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Abstract

A fifth-order nonlinear Schrodinger equation which describes the one-dimensional
anisotropic Heisenberg ferromagnetic spin chain is under investigation in this paper.
Starting from the spectral analysis, a matrix Riemann—Hilbert problem is established
on the real axis. Then, through solving the resulting matrix Riemann—Hilbert problem
under the condition of no reflection, we systematically derive multi-soliton solutions
to the fifth-order nonlinear Schrodinger equation. In addition, the localized structures
of one-soliton solution are shown vividly via a few plots.
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1 Introduction

One of the three branches of nonlinear science is the theory of solitons. Due to the
fact that investigating exact solutions to nonlinear evolution equations (NLEEs) can
provide more insight into interpreting nonlinear phenomena in many fields, such as
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hydrodynamics, plasma dynamics, optical communication and solid state physics, it
is of particular significance to seek abundant exact solutions of NLEEs [1-6]. Thus
far, a number of efficient approaches have been presented for deriving exact solutions,
some of which include the Hirota’s bilinear method [7-9], the Darboux transformation
method [10-12], the Riemann—Hilbert method [13-22], the KP hierarchy reduction
method [23] and the generalized unified method [24]. In recent years, there has been an
increasing interest in treating NLEESs via utilizing the Riemann—Hilbert technique. For
example, Wang et al. [20] investigated the focusing Kundu—Eckhaus equation through
Riemann-Hilbert formulation. Consequently, the bright N-soliton solutions to this
equation were gained explicitly. More recently, a matrix Riemann—Hilbert problem
was formulated for a six-component system of fourth-order AKNS equations [21],
and then multi-soliton solutions to the considered system were worked out.

In this paper, we consider the following fifth-order nonlinear Schrédinger (NLS)
equation [25]
2

) 1 )
iqr+ e+ 191%q — ia(quxx +61q1°qx) + ¥ (quxxx +6q2q™ +4q|qx|* + 81q1*Grx

+2q%q7, +6q1q1*) — i8(qrxrxx + 1011 Gxrx +301g1%qx + 1094},
+10gq} qux + 20g*ququx +10g2¢}) =0, (1)

which is used to describe one-dimensional anisotropic Heisenberg ferromagnetic spin
chain. Here g represents a normalized complex amplitude of the optical pulse envelope,
the subscripts denote the partial derivatives with respect to the scaled spatial coordinate
x and time coordinate ¢ correspondingly, whereas «, y and § are respectively the real
coefficients of the third-, fourth- and fifth-order terms, and the asterisk signifies the
complex conjugation. Actually, Eq. (1) covers many significant nonlinear differential
equations, which are given below:

(i) Whenao = y = § = 0, Eq. (1) is reduced to the focusing NLS equation [26]
describing the wave evolution in different physical systems.

(i) Whena # Oandy = § = 0,Eq. (1) becomes the Hirota equation [27] describing
the propagation of a subpicosecond or femtosecond pulse.

(i) Whena = 6 = 0 and y # 0, Eq. (1) is turned into the fourth-order disper-
sive NLS equation [28] describing the one-dimensional anisotropic Heisenberg
ferromagnetic spin chain with the octuple-dipole interaction.

(iv) Wheno = y = 0 and § # 0, Eq. (1) is converted into the fifth-order NLS
equation [29] describing the Heisenberg ferromagnetic spin system.

There have been several studies on the fifth-order NLS equation (1) up to now. For
instance, the study in [25] presented Lax pair, and exact expressions for the most
representative soliton solutions, which involves two-soliton collisions and the degen-
erate case of two-soliton solution, as well as beating structures composed of two or
three solitons, were attained by applying the Darboux scheme. In another study [30],
infinitely-many conservation laws for Eq. (1) were constructed on basis of the Lax pair.
By use of the Hirota’s bilinear method, the one-, two- and three-soliton solutions in
analytic forms were generated. In addition, the Akhmediev breathers, Kuznetsov-Ma
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solitons and rogue wave solutions were explored by using the Darboux transformation
method [31].

The current study seeks to find multi-soliton solutions of the fifth-order NLS equa-
tion (1) via the Riemann—Hilbert method. The outline of the paper is as follows. In
Sect. 2, we build a matrix Riemann—Hilbert problem on the real line by performing
the analysis on the given spectral problem. In Sect. 3, based on the obtained Rie-
mann—Hilbert problem in which the jump matrix is takn as the identity matrix, we
compute multi-soliton solutions to the considered equation (1). The last section is a
brief conclusion.

2 Matrix Riemann-Hilbert problem

The aim of this section is to formulate a matrix Riemann—Hilbert problem. The Lax
pair [25] associated with Eq. (1) takes the form

O, =Ud, U= i(é i) (2a)

> A. B
o, = Vo, v:Zt;C(BC . ) (2b)
=0 C c

where ® = (¢, ¥)T is the spectral function, the symbol T means transpose of the
vector, and ¢ is a spectral parameter. Moreover,

As =168, As=—8y, A3=—4a—85|q/%
Ar = 1 +4y|q* +4i8(qq — qxq™),

_ 2 4 . * * * 2 *
Ay =2a|q|" +631q1" — 2iy(qyq — qxq") +28(qrxq — 1qx|” + qxxq™),

1 .
Ao =—5lql” = 3ylgl* —ia(giq — 4xq™)
— v (@5q — 1gx)? + qexq™) — i8(q}q — 9114
+quxd} — qexxq™) — 6i8(q}q — axq g,
Bs=0, By=163q, B3=—8yq+8idq:, Br= —daq —85lq1°q — 4iyqy — 48qux,
By = q +4ylql*q — 2iag, — 12i8]q|*qx + 2y qxx — 2i8qxax,
1, .
By = 2a|q|*q +68|q|*q + S+ 6iy1q12qy +aqyx
+ 28(];‘){(12 +48|qx |2q + 68q§q*
+ 856]}(}6 |Cl |2 +iYGuxx + (Sq.rxxx-

For the convenience of analysis, we write the Lax pair (2) as the equivalent form
&, = (ito +U), (3a)

@, = [(16i8¢° — 8iy¢* —4diag? +itHo + 0], (3b)



14 Page4of13 Z.-Z.Kang et al.

where

(1 0 (0 g¢*
a-(o _1), Q—(q 0),
~ (Ao B§ . (A1 Bf .20 B} 3(0 B u(0 B
Q_l<30 —A0>+l§<31 —a) T\ 0) s 0) By 0
. .5 0 B;k ) 2 . « « .3 2
AL U2 R [4vlq1” +4iy (qfq — qxq™)]o — 8ig S|q |0

Here we posit that the potential function ¢ in the Lax pair (3) decays to zero
sufficiently fast as x — Zo00. It can be seen from (3) that when x — =£oo,
® ei{ax+(16[5{578iy{474ia§3+i{2)0t
formation

. This leads us to introduce the following trans-

®— Mei{ax+(l6i8{5—8iy§4—4ia§3+i§2)at

based on which the Lax pair (3) becomes
px = iclo, ul+Up, (4a)
= (16i8¢° = 8iye* —4iag® +ic?)lo, ul+ Op, (4b)
where [0, u] = o — po is the commutator and U=i0Q.
Now we begin to consider the spectral analysis, for which we merely concentrate
on the spectral problem (4a). Because the analysis will take place at a fixed time, the

t-dependence will be suppressed. As for (4a), we write its two matrix Jost solutions
as a collection of columns

pt(x, &) = ([ntli, [r+12)(x, O, )

obeying the asymptotic conditions
pn-(x,8) = h, x— —oo, (6a)
p+(x, &) = I, x — +00, (6b)

where the subscripts of u signify which end of the x-axis the boundary conditions are
set, and [, is the unit matrix of rank 2. The p+(x, ¢) are uniquely determined by the
integral equations of Volterra-type

x . -~ .
W O) = I+ / SN T () (y, e 0T dy, (7a)

—00

+00
pa(x, &) = I — / TN T (y)pa(y, £)e B0y, (7b)
X
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The direct analysis on (7) yields that [_], [+]2 are analytic for ¢ € D~ and
continuous for ¢ € D~ UR, while [114]1, [pt—]2 are analytic for ¢ € D* and continuous
for ¢ € D* UR, where D~ and D* are respectively the lower and upper half ¢-plane.

It is indicated due to the Abel’s identity and trQ = O that the determinants of
are independent of x. Evaluating det _ at x = —oo0 and det . at x = +00, we see
that det u+(x, ¢) = 1 for ¢ € R. Since both u_FE and u4 E are matrix solutions of
the spectral problem (4a), they must be linearly dependent, namely

u_E = pyESC), E = e, S(o:(s“ “2), ¢ eR. (8)
8521 8§22

Here S(¢) is a scattering matrix. It is obvious that det S(¢) = 1.

A matrix Riemann—Hilbert problem we are looking for is related to two matrix
functions: one is analytic in D* and the other is analytic in D~. Set the analytic
function P; in D' be

Pi(x,¢) = ([u+]1, [u=12)(x, ). 9

And then, P can be expanded into the asymptotic series at large-¢
p (2 1
_ p® 1 1 2
Pi(x,0)=P "+ c +_+0<C3)’ ¢ — oo. (10)

Since Pj satisfies the spectral problem (4a), inserting (10) into (4a) and equating terms
with like powers of ¢ directly leads to

o) :if[o, PP +igP® = P,

; 0

0@):ifo, PV =0.

Hence we have Pl(o) =Dh,ie. P > I, € Dt - oo.

We continue to find the analytic counterpart of P; in D™. For this purpose, we
partition the inverse matrices of ¢4 into rows, that is

o (e
ur = e (11)

which fulfill the adjoint scattering equation related to (4a)

K, =itlo,K]— KU, (12)

and follow the boundary conditions M;I — I as x — *o0. It is apparent from (8)
that

E'w = R@OE i, (13)
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where R(¢) = (r1x)y %2 is the inverse matrix of S(¢). Hence, the matrix function P,
which is analytic in D™ is given as

(x, ©). (14)

In the same way as Py, it turns out that the very large-¢ asymptotic behavior of P; is
P, — hhas¢ eD™ — oo.
Substituting (5) into (8) gives rise to

2i¢x
Qu—h,ULJ2)=(ULJL[M+h)< L 1 ),

sa1e” 28 522
from which we obtain

(-T2 = s12e* 5 [1s 1 + sl la.

Hence, P; is of the form

2i¢x
m=6mthm=amhumﬁG Miz)'

On the other hand, via carrying (11) into (13), we derive

2e Y (!
) [ui '

—1
(=1 11 rize

[='1? rye” 26X

3

from which we can express [/LZI]2 as

—2i¢x

(=% = e 2 (s + o[ 1

Subsequently, P; is of the form

[y ! 1 0\ [[u'T
P, = = .

[uZ'1? ra1e 285 oy |\ [ '
Having constructed two matrix functions P; and P, which are analytic in D* and
D™ respectively so far, we are in a position to work out a matrix Riemann—Hilbert
problem. Here we denote that the limit of Py is P* as ¢ € D* — R and the limit of P,
is P~ as ¢ € D™ — R, based on which a matrix Riemann—Hilbert problem desired
can be acquired below

rie 1

2i¢x
P™(x,5)P*(x,¢) = ( 121’;‘)5 e ) ¢ eR. (15)
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The canonical normalization conditions are given by

Pi(x,0) > b, ¢eD"— oo,
Py(x,2) > L, (€D — oo,
and S12121 + S22 = 1.

In what follows, we plan to retrieve the potential function g(x, ¢). As a matter of
fact, expanding P; at large-¢ as

Y0
Pl(é-):12+T+§—2+0(§—3), {—)OO,

and then inserting this expansion into (4a), we know
0= —[O’, Pl(l)].
Thereupon, the potential function is restructured as
q(x,1) = 2(P{)ay,

where (Pl(l))21 is the (2,1)-element of Pl(l).

3 Soliton solutions

The previous section has described a matrix Riemann—Hilbert problem for Eq. (1).
Next we treat the Riemann—Hilbert problem in the sense of irregularity. The irregularity
means that both det P1(¢) and det P>(¢) possess some zeros in their analytic domains.
By drawing on the definitions of P and P, as well as the scattering relation (8), we
have

det P1(¢) = s22(¢), det Pa(¢) = rn (),
from which we know that det P;(¢) and det P>(¢) possess the same zeros as s22(¢)
and r2(¢) respectively, and 22 = (S _1)22 =s11.
In view of the above, it is time to discuss the characteristic feature of zeros. Regard-

ing the matrix Q having the symmetry relation Q® = Q, where the superscript &
signifies the Hermitian of a matrix, we know

uE @ = pni'©). (16)
The expressions (9) and (14) can be rewritten as
P =p Hy +pu_Hp, (17a)

Py=Hyp; '+ Hyp”!, (17b)
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where H; = diag(l, 0) and H, = diag(0, 1). By taking the Hermitian of (17a) and
making use of (16), we find

PR = Pyg), ¢ eD, (18)

and the involution property of the scattering matrix S®(¢*) = S~!(¢). This evidently
leads to

53¢y =), teD”, (19)

which suggests that each zero ¢; of s7; leads to each zero {/’.‘ of ry» correspondingly.
Therefore, we suppose that det Py has N simple zeros {{; }jy: | in D* and det P has N
simple zeros {f j}jy:l in D™, where 2 i = ;;. These zeros together with the nonzero

vectors v; and D; constitute the full set of the generic discrete data, which meet the
equations

Pi(¢j)v; =0, (20a)
b PaEj) =0, (20b)

where v; and D; denote column vectors and row vectors respectively. Taking the
Hermitian of Eq. (20a) and using (18), we see that

pi=v® 1<j<N. 21

By differentiations of Eq. (20a) in x and ¢ respectively and use of the Lax pair (4), we
get

a .
P SL —igjov;) =0,
J ox J J
8\1,’

PI(;j)<8—t- — (16i8¢7 — 8iy¢] —4iag; + i;})av,-) =0,

which generates

e(ig_,x+(16i5{f—8iy£}‘—4ia§?+i€f)’)“

v = vjo, 1 <j=<N,

with v ;o being the complex constant vectors. Also according to the relation (21), we
have

ik ERTSIV T E) . 54 . af3_~ afZ
ﬁj _ v;%)e( l{jx+( 1618{j +81y;‘/ +4lOl§'J i )t)a’ 1 < ] <N.
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Worthy to note that, the Riemann—Hilbert problem (15) we treat corresponds to the
reflectionless case. Hence, the solutions [32] for the Riemann—Hilbert problem (15)
can be given as

Pl(;“)—lz—ZZM (22a)
=1j=1  §—=¢;

Pz(()—12+Zkav](M i (22)
P & — &k

where M is a N x N matrix with entries

and (M) kj means the (k, j)-entry of the inverse matrix of M. From expression (22a),
we have

N N

PV = =S whi .

k=1 j=1

As a consequence, the expression of general N-soliton solution of the fifth-order NLS
equation (1) can be derived as follows

N N
g=-2> 3 e * MYy, (23)

k=1 j=1
where

— oekoze !+ﬂﬂe O =0j <k j<N
J ;'j—é'k ’ p— ’ —

Here we have set nonzero vectors vgo = (g, Bx) ' and 6 = i xx + (16i5§,;5 — 81')/{,? —
diagd +icHt,(Img > 0,1 <k < N).

In the rest of this section, we write out one- and two-soliton solutions explicitly.
For the case of N = 1, the one-soliton solution can be readily obtained as

2 Bi(g1 — e N0

: (24)
la |260T+01 + |,31 |2€—0T—01

q(xvt) = -
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in which 0, = i¢yx + (16i8¢7 — 8iy ¢y — 4iag; +i¢?)t. Furthermore, fixing f1 = 1
and setting {1 = a; +iby as well as |o; 12 = ¢%1, the expression (24) is then turned
into

q(x. 1) = —2iatbie 51e" ~sech(0] +6) + &)). (25)
According to the notation above, we arrive at
0f +01 = —2by[x + (808a} — 1608aibi + 163b] — 32yaj +32yarbi — 12aai
+4abt +2a))t],
0F — 01 = —2ia1x + (320i8a3b? — 160i8a1b} — 96iyatb} — 24iaarb? + 16iya}
— 32i8a3j + 8iaa; + 16iyb] +2ib? — 2ia?)r.
Thus, the one-soliton solution (25) can be further written as

q(x, 1) = — 2iafbre 51! = sech{2b; [x + (808a] — 1608ab? + 165b]

3 2 2 2 (26)

— 32yaj +32yaib; — 12aaj +4abi +2a1)t] + &1}
From expression (26), it can be seen that the one-soliton solution is of the shape of
hyperbolic secant function with peak amplitude

A= 2|aT|ble_$1,
and the velocity
V = 808a] — 1608atb; + 168b] — 32y a; + 32ya1b? — 12aa} + 4ab? + 2a,

relying on both the real part a; and the imaginary part by of the spectral parameter
1. The localized structures of the one-soliton solution (26) are depicted in Figs. 1, 2
and 3 with the parameters chosenasa; = 0.2, = 03,6 =0, a =1,y =1,§ =
l,a; = 1.

In addition, the two-soliton solution to Eq. (1) can be generated by taking N = 2
in the formula (23)

_ * _ * _ % _ ¥
0 1) = _ 2(afBimne 00 — a5 Bimiae ™02 — af Bamar e + oy Bymy e 02702
' miymy — miamay '
27
where
* * * _p*_
|O[1|2€91+91 + |‘31|2€791 -0 a’fazeel +6) +‘81k/32€ )
mi = = , mpp = * )
&1 — §1 o — 51
* 0¥ _ * _px_
Ol;()l1€62+91 + ﬂ;ﬂle 05 —01 |a2|2692+92 + |,32|2€ 05 —0>
mp1 = , M2 = ’

‘1 —¢&5 0=
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Fig. 1 Plots of one-soliton solution (26) witha; = 0.2,b1 =0.3,§1 =0, =1,y =1,§ = L,a; = 1.
(a) Perspective view of modulus of ¢; (b) Perspective view of real part of ¢; (¢) Perspective view of imaginary
part of ¢

15 1 15
: TN TN
5 5 \ 5

~ ~ 0] ~ 0 \
; ; A ;
-10 -10 \ -10 \
50 s 0 5 1015 E -5 0 5 10 ! —

X x

s 10 15 s a0 s 0 5 1015
X

(a) (b) (c)
Fig. 2 Plots of one-soliton solution (26) witha; = 0.2, = 0.3, =0, =1L,y =1, = 1,0] = 1.

(a) Overhead view of modulus of g; (b) Overhead view of real part of g; (¢) Overhead view of imaginary
part of g

and 0 = igx + (16i8¢0 — 8iy ¢} — diagd +itHt, 02 = itox + (16i8¢) — 8iy ¢y —
4i(x§23 + i§22)t, li=ay+iby, 5 =ax+ib;.

Ifwelet 81 = B2 = 1,1 = a2 and |« |2 = ¢%1_ then the two-soliton solution
(27) has the form

(. 1) 2((;1]*111226_@”9;k — ai“mlze_e”@z* — ai‘m21e_92+9f6 + a;mlle_ezwik)
q xat = — 3
niimoy — miama|
(28)

where

my = —bLe‘El cosh(6] + 61 + &),
1

26" h(6} +6; + £1)
mpy = : cos h +&1),
(ap —ay)+i(by + by) :
My = —bl—esl cosh(6; + 6> + &),
2
Zesl *
Moy cosh(6; + 61 +&1).

" (a1 —ap) +i(b1 + )
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Fig. 3 Plots of one-soliton solution (26) with a; = 0.2,b; = 0.3, =0, =1,y = 1,6 = 1,1 =
1,t = 0. (a) x-curve of modulus of g; (b) x-curve of real part of ¢; (¢) x-curve of imaginary part of ¢

4 Conclusion

The aim of the paper was to investigate a fifth-order nonlinear Schrodinger equation
describing the one-dimensional anisotropic Heisenberg ferromagnetic spin chain via
the Riemann—Hilbert method. The spectral analysis was first carried out and a matrix
Riemann—Hilbert problem was established. After that, via solving the resulting Rie-
mann—Hilbert problem without reflection, the general multi-soliton solutions to the
fifth-order nonlinear Schrodinger equation were attained. Furthermore, by selecting
particular values for the involved parameters, a few plots of one-soliton solution were
made to display the localized structures.
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