−θ1+θ∗

1

|α1|2eθ∗
1 +θ1 + |β1|2e−θ∗

1 −θ1
, (24)
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in which θ1 � iζ1x + (16iδζ 5
1 − 8iγ ζ 4

1 − 4iαζ 3
1 + iζ 2

1 )t . Furthermore, fixing β1 � 1
and setting ζ1 � a1 + ib1 as well as |α1|2 � e2ξ1 , the expression (24) is then turned
into

q(x, t) � −2iα∗
1b1e

−ξ1eθ∗
1 −θ1sech(θ∗

1 + θ1 + ξ1). (25)

According to the notation above, we arrive at

θ∗
1 + θ1 � −2b1

[
x + (80δa41 − 160δa21b

2
1 + 16δb41 − 32γ a31 + 32γ a1b

2
1 − 12αa21

+ 4αb21 + 2a1)t
]
,

θ∗
1 − θ1 � −2ia1x + (320iδa31b

2
1 − 160iδa1b

4
1 − 96iγ a21b

2
1 − 24iαa1b

2
1 + 16iγ a41

− 32iδa51 + 8iαa31 + 16iγ b41 + 2ib21 − 2ia21)t .

Thus, the one-soliton solution (25) can be further written as

q(x, t) � − 2iα∗
1b1e

−ξ1eθ∗
1 −θ1sech{2b1

[
x + (80δa41 − 160δa21b

2
1 + 16δb41

− 32γ a31 + 32γ a1b
2
1 − 12αa21 + 4αb21 + 2a1)t

]
+ ξ1}.

(26)

From expression (26), it can be seen that the one-soliton solution is of the shape of
hyperbolic secant function with peak amplitude

A � 2
∣∣α∗

1

∣∣b1e−ξ1 ,

and the velocity

V � 80δa41 − 160δa21b
2
1 + 16δb41 − 32γ a31 + 32γ a1b

2
1 − 12αa21 + 4αb21 + 2a1

relying on both the real part a1 and the imaginary part b1 of the spectral parameter
ζ1. The localized structures of the one-soliton solution (26) are depicted in Figs. 1, 2
and 3 with the parameters chosen as a1 � 0.2, b1 � 0.3, ξ1 � 0, α � 1, γ � 1, δ �
1, α1 � 1.

In addition, the two-soliton solution to Eq. (1) can be generated by taking N � 2
in the formula (23)

q(x, t) � −2(α∗
1β1m22e−θ1+θ∗

1 − α∗
2β1m12e−θ1+θ∗

2 − α∗
1β2m21e−θ2+θ∗

1 + α∗
2β2m11e−θ2+θ∗

2 )

m11m22 − m12m21
,

(27)

where

m11 � |α1|2eθ∗
1 +θ1 + |β1|2e−θ∗

1 −θ1

ζ1 − ζ ∗
1

, m12 � α∗
1α2eθ∗

1 +θ2 + β∗
1β2e−θ∗

1 −θ2

ζ2 − ζ ∗
1

,

m21 � α∗
2α1eθ∗

2 +θ1 + β∗
2β1e−θ∗

2 −θ1

ζ1 − ζ ∗
2

, m22 � |α2|2eθ∗
2 +θ2 + |β2|2e−θ∗

2 −θ2

ζ2 − ζ ∗
2

,
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Fig. 1 Plots of one-soliton solution (26) with a1 � 0.2, b1 � 0.3, ξ1 � 0, α � 1, γ � 1, δ � 1, α1 � 1.
(a) Perspective viewofmodulus of q; (b) Perspective viewof real part of q; (c) Perspective viewof imaginary
part of q

Fig. 2 Plots of one-soliton solution (26) with a1 � 0.2, b1 � 0.3, ξ1 � 0, α � 1, γ � 1, δ � 1, α1 � 1.
(a) Overhead view of modulus of q; (b) Overhead view of real part of q; (c) Overhead view of imaginary
part of q

and θ1 � iζ1x + (16iδζ 5
1 − 8iγ ζ 4

1 − 4iαζ 3
1 + iζ 2

1 )t, θ2 � iζ2x + (16iδζ 5
2 − 8iγ ζ 4

2 −
4iαζ 3

2 + iζ 2
2 )t, ζ1 � a1 + ib1, ζ2 � a2 + ib2.

If we let β1 � β2 � 1, α1 � α2 and |α1|2 � e2ξ1 , then the two-soliton solution
(27) has the form

q(x, t) � −2(α∗
1m22e−θ1+θ∗

1 − α∗
2m12e−θ1+θ∗

2 − α∗
1m21e−θ2+θ∗

1 + α∗
2m11e−θ2+θ∗

2 )

m11m22 − m12m21
,

(28)

where

m11 � − i

b1
eξ1 cosh(θ∗

1 + θ1 + ξ1),

m12 � 2eξ1

(a2 − a1) + i(b1 + b2)
cosh(θ∗

1 + θ2 + ξ1),

m22 � − i

b2
eξ1 cosh(θ∗

2 + θ2 + ξ1),

m21 � 2eξ1

(a1 − a2) + i(b1 + b2)
cosh(θ∗

2 + θ1 + ξ1).
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Fig. 3 Plots of one-soliton solution (26) with a1 � 0.2, b1 � 0.3, ξ1 � 0, α � 1, γ � 1, δ � 1, α1 �
1, t � 0. (a) x-curve of modulus of q; (b) x-curve of real part of q; (c) x-curve of imaginary part of q

4 Conclusion

The aim of the paper was to investigate a fifth-order nonlinear Schrödinger equation
describing the one-dimensional anisotropic Heisenberg ferromagnetic spin chain via
the Riemann–Hilbert method. The spectral analysis was first carried out and a matrix
Riemann–Hilbert problem was established. After that, via solving the resulting Rie-
mann–Hilbert problem without reflection, the general multi-soliton solutions to the
fifth-order nonlinear Schrödinger equation were attained. Furthermore, by selecting
particular values for the involved parameters, a few plots of one-soliton solution were
made to display the localized structures.
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